一元二次函数应用题
一元二次方程的应用题综合(整理)

题型一:送卡片、握手、比赛问题1.毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为 。
2.国庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛, 这次有 队参加比赛.题型二:传播问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?题型三:平均增长(下降)率问题雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?题型四:利润问题1.种新商品每件进价为120元,商场在试销阶段发现,当每件商品售价为130元时,每天可销售70件。
当每件商品售价高于130元时,每涨价2元,日销售量就减少4件,据此规律,商场要想达到每日赚取1600元利润的目标,应涨价多少元?2.某商场试销一种成本为60元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数b kx y +=,且70=x 时,50=y ;80=x 时,40=y ;(1)写出销售单价x 的取值范围;(2)求出一次函数b kx y +=的解析式;(3)销售单价定为多少时,商场可获得利润500元?3.销售某种商品,根据经验,销售单价不少于30元∕件,但不超过50元∕件时,销售数量N (件)与商品单价M (元∕件)的函数关系的图象如图所示中的线段AB . (1)求y 关于x 的函数关系式; (2)若商品的成本为20元,要想获利1200元时,那么该商品的单价应该定多少元?题型五:面积问题1.为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m ,宽20m 的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)例2:如图,利用一面墙(墙EF 最长可利用25米),围成一个矩形花园ABCD ,与围墙平行的一边BC 上要预留3米宽的入口(如图中MN 所示,不用砌墙),用砌46米长的墙的材料,当矩形的长BC 为多少米时,矩形花园的面积为299平方米.例3:在一块长16m 、宽12m 的矩形荒地上,要建一个花园,并使花园所占面积为荒地面积的一半. (1)如果如图①所示设计,并使花园四周小路宽度都相等,那么小路的宽是多少? (2)如果如图①所示设计,并使小路宽度都相等,那么小路的宽是多少?题型六:根的判别式对比练习:例1:已知关于x 的一元二次方程x 2-2kx+12k 2-2=0.求证:不论k 为何值,方程总有两不相等实数根.例2:已知一元二次方程2-40x x k +=有两个不相等的实数根。
一元二次函数应用题经典题型

一元二次函数应用题经典题型关于一元二次函数应用题经典题型,我们可以将其分为以下几个步骤进行分析:第一步:理解一元二次函数的基本形式一元二次函数的基本形式为f(x)=ax²+bx+c,其中a、b、c均为常数,a≠0。
其中,x是自变量,f(x)是因变量。
第二步:解析一元二次函数的图像特征一元二次函数的图像是一个开口朝上或朝下的抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
当a>0时,函数f(x)在顶点处取最小值,顶点坐标为(-b/2a,f(-b/2a))。
当a<0时,函数f(x)在顶点处取最大值,顶点坐标为(-b/2a,f(-b/2a))。
第三步:解析一元二次方程的解法一元二次方程的通式为ax²+bx+c=0,其中a、b、c均为常数,a≠0。
解一元二次方程可以使用以下公式:当b²-4ac>0时,方程有两个不相等的实数根,其公式为:x1=[-b+√(b²-4ac)]/2ax2=[-b-√(b²-4ac)]/2a当b²-4ac=0时,方程有两个相等实数根,其公式为:x1=x2=-b/2a当b²-4ac<0时,方程没有实数解,但可以用虚数单位i来表示,其公式为:x1=[-b+√(b²-4ac)]/2a+i*[√(4ac-b²)]/2ax2=[-b-√(b²-4ac)]/2a-i*[√(4ac-b²)]/2a第四步:举例分析典型的一元二次函数应用题(1)问题描述:某人从A地到B地开车,第一部分以50公里/小时的速度行驶1小时,第二部分以70公里/小时的速度行驶2小时。
求他到B地的总行驶距离。
解题思路:设从A地到B地的路程为x公里,则可以得到以下方程:50×1+70×2=x解方程可得x=190公里。
因此,他到B地的总行驶距离为190公里。
一元二次方程与二次函数的应用题精选题

一、一元二次方程的应用题 1.(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? 解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分5000(1-x )2= 4050 ………………………………………3分解得:x 1=10% x 2=1910(不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=(元) ……………………6分方案②的房款是:4050×100-1.5×100×12×2=(元) ……7分 ∵<∴选方案①更优惠. ……………………………………………8分2.(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 答案:26.. 解:(1)设该市汽车拥有量的年平均增长率为x 。
一元二次方程应用题分类讲练

开启 智慧
销售问题
2.某商店从厂家以每件21元的价格购进一批商品,
若每件商品售价为x元,则每天可卖出(350-10x)件, 但物价局限定每件商品加价不能超过进价的20%. 商店要想每天赚400元,需要卖出多少年来件商品? 每件商品的售价应为多少元?
一元二次方程应用
有关“动点”的面积问题
例1 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的
2
单循环比赛的场数=队数乘以队数减1再除以2
1、要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场, 计划安排15场比赛,应邀请多少个球队参加比赛?
解:设应邀请x个球队参加比赛,列式得:
单循环比赛场数
=15
单循环比赛的场数=队数乘以队数减1再除以2
xx 1 15
2
x2 x 30 0
解:设每轮传染中平均一个人传染了x个人.
1+x+x(1+x)=121
x x 解方程,得
__1_0__,
1
2 __-1_2___(.不合题意,舍去)
答:平均一个人传染了____1_0___个人.
一元二次方程应用(3)
几何与方程
快乐学习 1
几何与方程
例1:一块四周镶有宽度相等的花边的镜框如下图, 它的长为8cm,宽为5cm.如果镜框中央长方形图案的
x
当x102时,352x15. 符合题意.
答:自行车棚的长和宽分别为15米和10米.
常见的图形有下列几种:
练习:
3. (2003年,舟山)如图,有长为24米的篱笆,一面利 用墙(墙的最大可用长度a为10米),围成中间隔有 一道篱笆的长方形花圃。设花圃的宽AB为x米,面积 为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为 45米2的花圃,AB的长是多少米?
初三数学一元二次函数应用题详解

初三数学一元二次函数应用题详解一元二次函数是初中数学中的重要知识点之一,它在实际问题中的应用非常广泛。
本文将详细解析初三数学中常见的一元二次函数应用题,帮助读者更好地理解和运用这一知识点。
1. 问题背景假设小明想要修建一个长方形的花坛,花坛的一边紧贴着一面围墙,另外三面使用同样的材料围起来。
已知材料用到的长度为100米,问小明能够构造出的最大花坛面积是多少?2. 解题思路首先,假设花坛的长为x(米),宽为y(米)。
根据问题描述可知,花坛的一边紧贴着围墙,因此花坛的周长等于材料用到的长度,即2x + y = 100。
我们需要根据这个方程来确定x和y的关系,从而确定花坛的面积。
3. 方程求解将方程2x + y = 100转换为y = 100 - 2x,代入花坛的面积公式S = xy,得到S = x(100 - 2x)。
将这个式子展开,得到S = 100x - 2x²。
4. 求解最大值我们知道,对于一元二次函数,其最大值或最小值出现在抛物线的顶点处。
因此,我们需要求解函数S = 100x - 2x²的顶点坐标。
这里可以运用一元二次函数的顶点公式,顶点的横坐标为x = -b/2a,其中a和b分别为二次项和一次项的系数。
在这个问题中,二次项的系数为-2,一次项的系数为100,代入公式计算可得x = -100/(-2) = 50。
将x = 50代入函数S = 100x - 2x²,得到S = 100 * 50 - 2 * 50² = 5000 - 5000 = 0。
由于面积不可能为负数,所以问题中的花坛的面积最大值为0。
5. 结论根据计算结果,我们可以得出结论:在固定长度的材料条件下,小明不能构造出面积大于0的花坛。
这是因为当一边紧贴围墙时,其他三边的长度都为0,无法构成一个花坛。
6. 总结通过本题的解析,我们可以发现一元二次函数在实际问题中的应用非常重要。
我们可以通过建立方程来描述问题,然后通过数学方法求解,得出准确的结论。
一元二次方程利润最大应用题(供参考)

二次函数利润问题专题训练(二)1、市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)•与销售单价x(元)(x≥30)存在如下图所示的一次函数关系式.(1)试求出y与x的函数关系式;(2)设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出答案).•2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?4、恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少5、红星食品厂独家生产具有地方特色的某种食品,产量y 1(万千克)与销售价格x(元/千克)(2≤x ≤10)满足函数关系式y 1=0.5x+11.经市场调查发现:该食品市场需求量y 2(万千克)与销售价格x(元/千克)(2≤x ≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y 2与x 的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x ≤10)之间的函数关系式.6、某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2)设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?7、凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
一元二次方程应用题与答案

一元二次方程应用题练习应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
2、若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是3、如果012=-+x x ,那么代数式7223-+x x 的值4、五羊足球队举行庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?5、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?6、将一条长20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
初三数学一元二次函数应用题解析

初三数学一元二次函数应用题解析一元二次函数是初中数学中重要的内容之一,在实际生活和问题解决中具有广泛的应用。
通过掌握和理解一元二次函数的相关性质和应用方法,可以帮助我们解决各种实际问题。
本文将对一些常见的一元二次函数应用题进行解析,帮助初三学生更好地理解和掌握这一知识点。
题目一:某汽车制造公司计划推出一款新型电动汽车,已知该车型的销售价格为P(x) = -0.2x^2 + 5000x + 3000元,其中x表示月份(1月为x=1,2月为x=2,以此类推),P(x)表示月销售额。
问:在哪个月份销售额最高,并计算最高销售额。
解析:首先,我们需要找到这个函数的极值点,因为最高的销售额一定在极值点处取得。
一元二次函数的极值点可以通过求导得到。
对函数P(x) = -0.2x^2 + 5000x + 3000求导,得到P'(x) = -0.4x + 5000。
将导函数P'(x) = 0,求解可得x = 12500/4 = 3125。
由于题目中要求的是月份,所以我们需要将结果四舍五入为整数。
计算得到最高销售额出现在第3125个月份。
将x = 3125代入原函数P(x)中,可以得到最高销售额P(3125) = -0.2(3125)^2 + 5000(3125) + 3000。
通过计算可得最高销售额为5000000元。
因此,在第3125个月份,该电动汽车的销售额最高,最高销售额为5000000元。
题目二:某公司的成本函数C(x) = 0.02x^2 + 5000x + 20000元,其中x表示产品的产量(单位:件),C(x)表示生产x件产品的总成本。
如果每件产品的售价为10000元,问:生产多少件产品时,公司可以达到盈亏平衡。
解析:盈亏平衡发生在总收入等于总成本的情况下。
总收入可以通过每件产品的售价乘以产品的产量来计算,即R(x) = 10000x元。
将总收入R(x)与总成本C(x)相等,可以得到0.02x^2 + 5000x + 20000 = 10000x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次函数应用题 一.选择题 1、向上发射一枚炮弹,经
x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx 。
若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的?
(A) 第8秒 (B) 第10秒 (C) 第12秒 (D) 第15秒 。
2、在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为
A .222-=x y
B .222+=x y
C .2)2(2-=x y
D .2)2(2+=x y
3、抛物线3)2(2+-=x y 的顶点坐标是( )
A .(2,3)
B .(-2,3)
C .(2,-3)
D .(-2,-3)
5、二次函数2(1)2y x =++的最小值是( ).
A .2
B .1
C .-3
D .
23 6、抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )
A .()m n ,
B .()m n -,
C .()m n -,
D .()m n --,
7.图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图6(2)建立平面直角坐标系,则抛物线的关系式是( )
A .22y x =-
B .22y x =
C .212y x =-
D .212y x =
8.二次函数c bx ax y ++=2的图象如图所示,则下列关系式中错误..
的是( ) A .a <0
B .c >0
C .ac b 42->0
D .c b a ++>0
二.填空题
9.若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m k +=
10.已知二次函数的图象经过原点及点(12-,14
-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的图6(1) 图6(2) y
x O 1 -1
12.函数(2)(3)y x x =--取得最大值时,x =_____
13.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12
gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面_____m 三.解答题
14.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A 点的坐标(0,2),铅球路线的最高处B 点的坐标为(6,5)
(1)求这个二次函数的解析式;
(2)该男同学把铅球推出去多远?(精确到0.01米,
)
15.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB 时,宽20m ,水位上升3m 就达到警戒线CD ,这时水面
宽度为10m 。
(1)在如图所示的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?
16.某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,则所获利润y A(万元)与投资金额x万元)之间存在正比例函数关系:y A=kx,并且当投资5万元时,可获利润2万元.
信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果企业同时对A,B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
17.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),与每件的销售价x(元/件)
可看成是一次函数关系:t=﹣3x+204
1).写出商场卖这种服装每天的销售利润y与每件的销售价x之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);
2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;
最大销售利润为多少?
18.某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y (万件)与销售单价x (元)存在如图所示的一次函数关系,每年销售该种产品的总开支z (万元)(不含进价)与年销量y (万件)存在函数关系z =10y +42.5.
(1)求y 关于x 的函数关系式;
(2)度写出该公司销售该种产品年获利w (万元)关于销售单价x (元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x 为何值时,年获利最大?最大值是多少?
(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?
19.某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元).
(1)用含x 的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;
(2)求y 与x 之间的二次函数关系式;
(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由;
(4)请把(2)中所求的二次函数配方成a
b a
c a b x y 44)2(2
2-++=的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?。