直流开关稳压电源毕业设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008 ~2009 学年第二学期

毕业设计(论文)

课题直流开关稳压电源

姓名

系部电子与计算机系专业应用电子班级学号

指导教师

稳压电源就是其输出电压相对稳定,它与人们的日常生活密切相关, 也称为稳定电源、稳压器等。随着电子技术发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,对稳压电源的要求更加灵活多样。电子设备的小型化和低成本化,使稳压电源朝轻、薄、小和高效率的方向发展。设计上,稳压电源也从传统的晶体管串联调整稳压电源向高效率、体积小、重量轻的开关型稳压电源迅速发展。

本文中设计的直流稳压电源电路采用脉冲宽度调制型(PWM)即开关工作频率保持不变,控制导通脉冲的宽度;开关型稳压电路中的调整管工作在开关状态,可以通过改变调整管导通与截止时间的比例来改变输出电压的大小。当调整管饱和导通时,虽然流过较大的电流,但饱和管压降很小;当调整管截止时,管子将承受较高的电压,但流过的电流基本等于零。可见,工作在开关状态调整管的功耗很小,因此,开关型稳压电路的效率较高,一般课达65%-90%。同时本文还采用恒压差控制,其中接有软启动电路,在开关机时,对产生过冲现象有相当大程度的抑制。同时通过控制DC-DC变换的脉宽,可实现过热、过流保护。

关键词:脉宽调制开关管滤波电容

摘要 .................................................................................................................................................. I 第一章稳压电源.. (1)

1.1 稳压电源简介 (1)

1.2 稳压电源技术的亮点 (1)

第二章直流稳压电源的分类 (4)

2.1 线性稳压电源 (4)

2.2 开关型稳压电源 (5)

第三章稳压电源电路设计 (8)

3.1 整流电路 (8)

3.1.1 半波整流电路 (8)

3.1.2 全波整流电路 (8)

3.1.3 桥式整流 (9)

3.2 滤波电路 (9)

3.2.1 电容滤波电路 (9)

3.2.2 电感滤波电路 (10)

3.3 控制电路设计 (11)

3.3.1 主要特征及工作原理 (11)

3.3.2 TL494的性能测试 (14)

3.3.3 TL494管脚配置及其功能 (15)

3.3.4 TL494的应用 (15)

第四章直流稳压电源的保护技术 (17)

4.1 极性保护 (17)

4.2 程序保护 (17)

4.3 过电流保护 (18)

4.4 过电压保护 (19)

第五章稳压电源的主要技术指标 (22)

5.1 特性指标 (22)

5.2 质量指标 (22)

第六章恒压差控制 (23)

6.1 同步跟踪法的机理 (23)

6.2 参数计算 (23)

总结 (25)

参考文献 (26)

第一章稳压电源

1.1 稳压电源简介

稳压电源问世后,在很多领域逐步取代了线性稳压电源和晶闸管相控电源。早期出现的是串联型开关电源,其主电路拓扑与线性电源相仿,但功率晶体管工作于开关状态。随着脉宽调制(PWM)技术的发展,PWM开关电源问世,它的特点是用20kHz的载波进行脉冲宽度调制,电源的效率可达65%~70%,而线性电源的效率只有30%~40%。因此,用工作频率为20kHz的PWM开关电源替代线性电源,可大幅度节约能源,从而引起了人们的广泛关注,在电源技术发展史上被誉为20kHz革命。随着超大规模集成芯片尺寸的不断减小,电源的尺寸与微处理器相比要大得多;而航天、潜艇、军用开关电源以及用电池的便携式电子设备(如手提计算机、移动电话等)更需要小型化、轻量化的电源。因此,对开关电源提出了小型轻量要求,包括磁性元件和电容的体积重量也要小。此外,还要求开关电源效率要更高,性能更好,可靠性更高等。这一切高新要求便促进了开关稳压电源的不断发展和进步。

1.2 稳压电源技术的亮点

(1)稳压电源功率密度

提高开关电源的功率密度,使之小型化、轻量化,是人们不断追求的目标。这对便携式电子设备(如移动电话,数字相机等)尤为重要。使开关电源小型化的具体办法有以下几种。

一是高频化。为了实现电源高功率密度,必须提高PWM变换器的工作频率、从而减小电路中储能元件的体积重量。

二是应用压电变压器。应用压电变压器可使高频功率变换器实现轻、小、薄和高功率密度。压电变压器利用压电陶瓷材料特有的“电压-振动”变换和“振动-电压”变换的性质传送能量,其等效电路如同一个串并联谐振电路,是功率变换领域的研究热点之一。

三是采用新型电容器。为了减小电力电子设备的体积和重量,须设法改进电容器的性能,提高能量密度,并研究开发适合于电力电子及电源系统用的新型电容器,要求电容量大、等效串联电阻(ESR)小、体积小等。

(2)高频磁性元件

电源系统中应用大量磁元件,高频磁元件的材料、结构和性能都不同于工频磁元件,有许多问题需要研究。对高频磁元件所用的磁性材料,要求其损耗小、散热性能好、磁性能优越。适用于兆赫级频率的磁性材料为人们所关注,纳米结晶软磁材料也已开发应用。

(3)软开关技术

高频化以后,为了提高开关电源的效率,必须开发和应用软开关技术。它是过去几十年国际电源界的一个研究热点。

PWM开关电源按硬开关模式工作(开/关过程中电压下降/上升和电流上升/下降波形有交叠),因而开关损耗大。高频化虽可以缩小体积重量,但开关损耗却更大了。为此,必须研究开关电压/电流波形不交叠的技术,即所谓零电压开关(ZVS)/零电流开关(ZCS)技术,或称软开关技术,小功率软开关电源效率可提高到800%~85%。上世纪70年代谐振开关电源奠定了软开关技术的基础。随后新的软开关技术不断涌现,如准谐振全桥移相ZVS -PWM,恒频ZVS-PWM/ZCS-PWMZVS-PWM有源嵌位;ZVT-PWM/ZCT-PWM全桥移相ZV-ZCS-PWM 等。我国已将最新软开关技术应用于6kW通信电源中,效率达93%。(4)同步整流技术

对于低电压、大电流輸出的软开关变换器,进一步提高其效率的措施是设法降低开关的通态损耗。例如同步整流(SR)技术,即以功率MOS管反接作为整流用开关二极管,代替肖特基二极管(SBD),可降低管压降,从而提高电路效率。

(5)功率因数校正(PFC)变换器

由于AC/DC变换电路的输入端有整流器件和滤波电容,在正弦电压输入时,单相整流电源供电的电子设备,电网侧(交流输入端)功率因数仅为0.6~0.65。采用功率因数校正(PFC)变换器,网侧功率因数可提高到0.90~0.95,输入电流THD<10%。既治理了对电网的谐波污染,又提高了电源的整体效率。这一技术称为有源功率因数校正(APFC),单相APFC国内外开发较早,技术已较成熟;三相APFC的拓扑类型和控制策略虽然已经有很多种,但还有待继续研究

发展。

高功率因数AC/DC开关电源,由两级拓扑组成,对于小功率AC /DC开关电源来说,采用两级拓扑结构总体效率低、成本高。如果对输入端功率因数要求不特别高时,将PFC变换器和后级DC/DC变

相关文档
最新文档