概率与统计PPT课件
合集下载
概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。
人教B版高中数学必修二课件 《概率》统计与概率PPT(古典概型)

延伸探究2若本例条件不变,求从袋中依次无放回地摸出两球,第 一次摸出红球,第二次摸出白球的概率.
解:样本空间为{(红,白),(红,黄),(白,红),(白,黄),(黄,红),(黄,白)},第 一次摸出红球,第二次摸出白球,只包含(红,白)一个基本事件,所以 所求概率是.
探究一
探究二
探究三
思维辨析 当堂检测
课堂篇探究学习
探究一
探究二
探究三
思维辨析 当堂检测
古典概型的概率计算
例2将一枚质地均匀的正方体骰子先后抛掷两次观察朝上的面
的点数.
(1)一共有多少种不同的结果?
(2)点数之和为5的结果有多少种?
(3)点数之和为5的概率是多少?
解:(1)将一枚质地均匀的正方体骰子抛掷一次,朝上的面的点数
有1,2,3,4,5,6,共6种结果,故先后将这枚骰子抛掷两次,一共有
所选两个国家都是亚洲国家包含的基本事件有
(A1,A2),(A1,A3),(A2,A3),共3个. 故所求事件的概率
(2)从亚洲国家和欧洲国家中各任选一个,所有的基本事件有
(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3), 共9个,包含A1但不包括B1的基本事件有(A1,B2),(A1,B3),共2个.
3.做一做:下列对古典概型的说法,正确的是( )
①试验中所有可能出现的基本事件只有有限个;②每个事件出现
的可能性相等;③每个基本事件出现的可能性相等;④求从含有3件
次品7件正品的10件产品中任取一件为正品的概率为古典概型问题.
A.②④
B.①③④ C.仅①④ D.仅③④
答案:B
解:样本空间为{(红,白),(红,黄),(白,红),(白,黄),(黄,红),(黄,白)},第 一次摸出红球,第二次摸出白球,只包含(红,白)一个基本事件,所以 所求概率是.
探究一
探究二
探究三
思维辨析 当堂检测
课堂篇探究学习
探究一
探究二
探究三
思维辨析 当堂检测
古典概型的概率计算
例2将一枚质地均匀的正方体骰子先后抛掷两次观察朝上的面
的点数.
(1)一共有多少种不同的结果?
(2)点数之和为5的结果有多少种?
(3)点数之和为5的概率是多少?
解:(1)将一枚质地均匀的正方体骰子抛掷一次,朝上的面的点数
有1,2,3,4,5,6,共6种结果,故先后将这枚骰子抛掷两次,一共有
所选两个国家都是亚洲国家包含的基本事件有
(A1,A2),(A1,A3),(A2,A3),共3个. 故所求事件的概率
(2)从亚洲国家和欧洲国家中各任选一个,所有的基本事件有
(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3), 共9个,包含A1但不包括B1的基本事件有(A1,B2),(A1,B3),共2个.
3.做一做:下列对古典概型的说法,正确的是( )
①试验中所有可能出现的基本事件只有有限个;②每个事件出现
的可能性相等;③每个基本事件出现的可能性相等;④求从含有3件
次品7件正品的10件产品中任取一件为正品的概率为古典概型问题.
A.②④
B.①③④ C.仅①④ D.仅③④
答案:B
概率论与数理统计完整ppt课件

化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计课件(共199张PPT)

P(An|A1A2…An-1).
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
概率论与数理统计浙江大学第四版盛骤概率论部分ppt精选课件

• 性质:
1 P(A)1P(A)
P(A)0不能A; P(A)1不能AS;
A AS P(A)P(A)1 P()0
2 若 A B , 则 有 P ( B A ) P ( B ) P ( A ) P ( B ) P ( A )
BA AB P (B )P (A )P (A B )
P ( B ) P ( A ) P ( A B ) P ( B A ) 0P(B)P(A)
例:
向上抛出的物体会掉落到地上 ——确定
明天天气状况
——不确定
买了彩票会中奖 ——不确定
8
•篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
3 概 率 的 加 法 公 式 : P ( A B ) P ( A ) P ( B ) P ( A B )
A B A ( B A B ) P ( A B ) P ( A ) P ( B A B ) 又 B A B , 由 2 。 知 P ( B A B ) P ( B ) P ( A B )
✓ A B A B { x |x A 且 x B }
S AB
✓ A 的 逆 事 件 记 为 A , A A A A S , 若 A A B B S , 称 A ,B 互 逆 、 互 斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
• 7.1 参数的点估计 • 7.2 估计量的评选标准 • 7.3 区间估计
1 P(A)1P(A)
P(A)0不能A; P(A)1不能AS;
A AS P(A)P(A)1 P()0
2 若 A B , 则 有 P ( B A ) P ( B ) P ( A ) P ( B ) P ( A )
BA AB P (B )P (A )P (A B )
P ( B ) P ( A ) P ( A B ) P ( B A ) 0P(B)P(A)
例:
向上抛出的物体会掉落到地上 ——确定
明天天气状况
——不确定
买了彩票会中奖 ——不确定
8
•篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
3 概 率 的 加 法 公 式 : P ( A B ) P ( A ) P ( B ) P ( A B )
A B A ( B A B ) P ( A B ) P ( A ) P ( B A B ) 又 B A B , 由 2 。 知 P ( B A B ) P ( B ) P ( A B )
✓ A B A B { x |x A 且 x B }
S AB
✓ A 的 逆 事 件 记 为 A , A A A A S , 若 A A B B S , 称 A ,B 互 逆 、 互 斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
• 7.1 参数的点估计 • 7.2 估计量的评选标准 • 7.3 区间估计
概率论与数理统计经典课件随机过程

3
一维、二维或一般的多维随机变量的研究是概率论的研究内容,而 随机序列、随机过程则是随机过程学科的研究内容。从前面的描述中看 到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。
定义:设T是一无限实数集,X (e,t), e S,t T是对应于e和t的实数,
即为定义在S 和T 上的二元函数。
DX
(t)
E
[ X (t) X (t)]2
---方差函数
X (t)
2 X
(t
)
---标准差函数
又设任意t1,t2 T RXX (t1,t2 ) E[ X (t1) X (t2 )] (自)相关函数
CXX (t1,t2 ) Cov[ X (t1), X (t2 )]
E [ X (t1) X (t1)][ X (t2 ) X (t2 )] (自)协方差函数
定义: X (t),t T是一随机过程,若它的每一个有限维分布
都是正态分布,即对任意整数n 1及任意t1,t2,
X (t1), X (t2 ), X (tn )服从n维正态分布, 则称X (t),t T是正态过程
tn T ,
正态过程的全部统计特性完全由它的均值函数和自协方差函数所确定。
16
例3:设A, B是两个随机变量,试求随机过程:
当A
N 1,4, B
U 0, 2时,E(A) 1, E( A2 ) 5, E(B) 1, E(B2)
4 3
又因为A, B独立, 故E(AB) E(A)E(B) 1
X (t) t 3, RX (t1, t2 ) 5t1t2 3(t1 t2 ) 12 t1, t2 T
17
例4:求随机相位正弦波X (t) acos(t ) t ,
一维、二维或一般的多维随机变量的研究是概率论的研究内容,而 随机序列、随机过程则是随机过程学科的研究内容。从前面的描述中看 到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。
定义:设T是一无限实数集,X (e,t), e S,t T是对应于e和t的实数,
即为定义在S 和T 上的二元函数。
DX
(t)
E
[ X (t) X (t)]2
---方差函数
X (t)
2 X
(t
)
---标准差函数
又设任意t1,t2 T RXX (t1,t2 ) E[ X (t1) X (t2 )] (自)相关函数
CXX (t1,t2 ) Cov[ X (t1), X (t2 )]
E [ X (t1) X (t1)][ X (t2 ) X (t2 )] (自)协方差函数
定义: X (t),t T是一随机过程,若它的每一个有限维分布
都是正态分布,即对任意整数n 1及任意t1,t2,
X (t1), X (t2 ), X (tn )服从n维正态分布, 则称X (t),t T是正态过程
tn T ,
正态过程的全部统计特性完全由它的均值函数和自协方差函数所确定。
16
例3:设A, B是两个随机变量,试求随机过程:
当A
N 1,4, B
U 0, 2时,E(A) 1, E( A2 ) 5, E(B) 1, E(B2)
4 3
又因为A, B独立, 故E(AB) E(A)E(B) 1
X (t) t 3, RX (t1, t2 ) 5t1t2 3(t1 t2 ) 12 t1, t2 T
17
例4:求随机相位正弦波X (t) acos(t ) t ,
概率论与数理统计教学PPT浙大第三版

数据挖掘
02
通过对大量数据进行挖掘和分析,发现数据间的关联和规律,
为人工智能系统的决策提供依据。
自然语言处理
03
自然语言处理中需要进行文本分类、情感分析等任务,需要概
率论与数理统计的知识进行模型训练和优化。
05
概率论与数理统计的未来发展
概率论与数理统计与其他学科的交叉发展
概率论与数理统计与计算机科学的交叉
概率论与数理统计的应用领域
金融
风险评估、投资组合优化、保 险精算等。
科学研究
物理、生物、化学、医学等领 域的数据分析和实验设计。
工程
可靠性工程、质量控制、系统 优化等。
人工智能和机器学习
数据挖掘、模型训练和评估等 。
概率论与数理统计的发展历程
概率论的起源
可以追溯到17世纪中叶,当时赌 博游戏引发了对概率计算的兴趣。
掌握点估计的概念和方法, 如矩估计和最大似然估计。
区间估计
了解区间估计的概念,掌 握单个和多个参数的区间 估计方法。
估计量的评价准则
了解无偏性、有效性和一 致性等评价估计量的准则。
假设检验
假设检验的基本原理
理解假设检验的基本思想、假设的设定和检验步骤。
单个总体参数的检验
掌握单个总体均值、比例和方差的假设检验方法。
概率论与数理统计教学 ppt浙大第三版
• 概率论与数理统计简介 • 概率论基础 • 数理统计基础 • 概率论与数理统计的应用 • 概率论与数理统计的未来发展
01
概率论与数理统计简介
概率论与数理统计的定义
概率论
研究随机现象的数学学科,通过 概率模型和随机变量描述随机事 件和随机结果。
数理统计
概率论与数理统计基本概念及抽样分布PPT课件

~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,
则
2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α
即
( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2
则
E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表示含有4个次品;
6
以上的随机试验的结果具有数量性质,可用数量
来表示,但有些随机试验的结果不具有数量性质,
如何来处理?
如抛掷一枚硬币
我们用表示随机试验的结结 间果,果自与然实或数人之
0 表示正面朝上
为的建立一一
1 表示反面朝上
对应关系
3、两随机变量之间的函数关系:
在 ab(其a,中 b是常a 数 0)中 ,, 且
问: 3,9表示什么意思?
2020年10月2日
5
引例2:某次产品检验,在可能含有次品的100件 产品中任意抽取4件,那么其中含有的次品数的 的结果。
我们用表示含有的次品数 则是一个随机变量
0 表示含有0个次品; 1 表示含有1个次品; 2 表示含有2个次品;
3 表示含有3个次品;
4 2020年10月2日
2n 分裂终止后所生成的块数 。
(1)写出ξ的分布列; (2)求P(10)
1、分布列中的最后一列不能省
2、一般的,离散型随机变量在某一范围内取值 的概率等于它取这个范围内各个值的概率之和。
2020年10月2日
14
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
若 是随机变量,则 也是随机变量
2020年10月2日
7
例1、写出下列随机变量可能取的值,并说明随机 变量所取的值表示的随机试验的结果 (1)一袋中有5只同样大小的白球,编号为1, 2,3,4,5,现从该袋内随机取出3只球,被取
出的球的最大号码数 。
(2)某单位的某部电话在单位时间内收到的呼
叫次数
某商场要根据天气预报决定国庆是在商场内 还是商场外开展促销活动.资料统计,每年国 庆商场内的促销活动可获得经济效益2万元: 商场外的促销活动若不遇到雨可获得经济效 益10万元:若遇到雨可带来经济损失4万元:9 月30日气象台预报国庆有雨的概率是40%, 则商场应选择那种促销方式?
以上问题涉及将要在本章学习的随机变量和统 计的知识,本章将在初中”统计初步”和”概率” 的基础上,学习
ξ
0
P
9c2-c
试求出常数c
1 3 -8c
注意、离散型随机变量的分布列的性质:
(1)pi 0,i1,2, ;
(2 )pp 1 . 12
2020年10月2日
12
例1 某射手射击所得环数ξ的分布列如下:
ξ 4 5 6 7 8 9 10
P
0.0 0.0 0.0 0.0 0.2 0.2 0.2 2469892
可以用0,1,2,3,4这5个数表示 结果与202实0年10月数2日 之间,自然或人为的建立一一对应关系3
1.在以上这些随机试验中,可能出现的结果都 可以用什么表示? 用数表示
2.这个数在随机试验前是否是预先确定的? 不确定 3.在不同的随机试验中结果是否不变? 可变
1、随机变量:
如果 随机试验的结果可以用一个变量来表示, 那么这样的变量叫做随机变量。
ξ1 2 3 4 5 6
11 111 1
P6
6
6
6
6
6
引例2:在写有数字1,2,3,4,5的五张卡片中,抽 取两张,记ξ为这两张卡片的数字之和,则ξ的可能 取值与ξ取各值的概率用表格表示为
ξ3 4
P 101 2020年10月2日
1 10
5 6789
1
1
1
1
1
5
5
5
10
10 9
1、分布列 设离散型随机变量 ξ可能取的值为
思考:以上的随机变量有什么特点?
4、离散ቤተ መጻሕፍቲ ባይዱ随机变量:
对于随机变量可能取的值,可以按一定次序一一列出,
这样的2020随年10月机2日 变量叫做离散型随机变量。
8
引例1:抛掷一枚骰子,设得到的点数为ξ,则ξ的可能取
值为__1_,2_,_3,_4,_5_,6,ξ取各值的概率分别为____ 用表格表示为:
求此射手“射击一次命中环数≥7的概率”
1、注意写法
2、一般的,离散型随机变量在某一范围内取值的 概率等于它取这个范围内各个值的概率之和。
2020年10月2日
13
例2 一个类似于细胞分裂的物体,一次分裂为 二,两次分裂为四,如此继续分裂,设分裂n次 终止的概率是 1 (n1,2,3,) ,记ξ为原物体在
练1:下列4个表中,其中能成为随机变量ξ的分布 列的有哪些? B
A、 ξ
P
B、
ξ P
0
1
0.6 0.3
0
1
0.9025 0.095
2 0.0025
ξ 0 1 2… n
C、 P 1/ 1/ 1/ … 1/
248
2n
D、 ξ
0
1
P 1.6 -0.6 2020年10月2日
11
练2:若离散型随机变量ξ的分布列为
2020年10月2日
1
第一章 概率与统计
§1.1离散型随机变量的分布列
2020年10月2日
2
引例1:某人射击一次,可能出现命中0环,命中 1环,…,命中10环等 _1_1_个结果,
这些结果可以用数字表示,如0表示命中0环 则以上结果可以用哪些数表示? 可以用0,1,2,…,10这11个数表示
引例2:某次产品检验,在可能含有次品的100件 产品中任意抽取4件,那么其中含有的次品件数的 情况有哪些?可以用哪些数表示?
汇报人:XXX 汇报日期:20XX年10月10日
15
随机变量的表示: 常用希腊字母 , 等表示。
2020年10月2日
4
2、随机变量所取值的含义:表怎样的试验结果 引例1:某人射击一次,可能出现命中0环,命中 1环,… ,命中10环的结果,
我们用表示射击的命中环数 则是一个随机变量
0 表示命中0环; 1 表示命中1环;
2 表示命中2环; …… 10表示命中10环;
ξ取每一个x 值1,xx2i,(x i 3,1 ,2,x i)的, 概,率 P(xi)pi
则称表
ξ
x 1
x2…
…x i
P
p 1
p2…
…p i
为随机变量ξ的概率分布,简称为ξ的分布列
2、离散型随机变量的分布列的性质:
(1)pi 0,i1,2, ; (2 )p 1p 2 1 .
2020年10月2日
10