高中数学高考总复习函数概念习题及详解
2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第06讲函数的概念及其表示(精讲)【A组在基础中考查功底】则函数根据函数图像可知:(f x 故选:ACD.8.已知函数4 ()f x xx=+A.-3B 【答案】ABC四、解答题12.定义在R 上的函数()f x 对任意实数x 都有()2243f x x x -=-+.(1)求函数()f x 的解析式;(2)若函数()()23g x f x x =-+在[],1m m +上是单调函数,则求实数m 的取值范围.【答案】(1)()21f x x =-(2)(][),01,-∞+∞ 【分析】(1)配方后,利用整体法求解函数解析式;(2)求出()g x 的单调区间,与[],1m m +比较,得到不等式,求出实数m 的取值范围.【详解】(1)()()2224321f x x x x -=-+=--,故函数()f x 的解析式为()21f x x =-;(2)()()2223122121x x g x x x x =-+=---++=在(),1-∞上单调递减,在()1,+∞上单调递增,因为()g x 在[],1m m +上是单调函数,所以m 1≥或11m +≤,解得0m ≤或m 1≥,所以实数m 的取值范围是(][),01,-∞+∞ .【B 组在综合中考查能力】由图可得当且仅当0t<<时)的,故()()()()36494922f f f f m n =⨯=+=+.【C 组在创新中考查思维】,该函数在当32m>时,当x>m时()2,3f x⎛∈-∞-⎝①,当1,22aa >>时,()f x 在[]0,1上单调递增,②,由2222a a a x ⎛⎫-+⨯=- ⎪⎝⎭解得12x a +=或1x -=。
高考数学专题《函数的概念及其表示》习题含答案解析

专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值. 【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=. 故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算. 【详解】由题意2(3)3312f =+=.故选:D .练基础3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24【答案】B 【解析】根据分段函数解析式直接求解. 【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=. 故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( ) A .1 B .3C .3-D .1或3【答案】B 【解析】 根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果. 【详解】 因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b , 所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x x=的定义域是______. 【答案】[)()1,00,∞-⋃+ 【解析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞; 故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3 【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果. 【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-, 若()()0g f x =,则0f x 或2,∴{}1,0,1B =-,∴{}1,0,1=-AB .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2 【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+, 1y x x =-在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________. 【答案】1或- 【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可. 【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:2a =-, 故1a =或2-, 故答案为:1或2-. 10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围. 【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=. 所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( ) A .t 没有最小值 B .t 1 C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值. 【详解】如图,作出函数()f x 的图象,练提升()()f n f m =且n m >,则1m ,且1n >,2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤222211317(32)()333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤∴当n =()min 1n m -=.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案. 【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-. 故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+ B .225y x x =--+ C .y =D .11y x=- 【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断. 【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集; 故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x +-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x - C .1f x ⎛⎫⎪⎝⎭=f (x ) D .1()()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案. 【详解】因为f (x )= 2211x x+-, 所以()f x -=221()1()x x +---=2211x x +-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项, 1()f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项. 故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( ) A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f x g x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D . 【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确; 对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根, 因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞ 【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可; 【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误; 令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫> ⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈ 【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案. 【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=, 所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确; 对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点, 如下图所示所以(]0,3a ∈,故D 正确. 故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤< 【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x =,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =, 即()()12,2y x x a a y a a=≥+≥+, 构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+, 由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝⎭⎝⎭,由于01a <<1a ≤<.故答案为:112a ≤< 9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析. 【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象. 【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-; 当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩. ()m x 图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-. (1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞.【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式; (3)根据图象可得出不等式()()f x g x >的解集. 【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩. 则对应的图象如图:(2)函数()min x 的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-, 即不等式()()f x g x >的解集为()(),20,-∞-+∞.1.(山东高考真题)设f (x )={√x,0<x <12(x −1),x ≥1 ,若f (a )=f (a +1),则f (1a )=( ) A .2 B .4 C .6 D .8 【答案】C【解析】由x ≥1时f (x )=2(x −1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f(a)=f(a +1)得√a =2(a +1−1),解得a =14,则f (1a )=f(4)=2(4−1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( ) A .√3 B .√32 C .√33 D .0 【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合. 我们可以通过代入和赋值的方法当f (1)=√3,√33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或练真题者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x=√32,此时旋转π6,此时满足一个x 只会对应一个y , 故选:B .3. (2018年新课标I 卷文)设函数f (x )={2−x , x ≤01 , x >0 ,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (−∞ , −1]B. (0 , +∞)C. (−1 , 0)D. (−∞ , 0) 【答案】D【解析】将函数f(x)的图象画出来,观察图象可知会有{2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(−∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ ,()f x 的最小值是 .【答案】162- 【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________. 【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果. 【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤, 整理可得:21122a x x ≥-+, 由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭, 结合二次函数的性质可知: 当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知: 当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
高考数学总复习考点知识讲解与提升练习6 函数的概念及其表示

高考数学总复习考点知识讲解与提升练习专题6 函数的概念及其表示考点知识1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y=f(x),x∈A.2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×)(2)函数y =f (x )的图象可以是一条封闭曲线.(×)(3)y =x 0与y =1是同一个函数.(×)(4)函数f (x )=⎩⎨⎧ x -1,x ≥0,x 2,x <0的定义域为R .(√) 教材改编题1.(多选)下列所给图象是函数图象的是()答案CD解析A 中,当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;B 中,当x =x 0时,y 的值有两个,因此不是函数图象;CD 中,每一个x 的值对应唯一的y 值,因此是函数图象.2.下列各组函数表示同一个函数的是()A .y =x -1与y =x 2-1x +1B .y =x -1与y =-1xC .y =2x 2与y =2xD .y =2x -1与v =2t -1答案D解析y =x -1的定义域为R ,y =x 2-1x +1的定义域为{x |x ≠-1},定义域不同,不是同一个函数,故选项A 不正确;y =x -1=1x 与y =-1x的对应关系不同,不是同一个函数,故选项B 不正确; y =2x 2=2|x |与y =2x 的对应关系不同,不是同一个函数,故选项C 不正确;y =2x -1与v =2t -1的定义域都是(-∞,1)∪(1,+∞),对应关系也相同,所以是同一个函数,故选项D 正确.3.已知函数f (x )=⎩⎨⎧ ln x ,x >0,e x ,x ≤0,则函数f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13等于() A .3B .-3C.13D .-13答案C解析由题意可知,f ⎝ ⎛⎭⎪⎫13=ln 13=-ln3,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=f (-ln3)=e -ln3=13.题型一函数的定义域例1(1)函数y =ln (x +1)-x 2-3x +4的定义域为()A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案C解析由题意得⎩⎨⎧ x +1>0,-x 2-3x +4>0,解得-1<x <1,故定义域为(-1,1).(2)已知函数f (x )的定义域为(-4,-2),则函数g (x )=f (x -1)+x +2的定义域为________.答案[-2,-1)解析∵f (x )的定义域为(-4,-2),要使g (x )=f (x -1)+x +2有意义,则⎩⎨⎧ -4<x -1<-2,x +2≥0,解得-2≤x <-1,∴函数g (x )的定义域为[-2,-1).思维升华(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其中的x 的取值集合;(2)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(3)若复合函数f (g (x ))的定义域为[a ,b ],则函数f (x )的定义域为g (x )在[a ,b ]上的值域.跟踪训练1(1)函数f (x )=1ln (x -1)+3-x 的定义域为() A .(1,3] B .(1,2)∪(2,3]C .(1,3)∪(3,+∞) D.(-∞,3)答案B解析由题意知⎩⎨⎧ x -1>0,x -1≠1,3-x ≥0,所以1<x <2或2<x ≤3, 所以函数的定义域为(1,2)∪(2,3].(2)(2023·南阳检测)已知函数f (x )=lg1-x 1+x ,则函数g (x )=f (x -1)+2x -1的定义域是()A .{x |x >2或x <0}B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 12≤x <2 C .{x |x >2}D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≥12答案B解析要使f (x )=lg1-x 1+x 有意义, 则1-x 1+x >0, 即(1-x )(1+x )>0,解得-1<x <1,所以函数f (x )的定义域为(-1,1).要使g (x )=f (x -1)+2x -1有意义,则⎩⎨⎧ -1<x -1<1,2x -1≥0,解得12≤x <2, 所以函数g (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 12≤x <2.题型二函数的解析式例2(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式;(2)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式; (3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.(4)已知f (x )满足2f (x )+f (-x )=3x ,求f (x )的解析式.解(1)(换元法)设1-sin x =t ,t ∈[0,2],则sin x =1-t ,∵f (1-sin x )=cos 2x =1-sin 2x ,∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2].即f (x )=2x -x 2,x ∈[0,2].(2)(配凑法)∵f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, ∴f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(3)(待定系数法)∵f (x )是一次函数,可设f (x )=ax +b (a ≠0),∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17.即ax +(5a +b )=2x +17,∴⎩⎨⎧ a =2,5a +b =17,解得⎩⎨⎧ a =2,b =7.∴f (x )的解析式是f (x )=2x +7.(4)(解方程组法)∵2f (x )+f (-x )=3x ,①∴将x 用-x 替换,得2f (-x )+f (x )=-3x ,②由①②解得f (x )=3x .思维升华函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法.跟踪训练2(1)已知f (x -1)=x 2+4x -5,则f (x )的解析式是()A .f (x )=x 2+6xB .f (x )=x 2+8x +7C .f (x )=x 2+2x -3D .f (x )=x 2+6x -10答案A解析f (x -1)=x 2+4x -5,设x -1=t ,x =t +1,则f (t )=(t +1)2+4(t +1)-5=t 2+6t ,故f (x )=x 2+6x . (2)若f ⎝ ⎛⎭⎪⎫1x =x 1-x,则f (x )=________. 答案1x -1(x ≠0且x ≠1) 解析f (x )=1x 1-1x=1x -1(x ≠0且x ≠1). (3)已知函数f (x )满足f (x )+2f ⎝ ⎛⎭⎪⎫-1x =3x ,则f (2)等于() A .-3B .3C .-1D .1答案A解析f (x )+2f ⎝ ⎛⎭⎪⎫-1x =3x ,① 则f ⎝ ⎛⎭⎪⎫-1x +2f (x )=-3x ,② 联立①②解得f (x )=-2x -x ,则f (2)=-22-2=-3. 题型三分段函数例3(1)已知函数f (x )=⎩⎨⎧ f (x -1),x >0,-ln (x +e )+2,x ≤0,则f (2024)的值为() A .-1B .0C .1D .2答案C解析因为f (x )=⎩⎨⎧ f (x -1),x >0,-ln (x +e )+2,x ≤0,所以f (2024)=f (2023)=f (2022)=…=f (1),又f (1)=f (1-1)=f (0)=-ln(0+e)+2=-1+2=1,所以f (2024)=1.(2)已知函数f (x )=⎩⎨⎧ -x 2-3x +2,x <-1,2x -3,x ≥-1,若f (a )=4,则实数a 的值是________;若f (a )≥2,则实数a 的取值范围是________.答案-2或5[-3,-1)∪[4,+∞)解析若f (a )=4,则⎩⎨⎧a <-1,-a 2-3a +2=4或⎩⎨⎧ a ≥-1,2a -3=4, 解得a =-2或a =5. 若f (a )≥2,则⎩⎨⎧ a <-1,-a 2-3a +2≥2或⎩⎨⎧ a ≥-1,2a -3≥2,解得-3≤a <-1或a ≥4,∴a 的取值范围是[-3,-1)∪[4,+∞).思维升华分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)已知函数f (x )=⎩⎨⎧ x +2,x ≤0,x +1x ,x >0,若f (f (a ))=2,则a 等于() A .0或1B .-1或1C .0或-2D .-2或-1答案D解析令f (a )=t ,则f (t )=2,可得t =0或t =1,当t =0时,即f (a )=0,显然a ≤0,因此a +2=0⇒a =-2,当t =1时,即f (a )=1,显然a ≤0,因此a +2=1⇒a =-1,综上所述,a =-2或-1.(2)(2023·重庆质检)已知函数f (x )=⎩⎨⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案⎝ ⎛⎭⎪⎫-12,+∞解析当x ≤0时,x +1≤1,f (x )<f (x +1)等价于x 2-1<(x +1)2-1,解得-12<x ≤0;当0<x ≤1时,x +1>1,此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,x +1>2,f (x )<f (x +1)等价于log 2x <log 2(x +1),此时也恒成立.综上,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞. 课时精练1.函数f (x )=lg(x -2)+1x -3的定义域是() A .(2,+∞) B.(2,3)C .(3,+∞) D.(2,3)∪(3,+∞)答案D解析∵f (x )=lg(x -2)+1x -3, ∴⎩⎨⎧ x -2>0,x -3≠0,解得x >2,且x ≠3,∴函数f (x )的定义域为(2,3)∪(3,+∞).2.(2023·三明模拟)已知集合A ={x |-2<x ≤1},B ={x |0<x ≤4},则下列对应关系中是从集合A 到集合B 的函数是()A .f :x →y =x +1B .f :x →y =e xC .f :x →y =x 2D .f :x →y =|x |答案B解析对于A ,当x =-1时,由f :x →y =x +1得y =0,但0∉B ,故A 错误;对于B,因为从A={x|-2<x≤1}中任取一个元素,通过f:x→y=e x在B={x|0<x≤4}中都有唯一的元素与之对应,故B正确;对于C,当x=0时,由f:x→y=x2得y=0,但0∉B,故C错误;对于D,当x=0时,由f:x→y=|x|得y=0,但0∉B,故D错误.3.已知f(x3)=lg x,则f(10)的值为()A.1B.310C.13D.1310答案C解析令x3=10,则x=13 10,∴f(10)=lg1310=13.4.图中的文物叫做“垂鳞纹圆壶”,是甘肃礼县出土的先秦时期的青铜器皿,其身流线自若、纹理分明,展现了古代中国精湛的制造技术.科研人员为了测量其容积,以恒定的流速向其内注水,恰好用时30秒注满,设注水过程中,壶中水面高度为h,注水时间为t,则下面选项中最符合h关于t的函数图象的是()答案A解析水壶的结构:底端与上端细、中间粗,所以在注水恒定的情况下,开始水的高度增加的快,中间增加的慢,最后又变快, 由图可知选项A 符合.5.函数y =1+x -1-2x 的值域为()A.⎝ ⎛⎭⎪⎫-∞,32B.⎝ ⎛⎦⎥⎤-∞,32 C.⎝ ⎛⎭⎪⎫32,+∞D.⎣⎢⎡⎭⎪⎫32,+∞ 答案B 解析设1-2x =t ,则t ≥0,x =1-t 22,所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x 的值域为⎝ ⎛⎦⎥⎤-∞,32. 6.已知函数f (x )=⎩⎨⎧ -x 2+2x +3,x ≤2,6+log a x ,x >2(a >0且a ≠1),若函数f (x )的值域是(-∞,4],则实数a 的取值范围是()A.⎝ ⎛⎭⎪⎫22,1B.⎣⎢⎡⎭⎪⎫22,1 C .(1,2] D .(1,2)答案B解析当x ≤2时,f (x )=-x 2+2x +3=-(x -1)2+4,当x =1时,f (x )=-x 2+2x +3取得最大值4,所以当x ≤2时,函数f (x )的值域是(-∞,4],所以当x >2时,函数f (x )=6+log a x 的值域为(-∞,4]的子集,当a >1时,f (x )=6+log a x 在(2,+∞)上单调递增,此时f (x )>f (2)=6+log a 2>6,不符合题意,当0<a <1时,f (x )=6+log a x 在(2,+∞)上单调递减,此时f (x )<f (2)=6+log a 2≤4,即log a 2≤-2,所以a 2≥12,可得22≤a <1,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫22,1.7.(多选)下列四个函数,定义域和值域相同的是() A .y =-x +1B .133,0,1,0x x y x x ⎧≤⎪=⎨⎪>⎩C .y =ln|x |D .y =2x -1x -2答案ABD解析对A ,函数的定义域和值域都是R ;对B ,根据分段函数和幂函数的性质,可知函数的定义域和值域都是R ;对C ,函数的定义域为(-∞,0)∪(0,+∞),值域为R ;对D ,因为函数y =2x -1x -2=2+3x -2,所以函数的定义域为(-∞,2)∪(2,+∞),值域为(-∞,2)∪(2,+∞).所以ABD 是定义域和值域相同的函数.8.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.1821年法国数学家柯西给出了这样的定义:在某些变数存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着确定时,则称最初的变数叫自变量,其他的变数叫做函数.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有()A .f (x 2)=|x |B .f (x 2)=xC .f (cos x )=xD .f (e x )=x答案AD解析令t =x 2(t ≥0),f (t )=|±t |=t ,故A 符合函数定义;令t =x 2(t ≥0),f (t )=±t ,设t =4,f (t )=±2,一个自变量对应两个函数值,故B 不符合函数定义;设t =cos x ,当t =12时,x 可以取±π3等无数多个值,故C 不符合函数定义; 令t =e x (t >0),f (t )=ln t ,故D 符合函数定义.9.已知函数f (x )=⎩⎨⎧ cos x ,x <0,f (x -π),x >0,则f ⎝ ⎛⎭⎪⎫11π3=________. 答案12解析由已知得f ⎝ ⎛⎭⎪⎫11π3=f ⎝ ⎛⎭⎪⎫8π3=f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫2π3=f ⎝ ⎛⎭⎪⎫-π3=cos ⎝ ⎛⎭⎪⎫-π3=12.10.已知f (x )=x -1,则f (x )=________.答案x 2-1(x ≥0)解析令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0).11.已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________.答案[-1,0]解析由条件可知,函数的定义域需满足⎩⎨⎧ -2≤2x ≤2,1-2x ≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0].12.已知f (x )=⎩⎨⎧ 2x +3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________.答案1或-3[-5,-1]解析①当a >0时,2a +3=5,解得a =1;当a ≤0时,a 2-4=5,解得a =-3或a =3(舍).综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1.由-3≤f (a )≤1,解得-5≤a ≤-1.13.(2022·广州模拟)已知定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,则f (1)等于()A .-1B .1C .-13D.13答案B解析∵定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,∴当x =0时,f (1)+2f (0)=1,①当x =1时,f (0)+2f (1)=2,②②×2-①,得3f (1)=3,解得f (1)=1.14.(2023·南昌模拟)已知函数f (x )=⎩⎨⎧x +3,x ≤0,x ,x >0,若f (a -3)=f (a +2),则f (a )等于()A .2B.2C .1D .0答案B解析作出函数f (x )的图象,如图所示.因为f (a -3)=f (a +2),且a -3<a +2,所以⎩⎨⎧ a -3≤0,a +2>0,即-2<a ≤3,此时f (a -3)=a -3+3=a ,f (a +2)=a +2,所以a =a +2,即a 2=a +2,解得a =2或a =-1(不满足a =a +2,舍去),则f (a )= 2.15.∀x ∈R ,用M (x )表示f (x ),g (x )中最大者,M (x )={|x |-1,1-x 2},若M (n )<1,则实数n 的取值范围是()A .(-2,2)B .(-2,0)∪(0,2)C .[-2,2]D .(-2,2)答案B解析当x ≥0时,若x -1≥1-x 2,则x ≥1,当x <0时,若-x -1≥1-x 2,则x ≤-1,所以M (x )=⎩⎨⎧ |x |-1,x ≥1或x ≤-1,1-x 2,-1<x <1,若M (n )<1,则当-1<n <1时,1-n 2<1⇒-n 2<0⇒n ≠0,即-1<n <0或0<n <1, 当n ≥1或n ≤-1时,|n |-1<1,解得-2<n ≤-1或1≤n <2,综上,-2<n <0或0<n <2.16.(多选)德国数学家狄利克雷在数学领域成就显著,以其名字命名的函数F (x )=⎩⎨⎧ 1,x 为有理数,0,x 为无理数被称为狄利克雷函数.关于狄利克雷函数,下列说法正确的是()A .F (F (x ))=0B .对任意x ∈R ,恒有F (x )=F (-x )成立C .任取一个不为0的实数T ,F (x +T )=F (x )对任意实数x 均成立D .存在三个点A (x 1,F (x 1)),B (x 2,F (x 2)),C (x 3,F (x 3)),使得△ABC 为等边三角形答案BD解析∵当x为有理数时,F(x)=1,当x为无理数时,F(x)=0,当x为有理数时,F(F(x))=F(1)=1,当x为无理数时,F(F(x))=F(0)=1,所以F(F(x))=1恒成立,故A错误;因为有理数的相反数是有理数,无理数的相反数是无理数,所以对任意x∈R,恒有F(x)=F(-x)成立,故B正确;若x是有理数,T是有理数,则x+T是有理数;若x是有理数,T是无理数,则x+T是无理数;若x是无理数,则x+T是无理数或有理数,所以任取一个不为0的实数T,F(x+T)=F(x)不恒成立,故C错误;取x1=-33,x2=0,x 3=33,可得F(x1)=0,F(x2)=1,F(x3)=0,所以A⎝⎛⎭⎪⎫-33,0,B(0,1),C⎝⎛⎭⎪⎫33,0,恰好△ABC为等边三角形,故D正确.。
高三函数知识点总结及例题

高三函数知识点总结及例题函数是高中数学中的重要概念,它是一种特殊的关系,将一个集合中的每一个元素都对应到另一个集合中的唯一元素上。
在高三数学学习过程中,函数是必须掌握的重要知识点之一。
本文将对高三函数知识点进行总结,并通过例题进行讲解,帮助同学们更好地理解和掌握函数的相关内容。
一、函数的定义和表示方法函数的定义:设有两个集合X和Y,如果对于X中的每一个元素x,在Y中都有唯一确定的元素y与之对应,那么我们就说y 是x的函数。
用符号表示为:y=f(x)。
函数的表示方法:1. 函数关系式表示法:y=f(x),即用一个关系式来表示函数的对应关系。
2. 映射图表示法:通过图形的方式表示函数的对应关系。
3. 表格表示法:用表格列出变量x与函数值f(x)之间的对应关系。
4. 函数解析式表示法:通过给出函数在某个区间上的解析式来定义函数。
二、函数的基本性质和分类函数的基本性质:1. 定义域和值域:函数的定义域是指实变量能取的值的范围,值域是指函数值所能取的值的范围。
2. 单调性:函数在定义域上的增减关系。
3. 奇偶性:函数的对称性。
4. 周期性:函数是否具有重复性。
函数的分类:1. 一次函数:函数的最高次数为一的函数,表示为y = kx + b。
2. 二次函数:函数的最高次数为二的函数,表示为y = ax^2 +bx + c。
3. 指数函数:函数中自变量是指数的函数,表示为y = a^x,其中a为常数且不等于1。
4. 对数函数:函数中自变量是对数的函数,表示为y = loga(x),其中a为底数且大于0且不等于1。
5. 三角函数:正弦函数、余弦函数、正切函数等。
三、函数的运算函数的运算包括四则运算、复合运算和反函数运算。
1. 四则运算:加、减、乘、除运算。
2. 复合运算:将一个函数的输出作为另一个函数的输入,即将一个函数代入另一个函数中。
3. 反函数运算:如果函数f的定义域与值域互为对应关系,那么存在一个函数g,使得f和g互为反函数。
函数的概念和性质高考真题

函数的概念和性质高考真题1.函数的概念和性质1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
通常用符号f(x)表示函数,其中x是定义域中的元素,f(x)是值域中的元素。
1.2 函数的性质函数有很多性质,其中一些比较重要的包括:1)定义域和值域:函数的定义域是所有可能输入的集合,值域是所有可能输出的集合。
2)奇偶性:如果对于函数f(x),有f(-x)=-f(x),则称f(x)是奇函数;如果有f(-x)=f(x),则称f(x)是偶函数。
3)单调性:如果对于函数f(x),当x1f(x2),则称f(x)在区间(x1,x2)上单调递减。
4)零点和极值:函数的零点是函数图像与x轴的交点,极值是函数在某一区间内的最大值或最小值。
2.例题解答2.1(2019江苏4)函数y=7+6x-x^2的定义域是所有实数。
函数f(x)是奇函数,且当x<0时,f(x)=-eax。
若f(ln2)=8,则a=ln(1/4)。
2.2(2019全国Ⅱ理14)已知。
2.3(2019全国Ⅲ理11)设f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则正确的不等式是B。
2.4(2019北京理13)设函数f(x)=ex+ae-x(a为常数),若f(x)为奇函数,则a=0;若f(x)是R上的增函数,则a的取值范围是(-∞,0)。
2.5(2019全国Ⅰ理11)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数;②f(x)在区间(π/2,π)单调递增;③f(x)在[-π,π]有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是B。
2.6(2019全国Ⅰ理5)函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为D。
2.7(2019全国Ⅲ理7)函数y=2x+2-x在[-6,6]的图像大致为A。
2.8(2019浙江6)在同一直角坐标系中,函数y=11/x^2,y=loga(x+2)(a>0且a≠1)的图像可能是B。
高三函数知识点与例题

高三函数知识点与例题一、函数基本概念函数是数学中的重要概念之一,在高三数学中也扮演着重要角色。
函数可以理解为两个数集之间的对应关系,通常用f(x)来表示。
其中,x为自变量,f(x)为因变量。
下面是高三函数知识点的介绍及例题:1. 定义域和值域函数的定义域是自变量x所有可能的取值范围,值域是函数所有可能的输出值的集合。
例如,对于函数f(x) = 2x,其定义域是所有实数集合R,值域也是实数集合R。
例题:给定函数f(x) = x^2 - 1,求其定义域和值域。
解析:对于定义域,由于平方根只能是非负数,所以x^2 - 1 ≥ 0,解得定义域为(-∞, ∞)。
对于值域,我们可以观察到函数是一个开口向上的抛物线,所以值域为[-1, ∞)。
2. 奇偶性函数的奇偶性可以通过函数的对称性来判断。
若对于任意的x,有f(x) = f(-x),则函数为偶函数;若对于任意的x,有f(x) = -f(-x),则函数为奇函数。
例题:判断函数f(x) = x^3 + x^2的奇偶性。
解析:我们可以将f(x)进行变形,得到f(x) = x(x+1)(x-1),观察可得f(x) = -f(-x),所以函数f(x)为奇函数。
3. 单调性和极值函数的单调性指函数在定义域上的增减情况。
若对于任意的x1, x2(x1 < x2),有f(x1) ≤ f(x2),则函数为单调递增函数;若对于任意的x1, x2(x1 < x2),有f(x1) ≥ f(x2),则函数为单调递减函数。
函数的极值是指函数在某个点上取得的最大值或最小值。
例题:分析函数f(x) = 2x^3 - 3x^2的单调性和极值。
解析:我们可以求函数的导数f'(x) = 6x^2 - 6x,然后令f'(x) = 0,解得x = 0, 1。
然后我们可以通过一阶导数的符号表来判断函数的单调性和极值。
当x ∈ (-∞,0) 时,f'(x) < 0,所以函数在此区间上单调递减;当x ∈ (0,1) 时,f'(x) > 0,所以函数在此区间上单调递增;当x ∈ (1,∞) 时,f'(x) < 0,所以函数在此区间上单调递减。
高中数学函数的概念、定义域、值域和图象练习题(带解析)

高中数学函数的概念、定义域、值域和图象练习题(带解析)数学必修1(苏教版)2.1函数的概念和图象2.1.1 函数的概念、定义域、值域和图象“神舟七号”载人航天飞船离地面的距离随时刻的变化而变化;上网费用随着上网的时刻变化而变化;近几十年来,出国旅行人数日益增多,考古学家推算古生物生活的年代……这些问题如何描述和研究呢?基础巩固1.下列各图中,不可能表示函数y=f(x)的图象的是()答案:B2.下列四组中,f(x)与g(x)表示同一个函数的是()A.f(x)=4x4,g(x)=(4x)4B.f(x)=x,g(x)=3x3C.f(x)=1,g(x)=1x0,1x0D.f(x)=x2-4x+2,g(x)=x-2解析:选项A、C、D中两个函数的定义域不相同.答案:B3.已知函数f(x)=2x,x0,x+1,x0,且f(a)+f(1)=0,则a=()A.-3 B.-1C.1 D.3解析:当a0时,f(a)+f(1)=2a+2=0a=-1,与a0矛盾;当a0时,f (a)+f(1)=a+1+2=0a=-3,适合题意.答案:A4.定义域在R上的函数y=f(x)的值域为[a,b],则函数y=f(x+a)的值域为()A.[2a,a+b] B.[0,b-a]C.[a,b] D.[-a,a+b]答案:C5.已知f(x)=x2,x0,fx+1,x0,则f(2)+f(-2)的值为()A.6 B.5C.4 D.2解析:f(2)=22=4,f(-2)=f(-2+1)=f(-1)=f(-1+1)=f(0)=f(0+1)=f(1)=12=1,f(2)+f(-2)=4+1=5.答案:B6.函数y=x+1x的定义域为________.解析:利用解不等式组的方法求解.要使函数有意义,需x+10,x0,解得x-1,x0.原函数的定义域为{x|x-1且x0}.答案:{x|x-1且x0}7.函数f(x)=11-2x的定义域是________解析:由1-2xx12.答案:xx128.已知f(x)=3x+2,x1,x2+ax,x1.若f(f(0))=4a,则实数a=____ ____.解析:∵f(0)=2,f(f(0))=f(2)=4+2a.4+2a=4aa=2.答案:29.已知函数f(x)的定义域为[0,1],值域为[1,2],则f(x+2)的定义域是_ _______,值域是________.解析:∵f(x)的定义域为[0,1],0x+21,-2-1.即f(x+2)的定义域为[-2,-1],值域仍旧为[1,2].答案:[-2,-1][1,2]10.关于每一个实数x,设f(x)是y=4x+1,y=x+2和y=-2x+4三个函数中的最小值,则f(x)的最大值是________.解析:在同一坐标系中作出如下图象:图中实线部分为f(x),则A的纵坐标为f(x)的最大值,答案:8311.方程x2-|x|+a-1=0有四个相异实根,求实数a的取值范畴.解析:原方程可化为x2-|x|-1=-a,画出y=x2-|x|-1的图象.∵x0时,y=-54.x<0时,y=-54.由图象可知,只有当-54-1时,即a1,54时,方程才有四个相异实根.a的取值范畴是1,54.能力提升12.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x| B.f(x)=x-|x|C.f(x)=x+1 D.f(x)=-x解析:∵|2x|=2|x|,A满足;2x-|2x|=2(x-|x|)B满足;-2x=2(-x),D满足;2x+12(x+1);C不满足.答案:C13.(2021全国卷)已知f(x)的定义域为(-3,0),则函数f(2x-1)的定义域为()A.(-1,1) B.-1,12C.(-1,0) D.12,1解析:∵f(x)的定义域(-3,0),-32x-1-112.答案:B14.如左下图所示,液体从一圆锥形漏斗漏入圆柱形桶中,H是圆锥形漏斗中液面下降的距离,则H与下降时刻t(分钟)的函数关系用图象表示只可能是()答案:B15.已知函数f(x)=x21+x2,那么f(1)+f(2)+f12+f(3)+f13+f(4)+f 14=______.解析:f(x)=x21+x2,f1x=1x2+1,f(1)+f(2)+f12+f(3)+f13+f(4)+f14=12+1+1+1=72.答案:7216.已知函数f(3x+2)的定义域是(-2,1),则函数f(x2)-fx+23的定义域为________解析:∵f(3x+2)的定义域为(-2,1),-21,-43x+25.-45,-4x+235.-55.答案:(-5,5)17.已知a-12,0,函数f(x)的定义域是(0,1],求g(x)=f(x+a)+f(x -a)+f(x)的定义域.解析:由题设得0x+a1,0x-a1,01,即-a1-a,a1+a,01,∵-120,012,11-a32,121.不等式组的解集为-a1+a.g(x)的定义域为(-a,1+a].18.已知m,nN*,且f(m+n)=f(m)f(n),f(1)=2.求f2f1+f3f2+…+f 2021f2021的值.解析:∵f(1)=2,f(m+n)=f(m)f(n)(m,nN*),关于任意xN*,有f(x)=f(x-1+1)=f(x-1)f(1)=2f(x-1).“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
函数的概念试题及答案高中

函数的概念试题及答案高中一、选择题1. 下列哪个选项正确描述了函数的概念?A. 函数是一种运算B. 函数是一种关系C. 函数是一种映射D. 函数是一种变量2. 如果f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. 3D. 53. 函数y = x^2 + 1在x = -2时的值是多少?A. 5B. 4C. 3D. 1二、填空题4. 如果一个函数f(x)的定义域是所有实数R,那么这个函数被称为_________函数。
5. 函数f(x) = 3x - 2的反函数是_________。
三、简答题6. 函数的三要素是什么?7. 请解释什么是函数的值域,并给出一个例子。
四、计算题8. 给定函数f(x) = x^2 - 4x + 4,求出当x = 0, 1, 2, 3时的函数值。
答案一、选择题1. C. 函数是一种映射2. A. -1(计算过程:f(-1) = 2*(-1) + 3 = -2 + 3 = 1)3. A. 5(计算过程:y = (-2)^2 + 1 = 4 + 1 = 5)二、填空题4. 无界5. f^(-1)(x) = (x + 2) / 3三、简答题6. 函数的三要素包括:定义域(Domain)、值域(Range)和对应法则(Rule of correspondence)。
7. 函数的值域是指函数所有可能的输出值的集合。
例如,函数y =x^2的值域是所有非负实数,即[0, +∞)。
四、计算题8. 当x = 0时,f(x) = 0^2 - 4*0 + 4 = 4;当x = 1时,f(x) = 1^2 - 4*1 + 4 = 1;当x = 2时,f(x) = 2^2 - 4*2 + 4 = 0;当x = 3时,f(x) = 3^2 - 4*3 + 4 = 1。
结束语:通过本试题的练习,希望同学们能够加深对函数概念的理解,掌握函数的基本性质和计算方法。
函数是数学中的基础工具,对后续的数学学习至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学高考总复习函数概念习题及详解一、选择题1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2D .3[答案] B[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.(理)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2x x ∈(-∞,2]log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.2.(文)(2010·湖北文,3)已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >02x x ≤0,则f (f (19))=( )A .4 B.14 C .-4D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19))=f (-2)=2-2=14.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x -1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎪⎨⎪⎧x 0≥1lg x 0>1⇒x 0<0或x 0>10.3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )A .7个B .8个C .9个D .10个[答案] C[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x1+x ,函数y =g (x )的图象与y =f (x )的图象关于直线y =x 对称,则g (1)等于( )A .-32B .-1C .-12D .0[答案] D[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a1+a =1,∴a =0.5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )[答案] A[解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A.解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A.6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g (f (x ))的表格,其三个数依次为( )A.3,1,2 C .1,2,3D .3,2,1[答案] D[解析] 由表格可知,f (1)=2,f (2)=3,f (3)=1,g (1)=1,g (2)=3,g (3)=2, ∴g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, ∴三个数依次为3,2,1,故选D.(理)(2010·山东肥城联考)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:则方程g [f (x )]=x 的解集为( ) A .{1} B .{2} C .{3}D .∅[答案] C[解析] g [f (1)]=g (2)=2,g [f (2)]=g (3)=1; g [f (3)]=g (1)=3,故选C.7.若函数f (x )=log a (x +1) (a >0且a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13B. 2C.22D .2[答案] D[解析] ∵0≤x ≤1,∴1≤x +1≤2,又∵0≤log a (x +1)≤1,故a >1,且log a 2=1,∴a =2. 8.(文)(2010·天津文)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x )g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡⎭⎫-94,+∞D.⎣⎡⎦⎤-94,0∪(2,+∞) [答案] D[解析] 由题意可知f (x )=⎩⎪⎨⎪⎧x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤21°当x <-1或x >2时,f (x )=x 2+x +2=⎝⎛⎭⎫x +122+74 由函数的图可得f (x )∈(2,+∞).2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94, 故当x =12时,f (x )min =f ⎝⎛⎭⎫12=-94, 当x =-1时,f (x )max =f (-1)=0, ∴f (x )∈⎣⎡⎦⎤-94,0. 综上所述,该分段函数的值域为⎣⎡⎦⎤-94,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ) (x ≤0)f (x -1)-f (x -2) (x >0),则f (2010)的值为( ) A .-1 B .0 C .1D .2[答案] B[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,若a ≤b ;b ,若a >b函数f (x )=log 12(3x-2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C [解析] ∵a *b =⎩⎪⎨⎪⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log 12(3x -2)与log 2x 的大致图象如右图所示,∴f (x )的值域为(-∞,0].(理)定义max{a 、b 、c }表示a 、b 、c 三个数中的最大值,f (x )=max{⎝⎛⎭⎫12x,x -2,log 2x (x >0)},则f (x )的最小值所在范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,3)[答案] C[解析] 在同一坐标系中画出函数y =⎝⎛⎭⎫12x,y =x -2与y =log 2x 的图象,y =⎝⎛⎭⎫12x 与y =log 2x 图象的交点为A (x 1,y 1),y =x -2与y =log 2x 图象的交点为B (x 2,y 2),则由f (x )的定义知,当x ≤x 1时,f (x )=⎝⎛⎭⎫12x,当x 1<x <x 2时,f (x )=log 2x ,当x ≥x 2时,f (x )=x -2,∴f (x )的最小值在A 点取得,∵0<y 1<1,故选C.10.(文)(2010·江西吉安一中)如图,已知四边形ABCD 在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形A 1B 1C 1D 1,若四边形A 1B 1C 1D 1的面积是12,则四边形ABCD 的面积是( )A .9B .6C .6 3D .12[答案] B[解析] 本题考察阅读理解能力,由映射f 的定义知,在f 作用下点(x ,y )变为(x +1,2y ),∴在f 作用下|A 1C 1|=|AC |,|B 1D 1|=2|BD |,且A 1、C 1仍在x 轴上,B 1、D 1仍在y 轴上,故S ABCD =12|AC |·|BD |=12|A 1C 1|·12|B 1D 1|=12SA 1B 1C 1D 1=6,故选B.(理)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02 x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4[答案] C[解析] 解法1:当x ≤0时,f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧ (-4)2+b ·(-4)+c =c (-2)2+b ·(-2)+c =-2,解得⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 x ≤02 x >0,当x ≤0时,由f (x )=x 得,x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x 得,x =2, ∴方程f (x )=x 有3个解.解法2:由f (-4)=f (0)且f (-2)=-2可得,f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图如图所示.方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.二、填空题11.(文)(2010·北京东城区)函数y =x +1+lg(2-x )的定义域是________. [答案] [-1,2)[解析] 由⎩⎪⎨⎪⎧x +1≥02-x >0得,-1≤x <2.(理)函数f (x )=x +4-x 的最大值与最小值的比值为________. [答案]2[解析] ∵⎩⎪⎨⎪⎧x ≥04-x ≥0,∴0≤x ≤4,f 2(x )=4+2x (4-x )≤4+[x +(4-x )]=8,且f2(x )≥4,∵f (x )≥0,∴2≤f (x )≤22,故所求比值为 2.[点评] (1)可用导数求解;(2)∵0≤x ≤4,∴0≤x 4≤1,故可令x 4=sin 2θ(0≤θ≤π2)转化为三角函数求解.12.函数y =cos x -1sin x -2 x ∈[0,π]的值域为________.[答案] ⎣⎡⎦⎤0,43 [解析] 函数表示点(sin α,cos α)与点(2,1)连线斜率.而点(sin α,cos α)α∈[0,π]表示单位圆右半部分,由几何意义,知y ∈[0,43].13.(2010·湖南湘潭市)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数,有下列函数①f (x )=sin2x ②g (x )=x 3 ③h (x )=⎝⎛⎭⎫13x ④φ(x )=ln x .其中是一阶整点函数的是________.(写出所有正确结论的序号) [答案] ①④[解析] 其中①只过(0,0)点,④只过(1,0)点;②过(0,1),(1,1),(2,8)等,③过(0,1),(-1,3)等.14.(文)若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=________.[答案] 2011[解析] 令b =1,则f (a +1)f (a )=f (1)=1,∴f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=2011. (理)设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有的正确命题的序号为________. [答案] ①②[解析] ①f (x )=x |x |+c=⎩⎪⎨⎪⎧x 2+c ,x ≥0-x 2+c ,x <0, 如右图与x 轴只有一个交点.所以方程f (x )=0只有一个实数根正确. ②c =0时,f (x )=x |x |+bx 显然是奇函数.③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bx ,x ≥0-x 2+bx ,x <0如右图方程f (x )=0可以有三个实数根. 综上所述,正确命题的序号为①②. 三、解答题15.(文)(2010·深圳九校)某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问在一天的24小时内,有几小时出现供水紧张现象.[解析] (1)设t 小时后蓄水池中的水量为y 吨, 则y =400+60t -1206t (0≤t ≤24) 令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8小时供水紧张. (理)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 长度为x 米.(1)要使仓库占地ABCD 的面积不少于144平方米,AB 长度应在什么范围内? (2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)[解析] (1)依题意得三角形NDC 与三角形NAM 相似,所以DC AM =ND NA ,即x 30=20-AD20,AD =20-23x ,矩形ABCD 的面积为S =20x -23x 2 (0<x <30),要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18. 所以AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30),V ′=40x -2x 2=0得x =0或x =20, 当0<x <20时,V ′>0,当20<x <30时V ′<0, 所以x =20时,V 取最大值80003m 3,即AB 长度为20米时仓库的库容最大.16.(2010·皖南八校联考)对定义域分别是Df ,Dg 的函数y =f (x ),y =g (x ),规定: 函数h (x )=⎩⎪⎨⎪⎧f (x )g (x ),当x ∈Df 且x ∈Dg ,f (x ),当x ∈Df 且x ∉Dg ,g (x ),当x ∈Dg 且x ∉Df .(1)若函数f (x )=1x -1,g (x )=x 2,写出函数h (x )的解析式;(2)求问题(1)中函数h (x )的值域;(3)若g (x )=f (x +α),其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y =f (x ),及一个α的值,使得h (x )=cos4x ,并予以证明.[解析] (1)由定义知,h (x )=⎩⎪⎨⎪⎧x 2x -1,x ∈(-∞,1)∪(1,+∞),1,x =1.(2)由(1)知,当x ≠1时,h (x )=x -1+1x -1+2,则当x >1时,有h (x )≥4(当且仅当x =2时,取“=”); 当x <1时,有h (x )≤0(当且仅当x =0时,取“=”). 则函数h (x )的值域是(-∞,0]∪{1}∪[4,+∞).(3)可取f (x )=sin2x +cos2x ,α=π4,则g (x )=f (x +α)=cos2x -sin2x ,于是h (x )=f (x )f (x +α)=cos4x .(或取f (x )=1+2sin2x ,α=π2,则g (x )=f (x +α)=1-2sin2x .于是h (x )=f (x )f (x +α)=cos4x ).[点评] 本题中(1)、(2)问不难求解,关键是读懂h (x )的定义,第(3)问是一个开放性问题,乍一看可能觉得无从下手,但细加观察不难发现,cos4x =cos 22x -sin 22x =(cos2x +sin2x )(cos2x -sin2x )积式的一个因式取作f (x ),只要能够找到α,使f (x +α)等于另一个因式也就找到了f (x )和g (x ).17.(文)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:第t 天 5 15 20 30 Q (件)35252010(1)根据提供的图象,写出该商品每件的销售价格P 与时间t 的函数关系式;(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *)-t +100 (25≤t ≤30,t ∈N *)(2)图略,Q =40-t (t ∈N *) (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *)t 2-140t +4000 (25≤t ≤30,t ∈N *)=⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *)(t -70)2-900 (25≤t ≤30,t ∈N *) 若0<t <25(t ∈N *),则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125.由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大. (理)(2010·广东六校)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x )2+1192·(60-x )万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元)实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元) 前5年的利润和为7958×5=39758(万元) 设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x )×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值,从而10年的总利润为39758+4950(万元). ∵39758+4950>1000, ∴该规划方案有极大实施价值.。