新高考高三数学基础练习题推荐

合集下载

高三高考数学基础练习题

高三高考数学基础练习题

高三高考数学基础练习题题一:解方程:3x + 5 = 17解析:将方程式中的5移到等号右侧,得到3x = 17 - 5。

计算出右侧的结果为12。

最后,将方程式两边同时除以3,得到x = 4。

题二:计算:(4a^2b^3)^2解析:根据乘方法则,当一个乘方数被平方时,指数会被乘以2。

所以,根据公式,我们可以将题目转为乘方计算,即(4^2) * (a^2)^2 * (b^3)^2。

计算得到的结果是16 * a^4 * b^6。

题三:计算下列算式的值:log4(16) + log5(125)解析:首先,我们计算指数的值。

log4(16) = 2,表示4的多少次幂等于16。

log5(125) = 3,表示5的多少次幂等于125。

将这两个结果相加,得到2 + 3 = 5。

题四:已知函数f(x) = 2x^2 - 3x + 1,计算f(3)的值。

解析:将x替换为3,得到f(3) = 2(3)^2 - 3(3) + 1。

计算方程右侧的数值,我们得到f(3) = 18 - 9 + 1 = 10。

题五:已知三角形ABC,AB = 5cm,BC = 8cm,AC = 10cm。

计算三角形ABC的面积。

解析:根据海伦公式,我们可以计算三角形的面积。

首先,计算半周长:p = (AB + BC + AC) / 2 = (5 + 8 + 10) / 2 = 11.5cm。

然后,将半周长代入公式,计算面积:S = √(p * (p - AB) * (p - BC) * (p - AC)) = √(11.5 * (11.5 - 5) * (11.5 - 8) * (11.5 - 10))。

最后,计算得到S ≈ √(11.5 * 6.5 * 3.5 * 1.5) ≈ √432.6875 ≈ 20.8cm²。

总结:本文根据“高三高考数学基础练习题”题目,按照练习题的格式,给出了五道数学基础练习题及解析。

希望这些练习题能够帮助您复习和巩固高考数学基础知识,为高考备考提供帮助。

高三数学基础练习题推荐

高三数学基础练习题推荐

高三数学基础练习题推荐在高三数学备考阶段,进行基础练习是非常重要的,能够巩固基础知识、熟悉考点、提高解题能力。

下面是一些推荐的高三数学基础练习题,供同学们参考。

一、函数与方程1. 一次函数与二次函数(1) 求解一次方程和一次不等式;(2) 求解二次方程,包括完全平方和配方法等;(3) 理解二次函数的图像及性质,并运用函数图像解决问题。

2. 指数与对数(1) 熟悉指数与对数的基本性质;(2) 运用指数与对数求解方程与不等式;(3) 掌握指数函数与对数函数的图像与变换。

3. 三角函数(1) 熟悉三角函数的基本关系式;(2) 运用三角函数解决几何问题;(3) 理解三角函数的周期性与图像变换。

二、数列与数学归纳法1. 等差数列与等比数列(1) 理解等差数列与等比数列的定义与性质;(2) 掌握等差数列与等比数列的通项公式;(3) 运用数列求和公式解决实际问题。

2. 数学归纳法(1) 了解数学归纳法的基本思想与原理;(2) 运用数学归纳法证明数学命题。

三、三角恒等变换1. 三角函数的基本关系与恒等变换(1) 熟悉三角函数的基本关系式;(2) 掌握常用的三角函数恒等变换;(3) 运用三角函数的恒等变换简化复杂式子。

2. 三角方程与三角不等式(1) 解三角方程,包括初等函数与参数方程;(2) 解三角不等式,包括求解三角函数的极值等。

四、立体几何与解析几何1. 空间立体几何(1) 掌握空间点、线、面的直观概念;(2) 理解投影与平面的交线;(3) 运用向量与坐标法解决空间几何问题。

2. 解析几何(1) 熟悉直线、圆的方程及性质;(2) 掌握平面的方程与性质;(3) 运用解析几何解决实际问题。

以上是一些高三数学基础练习题的推荐,希望同学们能够针对自己的学习情况选择适合的题目进行练习,提高数学解题能力,为高考做好准备。

祝同学们取得优异的成绩!。

高三数学零基础练习题推荐

高三数学零基础练习题推荐

高三数学零基础练习题推荐数学是一门需要不断练习和巩固的学科,高三学生对于数学基础的打牢非常重要。

在此,我将为高三学生推荐一些适合零基础练习的数学题目。

这些题目有助于学生巩固基础知识,提高解题能力,并为高考做好充分准备。

一、代数题1. 简化下列代数式:(3x^2 - 5x + 2) + (2x^2 + 4x -1) - (5x^2 - 3x + 5)2. 如果x + 3 = 7,求x的值。

3. 解方程:2(3x - 4) + 5x = 7 - (2 - 3x)二、几何题1. 计算正方形的面积和周长,如果已知边长为3cm。

2. 已知一个矩形的长为5cm,宽为3cm,计算它的周长和面积。

3. 如果已知三角形的底为6cm,高为4cm,计算它的面积。

4. 证明等腰三角形的底角相等。

三、概率题1. 在一副标准扑克牌中,从中随机抽取一张牌。

求抽到的牌是红桃的概率。

2. 在一次投掷硬币的实验中,如果硬币是公平的,求出现正面的概率。

3. 有一个装有5个红球和3个蓝球的袋子,从中随机抽取一个球,求抽到红球的概率。

四、函数题1. 已知函数f(x) = 2x + 3,求f(4)的值。

2. 已知函数g(x) = x^2 - 4x + 2,求g(-2)的值。

3. 已知函数h(x) = 3x^2 - 5x,求方程h(x) = 0的解。

以上题目旨在帮助高三学生巩固数学基础知识,提高解题能力。

在学习过程中,同学们应该注重理解题目,按照正确的步骤解答,多做练习以强化记忆和应用技巧。

为了更好地进行练习,建议同学们可以使用教辅资料、习题集和在线学习平台等资源。

同时,定期检查自己的学习成果,及时发现和解决问题。

总之,高三学生在备战高考的过程中,数学的复习和练习是不可或缺的环节。

希望以上推荐的练习题能够帮助同学们夯实数学基础,取得优异的成绩。

祝福每一位高三学生都能够取得令人满意的成果!。

河北高三数学练习题零基础

河北高三数学练习题零基础

河北高三数学练习题零基础为了帮助河北高三学生提高数学水平,在这里提供一些零基础的数学练习题。

这些练习题包含了高中数学基础知识的各个方面,旨在帮助大家加深对数学概念和解题方法的理解,为高考提供更好的准备。

1. 解方程(1)求方程x^2 - 5x + 6 = 0的根。

(2)求方程2x + 5 = 3x + 2的根。

(3)求方程3x^2 + 4x + 1 = 0的根。

2. 因式分解(1)将4x^2 - 13x + 3进行因式分解。

(2)将8x^3 + 12x^2 - 10x进行因式分解。

(3)将x^2 + 6x + 9进行因式分解。

3. 求导数(1)求函数f(x) = x^3 - 2x^2 + 5的导数。

(2)求函数f(x) = 3x^2 + 4x + 2的导数。

(3)求函数f(x) = 2sin(x) - 3cos(x)的导数。

4. 极限计算(1)计算lim(x->2)(x^2 - 4) / (x - 2)的值。

(2)计算lim(x->0)sin(3x) / x的值。

(3)计算lim(x->∞)(3x + 2) / (4x - 1)的值。

5. 几何相关题目(1)已知直角三角形的两条直角边的长度分别为3和4,求斜边的长度。

(2)正方形的面积为49平方单位,求其对角线的长度。

(3)在平面直角坐标系中,点A(2, 5)和点B(7, 9)的距离是多少?以上仅为部分练习题,供大家练习。

希望大家能够通过不断的练习提高数学水平,为高考取得好成绩做好准备。

在解题过程中,可以利用课本、参考书等资源,加深对数学知识的理解和应用。

祝愿各位河北高三学生在数学学习中取得好成绩!。

数学基础练习题高三

数学基础练习题高三

数学基础练习题高三
数学作为一门重要的学科,对于高三学生来说尤为重要。

为了巩固和提高数学基础,下面给出一些高三数学基础练习题,希望能对同学们的学习有所帮助。

一、选择题
1. 若x是方程x^2-5x+6=0的一个根,则x的值是:
A. -2和-3
B. 2和3
C. 2和-3
D. -2和3
2. 已知直线l过点A(4,-1)和点B(2,3),则直线l的斜率为:
A. 2
B. -2
C. -1/3
D. 3
3. 记点P(x,y)为曲线y=x^2-2x+2上的动点,若点P与x轴相交成直角三角形,求直角三角形的面积。

A. 1/2
B. 2
C. 1
D. 3
4. 若a,b是两个非零实数,且满足ab=1,那么loga 1/2 * logb 4 = ?
A. -2
B. 1/2
C. 0
D. 2
二、解答题
1. 解方程3x+7=2(x+4)。

2. 若函数f(x)=x^2+ax+b与g(x)=2x-k的图象有且只有一个公共点,
则a,b和k的值分别为多少?
三、应用题
1. 曲线y=ax^3+bx^2+cx+d在点P(1,2)处的切线方程为y=2x+1。

求a,b,c和d的值。

2. 在高中三角函数的学习中,我们经常会用到“SIN”,“COS”和“TAN”三个函数,它们分别代表什么意思?请用文字解释其含义。

以上是一些高三数学基础练习题,希望同学们认真思考并尝试解答。

在解答过程中,可以通过探究、思考和演算等方法巩固自己的数学基础,提高数学应用能力。

坚持做题并查缺补漏,相信同学们一定能在
数学学习中取得好成绩!。

高三数学提高基础练习题

高三数学提高基础练习题

高三数学提高基础练习题一、选择题1. 已知函数 f(x) = x^2 + 2x - 3,求 f(3) 的值。

A) 6B) 9C) 12D) 152. 若两个无理数的和是有理数,那么这两个无理数的关系是:A) 互为相反数B) 两个无理数必为相等C) 无关系D) 两个无理数相加为有理数3. 若sinθ = 1/2,且θ为锐角,求cosθ 的值。

A) 1/2B) √3/2C) √2/2D) 1/√2二、填空题1. 若 a:b = 2:3,b:c = 4:5,求 a:b:c 的值。

2. 若直角三角形的斜边长为 13,一直角边长为 5,求另一直角边的长度。

3. 设 A = {1, 2, 3},B = {2, 3, 4},则A ∩ B = ______。

三、解答题1. 解方程:3x^2 + 5x - 2 = 0。

2. 一个角的补角是其自身的三倍减 10°,求该角的度数。

3. 用三个数 a,b,c 组成一个等差数列,已知 a + c = 9,a + 2b + c = 15,求 a,b,c 的值。

四、应用题某校参加数学竞赛的学生共有男生和女生,男生中 1/4 的人参加了奥数竞赛,女生中 1/3 的人参加了奥数竞赛。

已知参加了奥数竞赛的学生总数的 5/12 是男生,求男女生人数的比例。

五、综合题某种商品的原价为 100 元,商场进行了两次打折促销。

第一次打 8 折后,第二次打 9 折后,最终售价为 x 元。

如果第一次打折后售价没有变化,则求 x 的值。

六、证明题证明任意一个平行四边形的对角线互相平分。

七、计算题已知 log2 = 0.301,log3 = 0.477,求 log12 的值。

以上就是高三数学提高基础练习题,希望能对你的学习有所帮助。

请认真思考每道题目,理解并灵活运用相关的数学概念和解题方法。

祝你取得优异的成绩!。

高三数学基础训练题集1-10套(含答案)

高三数学基础训练题集1-10套(含答案)

图2俯视图侧视图正视图4图1乙甲7518736247954368534321高三数学根底训练一一.选择题:1.复数i1i,321-=+=zz,那么21zzz⋅=在复平面内的对应点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,,11=a84=a,那么=5aA.16 B.16或-16 C.32 D.32或-323.向量a =〔x,1〕,b =〔3,6〕,a⊥b ,那么实数x的值为( )A.12B.2-C.2D.21-4.经过圆:C22(1)(2)4x y++-=的圆心且斜率为1的直线方程为( )A.30x y-+=B.30x y--=C.10x y+-=D.30x y++=5.函数()f x是定义在R上的奇函数,当0>x时,()2xf x=,那么(2)f-=( )A.14B.4-C.41- D.46.图1是某赛季甲.乙两名篮球运发动每场比赛得分的茎叶图,那么甲.乙两人这几场比赛得分的中位数之和是A.62 B.63 C.64 D.657.以下函数中最小正周期不为π的是A.xxxf cossin)(⋅= B.g〔x〕=tan〔2π+x〕C.xxxf22cossin)(-=D.xxx cossin)(+=ϕ8.命题“,11a b a b>->-若则〞的否命题是A.,11a b a b>-≤-若则B.假设ba≥,那么11-<-baC.,11a b a b≤-≤-若则D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,那么该几何体的侧面积为A .6B .24C .123D .3210.抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,那么实数t 的取值范围是 A .()()+∞-∞-,11,B .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C .()()+∞-∞-,,2222D .()()+∞-∞-,,22二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如下图的算法流程图中,输出S 的值为 .13.实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,那么2z x y =-的最大值为_______.14.c x x x x f +--=221)(23,假设]2,1[-∈x 时,2)(c x f <恒成立,那么实数c 的取值范围______ 三.解答题:()sin f x x x =∈x (R ).〔1〕求函数)(x f 的最小正周期;〔2〕求函数)(x f 的最大值,并指出此时x 的值.高三数学根底训练二一.选择题:1.在等差数列{}n a 中, 284a a +=,那么 其前9项的和S9等于 ( )A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( )A .4π B .2πC .πD .2π 3.命题p: {}4A x x a=-,命题q :()(){}230B x x x =--,且⌝p 是⌝q 的充分条件,那么实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组〔1~8号,9~16号,。

高三数学基础差适合做的练习题

高三数学基础差适合做的练习题

高三数学基础差适合做的练习题在高三的数学学习过程中,有些同学可能会发现自己的数学基础较差,对于一些难题掌握得不够好。

这时候,合适的练习题可以帮助我们加强基础知识,提高解题能力。

本文将介绍一些适合高三数学基础较差的练习题。

一、基础知识巩固题1. 线性方程组题目:求解线性方程组```2x + 3y = 74x - y = 1```2. 四则运算题目:计算下列表达式的值```(3 + 4) × 2 - 5 ÷ 5```3. 三角函数题目:计算角度的正弦、余弦和正切值```已知角度A的正弦值sin(A) = 0.6,求A的余弦值cos(A)和正切值tan(A)。

4. 平方根题目:计算下列数的平方根```√16 + √25```二、知识点拓展题1. 解析几何题目:求两点之间的距离和中点坐标```已知两点A(3, 4)和B(7, 8),求线段AB的长度和中点M的坐标。

```2. 概率题目:计算事件的概率```一个骰子投掷两次,求第一次投得奇数,第二次投得偶数的概率。

```3. 函数题目:求函数的定义域、值域和极值点```已知函数f(x) = x² + 3x,求函数的定义域、值域,并判断是否存在极值点。

4. 导数题目:求函数的导数和极值点```已知函数f(x) = 2x³ - 3x² + 2,求函数的导数f'(x)和极值点。

```三、综合应用题1. 三角形题目:判断三角形的形状和大小关系```已知三角形ABC的三边长分别为a = 4cm,b = 5cm,c = 6cm,判断该三角形的形状和大小关系。

```2. 二次函数题目:求解二次函数的零点和顶点坐标```已知二次函数f(x) = x² - 4x + 3,求函数的零点和顶点坐标。

```3. 排列组合题目:计算排列和组合的个数```从5个数中取出3个数的所有排列和组合的个数。

4. 等差数列题目:求等差数列的公差和前n项和```已知等差数列的首项a₁ = 1,公差d = 2,求前n项和Sn。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新高考高三数学基础练习题推荐在新高考改革下,数学作为一门重要的考试科目,对学生的数学基础要求更加严格。

为了帮助高三学生巩固数学基础,提高解题能力,本文将推荐一些适用于高三学生的数学基础练习题。

第一章线性代数
1. 解线性方程组:求解线性方程组是线性代数的基本内容,也是高三学生必须掌握的内容之一。

推荐练习解包含2元、3元、4元等变量的线性方程组。

2. 矩阵运算:掌握矩阵的基本运算规则以及矩阵乘法的性质对于高三学生来说是必不可少的。

练习要求学生进行矩阵加法、矩阵减法、矩阵乘法等操作。

第二章微积分
1. 函数求导:函数求导是微积分中的重要内容,也是高三学生必须熟练掌握的技巧之一。

推荐练习对各种函数进行求导,包括多项式函数、指数函数、对数函数等。

2. 极限运算:极限是微积分的核心概念之一,对于高三学生来说是相对较难掌握的内容。

建议练习求各种类型的极限,如常用极限、无穷小量极限、无穷大量极限等。

第三章概率论与数理统计
1. 概率计算:概率计算是概率论中的重要内容,对于高三学生来说
是一个相对容易掌握的部分。

推荐练习求解一些常见的概率计算问题,如排列组合问题、事件的概率计算等。

2. 统计量计算:统计量是数理统计中的重要内容,用于描述和分析
数据的特征。

建议练习计算一些常用的统计量,如均值、方差、标准
差等,同时要求学生理解统计量的意义。

第四章数学建模
1. 实际问题建模:数学建模是将实际问题抽象化为数学问题并进行
求解的过程。

推荐给高三学生一些实际问题,要求他们进行数学建模
并给出解决方案。

2. 问题求解:针对一些实际问题,要求高三学生进行问题求解,分
析问题的解决过程,并给出合理的答案。

以上是针对新高考高三数学基础的练习题推荐。

通过不断练习这些
题目,高三学生可以提高数学基础,夯实数学知识,提高解题能力,
为新高考数学考试做好准备。

最后,希望高三学生能够充分利用这些练习题,合理安排学习时间,制定学习计划,努力提升数学成绩。

祝愿大家在新高考中取得优异的
成绩!。

相关文档
最新文档