植物叶色黄化突变分子机理的研究进展-南方农业学报

合集下载

BSA_联合转录组分析发掘西瓜叶片黄化候选基因

BSA_联合转录组分析发掘西瓜叶片黄化候选基因

江苏农业学报(JiangsuJ.ofAgr.Sci.)ꎬ2024ꎬ40(1):165 ̄173http://jsnyxb.jaas.ac.cn张朝阳ꎬ程㊀瑞ꎬ徐兵划ꎬ等.BSA联合转录组分析发掘西瓜叶片黄化候选基因[J].江苏农业学报ꎬ2024ꎬ40(1):165 ̄173.doi:10.3969/j.issn.1000 ̄4440.2024.01.018BSA联合转录组分析发掘西瓜叶片黄化候选基因张朝阳ꎬ㊀程㊀瑞ꎬ㊀徐兵划ꎬ㊀顾㊀妍ꎬ㊀黄大跃ꎬ㊀孙玉东(江苏徐淮地区淮阴农业科学研究所/淮安市设施蔬菜重点实验室ꎬ江苏淮安223001)收稿日期:2022 ̄11 ̄28基金项目:淮安市农业科学研究院发展基金项目(HAN201714)ꎻ淮安市自然科学研究技术专项(HAB202079)ꎻ国家西甜瓜产业技术体系淮安综合试验站项目(CARS ̄25)作者简介:张朝阳(1982-)ꎬ男ꎬ江苏连云港人ꎬ硕士ꎬ副研究员ꎬ从事西甜瓜遗传育种研究ꎮ(E ̄mail)287362703@qq.comꎮ程瑞为共同第一作者ꎮ通讯作者:孙玉东ꎬ(E ̄mail)sunyudong@jaas.ac.cn㊀㊀摘要:㊀叶片是植物重要的功能器官之一ꎬ不仅是植株进行光合作用的主要场所ꎬ也可作为重要的形态标记ꎬ应用于育种中ꎮ叶片颜色作为形态标记ꎬ不仅可用于苗期杂种的清除ꎬ亦可用于种子纯度的测定ꎮ以西瓜全生育期叶片黄化突变体纯合自交系ly104为母本(P1)㊁绿叶自交系w3为父本(P2)ꎬ通过杂交创制F1代㊁F2代㊁BC1代群体ꎮ遗传分析结果表明ꎬ该突变体的叶片黄化由单隐性基因控制ꎮ采用混合分组分析(BSA)进行初定位ꎬ通过简化基因组测序(RAD)开发全基因组单核苷酸多态性(SNP)标记构建西瓜高密度遗传图谱ꎬ将西瓜叶片黄化基因定位于2号染色体13950306~15517591bp(大小约为1 57Mb)ꎮ以西瓜97103v2为参考基因组ꎬ该区间包含24个注释基因ꎮ对P1(P1Y)㊁P2(P2G)和F2代群体中黄叶(F2Y)㊁绿叶(F2G)株系进行转录组水平分析ꎬ结果表明ꎬ目标区间内基因Cla97C02G035950㊁Cla97C02G036010㊁Cla97C02G036020㊁Cla97C02G036060在黄化叶片与正常绿叶材料中的表达量差异显著ꎬ可能是西瓜叶片的黄化候选基因ꎮ研究结果可为进一步解析西瓜叶片黄化基因功能和生物学特性奠定重要基础ꎮ关键词:㊀西瓜ꎻ黄化ꎻBSAꎻ遗传图谱ꎻ基因定位中图分类号:㊀S651.01㊀㊀㊀文献标识码:㊀A㊀㊀㊀文章编号:㊀1000 ̄4440(2024)01 ̄0165 ̄09IdentificationofcandidategenesforwatermelonleafyellowingbasedonBSAandtranscriptomeanalysisZHANGChao ̄yangꎬ㊀CHENGRuiꎬ㊀XUBing ̄huaꎬ㊀GUYanꎬ㊀HUANGDa ̄yueꎬ㊀SUNYu ̄dong(HuaiyinInstituteofAgriculturalSciencesoftheXuhuaiDistrictofJiangsuProvince/HuaianKeyLaboratoryforFacilityVegetablesꎬHuaian223001ꎬChina)㊀㊀Abstract:㊀Theleafisoneoftheimportantfunctionalorgansofplants.Itisnotonlythemainplaceforphotosynthesisofplantsꎬbutalsocanbeusedasanimportantmorphologicalmarkerinbreeding.Asamorphologicalmarkerꎬleafcolorcanbeusednotonlyforremovinghybridsattheseedlingstageꎬbutalsofordeterminingseedpurity.InthisstudyꎬF1ꎬF2ꎬandBC1populationswerecreatedbyhybridizationꎬandthemutanthomozygousinbredlinely104inthewholegrowthperiodofwatermelonwasusedasthefemaleparent(P1)ꎬandthegreenleafinbredlinew3wasusedasthemaleparent(P2).Geneticanalysisshowedthatleafyellowingwascontrolledbyasinglerecessivegene.Thebulkedsegregantanalysis(BSA)wasusedforprimarymappingꎬandgenome ̄widesinglenucleotidepolymorphism(SNP)markersweredevelopedbyrestriction ̄siteassociatedDNA ̄sequencing(RAD)toconstructahigh ̄densitygeneticmapofwatermelon.Thewatermelonleafyellowinggenewaslocalizedonchromosome2at13950306 ̄15517591bp(about1.57Mb).Watermelon97103v2wasusedasthereferencegenomeandthein ̄tervalcontained24annotatedgenes.ThetranscriptomelevelsofP1(P1Y)ꎬP2(P2G)andyellowleaf(F2Y)andgreenleaf(F2G)linesinF2populationwereanalyzed.TheresultsshowedthattheexpressionlevelsofCla97C02G035950ꎬCla97C02G036010ꎬCla97C02G036020andCla97C02G036060inthetargetintervalweresignificantlydifferentbetweenetio ̄latedleavesandnormalgreenleaves.Thesegenesmightbecandidategenesforetiolationofwatermelonleaves.There ̄561sultsofthisstudycanlayanimportantfoundationforfurtheranalysisofthefunctionandbiologicalcharacteristicsofwatermelonleafyellowinggenes.Keywords:㊀watermelonꎻetiolationꎻBSAꎻgeneticmapꎻgenelocation㊀㊀叶片是植物进行光合作用最主要的器官ꎬ对植物的生存具有重要意义ꎬ叶片颜色在很大程度上决定了植物的光合效率[1]ꎮ植物叶色突变不仅是研究叶绿素相关基因功能及植物发育的重要材料[2]ꎬ也是优良的形态标记性状ꎬ在实际生产中常被用来进行品种纯度鉴定[3]ꎮ关于水稻㊁大麦㊁小麦㊁玉米㊁棉花㊁大豆㊁蚕豆㊁番茄㊁拟南芥等多种植物叶色突变的研究已有报道[4]ꎬ叶色突变类型丰富多样ꎬ包括白化㊁黄化㊁黄绿化等[5 ̄6]ꎮ植株叶色的形成不仅受到叶绿体生物合成途径㊁叶绿素降解途径㊁血红素代谢途径㊁类胡萝卜素代谢途径等与光合色素代谢途径相关基因的影响ꎬ受到与叶绿体发育相关基因的调控ꎬ还与光㊁温度㊁植物激素㊁矿物元素和金属离子等外界环境因素息息相关[6 ̄9]ꎮ目前ꎬ关于水稻㊁玉米㊁拟南芥等模式植物中叶色的研究较为深入ꎬ水稻㊁玉米中已报道的叶色突变体均超200个[10 ̄13]ꎬ对拟南芥的研究发现ꎬ叶色突变以隐性遗传为主ꎬ目前已经发现27个编码15种叶绿素生物合成酶的核基因ꎬ它们的任何异常突变都会导致叶绿素缺乏ꎬ从而产生黄色突变[14]ꎮ近年来ꎬ随着高通量测序技术的应用ꎬ关于辣椒㊁甜瓜和黄瓜等一些重要经济作物的叶色突变研究也逐渐展开[15 ̄19]ꎮ西瓜是全球十大水果之一ꎬ中国西瓜栽培面积和消费量均居世界首位ꎮ随着杂交育种的发展ꎬ西瓜育种已基本实现杂种一代化ꎬ对制种纯度提出了更大挑战ꎬ叶形㊁叶色虽是重要的形态标记性状ꎬ但尚未应用于育种中ꎮ西瓜的遗传基础狭窄ꎬ自然突变率低ꎬ目前有关西瓜叶色突变的报道有斑驳突变类型[20]㊁白化突变类型[21 ̄22]㊁不完全显性黄叶突变类型[22]㊁后绿突变类型[23]㊁黄化突变类型[24 ̄25]等ꎬ但研究主要集中于遗传规律㊁生理特性[21 ̄25]ꎮ西瓜基因组的公布和测序技术的快速发展为西瓜重要性状定位㊁关键基因功能研究奠定了重要生物学基础[26 ̄29]ꎮKidanemariam[30]发现ꎬ西瓜后绿突变体Houlv中的ClCG03G010030基因存在1个单核苷酸多态性(SNP)变异ꎬ导致该基因编码的FtsH胞外蛋白酶序列中精氨酸突变为赖氨酸ꎬFtsH蛋白主要参与叶绿体早期发育ꎬ进而影响西瓜叶片颜色ꎮZhu等[25]对叶片黄化突变西瓜材料w ̄yl进行精细定位ꎬ认为基因Cla97C02G036040㊁Cla97C02G036050和Cla97C02G036060可能是导致西瓜叶片黄化的主要基因ꎮ探索叶片颜色变异机制可为遗传改良提供理论依据ꎬ满足人们在生产㊁选种和育种等方面的需求ꎻ开发叶色形态标记ꎬ能够有效缩短育种周期ꎬ提高育种效率与制种纯度ꎮ本研究拟以全生育期叶片黄化西瓜材料ly104和绿叶西瓜材料w3为试验材料ꎬ通过混合分组分析(BSA)测序初步定位叶片黄化基因在染色体中的位置ꎬ进一步利用简化基因组(RAD)测序开发全基因组SNP分子标记ꎬ利用F2代群体构建高密度遗传图谱进行西瓜叶片黄化基因定位ꎬ结合转录组测序及基因功能注释锁定关键候选基因ꎮ本研究结果可为进一步全面解析西瓜叶片黄化基因及其生物学功能奠定重要基础ꎮ1㊀材料与方法1.1㊀试验材料2014年ꎬ利用甲基磺酸乙酯(EMS)诱变获得的稳定遗传的叶片黄化西瓜材料ꎬ经5代连续自交获得相对纯合的叶片黄化突变材料ly104ꎮ本研究以ly104为母本(P1)ꎬ以正常绿叶西瓜材料w3为父本(P2)构建F1代㊁F2代㊁BC1代群体ꎬ群体的构建与表型调查试验均于淮安市农业科学研究院科研创新基地进行ꎬ群体配制过程严格自交㊁杂交ꎬ整个生育期采取商品化管理ꎮ1.2㊀形态观察与遗传规律分析以第1张完全展开的真叶进行表型统计与分析ꎬ采用人工观察和便携式色差仪RM200QC(爱色丽X ̄Riteꎬ美国)对叶片颜色指数进行测定ꎬ测定指标为亮度值(L∗)㊁红绿值(a∗)和黄蓝值(b∗)3个颜色参数ꎮ对F1代㊁F2代㊁BC1代群体分离表型进行统计ꎬ分析西瓜叶片黄化遗传规律ꎬ并进行卡方检验ꎮ1.3㊀通过BSA测序进行叶片黄化初定位BSA测序即混合分组分析法ꎬ是一种简单快速的目标性状定位方法ꎬ已被广泛应用于多种园艺作物重要性状的基因定位[31]ꎮ本研究从F2代西瓜群体中选取黄叶㊁绿叶极端表型植株各20株ꎬ采用十六烷基三甲基溴化铵(CTAB)法[32]提取植株幼叶基661江苏农业学报㊀2024年第40卷第1期因组DNA并检测其浓度ꎬ通过等量混匀构建2个极端混池ꎬ利用亲本DNA构建亲本池进行测序分析ꎬ送至上海凌恩生物科技有限公司ꎬ利用IllunimaHiSeq4000进行测序ꎬ亲本测序深度为10ˑꎬ混池测序深度为20ˑꎬ测序读长为150bpꎮ对原始序列(Read)进行过滤ꎬ去除接头ꎬ过滤掉包含未确定碱基(N)>15%和低质量的read(质量值ɤ20的碱基数占整个Read的10%以上)ꎬ将获得的干净序列(Cleanread)用于后续分析ꎮ使用BWA软件[33]将高质量的Cleanread映射到西瓜基因组97103v2(ht ̄tp://cucurbitgenomics.org/organism/21)上ꎮ然后用GATK[34]㊁SnpEff[35]软件对突变位点进行检测和注释ꎬ用SNP ̄index算法进行关联分析ꎬ阈值为0 5ꎮ1.4㊀西瓜高密度遗传图谱的构建为了更精确地定位获得西瓜叶片黄化突变位点ꎬ本研究根据F2代群体中黄叶㊁绿叶分离比选取共100份单株ꎬ分别提取基因组DNAꎬ采用RAD建库方式构建长度范围在300~500bp的双端文库ꎮ将产物送至上海凌恩生物科技有限公司ꎬ利用IllunimaHiSeq进行测序ꎬ测序读长为150bpꎮ对原始Read采用以下标准进行质控:(1)去除Read中的接头序列ꎻ(2)修剪测序质量较低的Read末端(测序质量值小于Q20)ꎻ(3)去除含N比例达到10%的Readꎻ(4)舍弃接头及质量修剪后长度小于100bp的小片段ꎮ用BWA软件将Cleanread比对至参考基因组97103v2ꎬ并对映射结果进行统计分析ꎮ用GATK软件进行变异位点检测获得SNPꎮ对获得的SNP按以下标准进行过滤:(1)去除比对Read质量值小于20的位点ꎬ同时过滤掉缺失率大于50%的SNPꎻ(2)删除无义SNP位点ꎻ(3)用joinmap4.0软件[36]对过滤后的SNP进行卡方测验ꎬ先后过滤掉P<0 01和缺失率30%以上的标记ꎬ对于最终获得的SNPꎬ采用joinmap4.0软件进行西瓜遗传图谱构建ꎬ选用Kosamb s参数ꎮ1.5㊀转录组分析从亲本及其F2代群体中取ly04和w3单株各3份ꎬ当第1张真叶完全展开后取样进行转录组分析ꎮ用PlantRNAPurificationReagent试剂盒(购自上海凌恩生物科技有限公司)提取植物总RNAꎬ并构建转录组测序文库ꎮ送至上海凌恩生物科技有限公司采用IlluminaHiSeq进行测序ꎬRead长度为150bpꎮ测序数据经质控过滤获得Cleanreadꎬ用Hisat2软件[37]将其映射到西瓜基因组97103v2上ꎮ用每个基因在一个样本中所对应的基因转录本数(FPKM)计算基因表达水平ꎮ基于KEGG(http://www.ge ̄nome.jp/kegg/)和GO(http://www.geneontology.org/)数据库进行基因注释和功能分析ꎮ差异表达基因以差异倍数(Foldchange)ȡ1 5㊁Pɤ0 005为标准ꎮ1.6㊀候选区域功能注释与候选基因筛选结合遗传规律分析及BSAꎬ利用RAD测序开发全基因组SNP标记ꎬ加入叶色表型标记进行西瓜2号染色体图谱的构建ꎬ对西瓜叶片黄化基因进行定位ꎮ以97103v2为参考基因组对定位区间基因进行注释ꎬ通过基因序列分析及转录组测序差异表达情况分析进一步筛选并确定候选基因ꎮ2㊀结果与分析2.1㊀西瓜叶片黄化特性及遗传规律分析经EMS诱变获得叶片黄化的西瓜材料ꎬ经5代连续自交后ꎬ获得遗传稳定的叶片黄化材料ly104ꎬ该材料从子叶期至果实收获时的叶片均保持黄化状态(图1A)ꎮ通过对ly104㊁w3的叶片颜色指标进行测定ꎬ发现叶片黄化西瓜材料与绿叶西瓜材料在叶片颜色指标上存在极显著差异(图1B)ꎮ㊀㊀分析结果显示ꎬly104和w3的杂交F1代所有植株叶片均呈绿色ꎬ表明控制黄色和绿色的基因是等位基因ꎬ黄色的突变基因为隐性遗传ꎮF2代群体中有174个单株为绿叶ꎬ63个单株为黄叶(表1)ꎮ在F1代与叶片黄化亲本(P1)回交群体后代中ꎬ有73个单株为绿叶ꎬ63个单株为黄叶ꎮ卡方检验发现ꎬF2代群体的分离比符合3ʒ1的孟德尔分离比[χ2(1ꎬn=237)=0.31646ꎬP=0.5737>0 0500ꎬn为群体样本数量]ꎬBC1群体的分离模式符合1ʒ1的孟德尔分离比[χ2(1ꎬn=136)=0.73529ꎬP=0.3912>0 0500](表1)ꎬ说明西瓜叶片的黄色突变符合单基因控制的隐性遗传规律ꎬ叶片绿叶对黄色表现为显性遗传ꎮ表1㊀F2代和BC群体中叶片黄化突变型与野生型的分离比Table1㊀Segregationratioofyellow ̄leafmutantandwildtypeinF2andBCpopulations群体类型群体数量绿叶植株数量黄叶植株数量期望分离比卡方检验值(χ2)BC113673631ʒ10.74F2237174633ʒ10.32χ2检验采用0.05水平ꎮ761张朝阳等:BSA联合转录组分析发掘西瓜叶片黄化候选基因A:表型ꎻB:颜色指数ꎮL∗:亮度(阈值0~100)ꎻa∗:红绿色范围(阈值-128~+127)ꎻb∗:黄蓝色范围(阈值-128~+127)ꎻMT:突变体叶片黄化材料ꎻWT:野生型材料ꎮ∗∗表示不同材料间差异极显著(P<0 01)ꎮ图1㊀西瓜绿叶和黄叶突变体的表型及颜色指数Fig.1㊀Phenotypeandcolorindexofwatermelongreen ̄leafmutantandyellow ̄leafmutant2.2㊀西瓜叶片黄化基因的BSA初定位原始Read经质控过滤ꎬ2个混池共获得12.4Gb高质量CleanreadꎬQ30在93 0%以上ꎬ与参考基因组97103v2的平均比对率在98 0%以上ꎮ使用GATK软件进行变异检测ꎬ共获得523303个SNPꎬ经过滤后用SNP ̄Index算法对性状相关侯选区域进行选择ꎬ作图窗口大小为1Mbꎬ作图步移为10kbꎬ阈值为0 5ꎬ结果表明ꎬ西瓜叶色黄化基因定位于2号染色体8490001~26410000bp(大小约为17 92Mb)(图2A)ꎮ2.3㊀高密度西瓜遗传图谱的构建与叶片黄化基因的定位㊀㊀根据分离比ꎬ从F2代群体中选取76株绿叶㊁24株黄叶西瓜单株进行RAD测序ꎬ共获得69 17Gb高质量CleanreadꎬQ30在91 3%以上ꎬ与参考基因组的平均比对率在97 6%以上ꎮ使用GATK软件进行变异检测ꎬ共获得229704个SNPꎬ经过滤筛选ꎬ最终确定4273个SNP用于西瓜高密度遗传图谱的构建ꎮ西瓜遗传图谱总长度为1602.44cMꎬ平均遗传距离为0 39cMꎬ最大间隔为7 38cM(表2)ꎮ㊀㊀为了进一步精确定位西瓜叶片黄化基因ꎬ用RAD测序结果对西瓜2号染色体上的SNP标记进行过滤筛选ꎬ剔除检测率低于40%的样品单株和标记ꎬ最终用91份单株(68份绿叶ꎬ23份黄叶)㊁286个SNP标记进行叶片黄化基因定位ꎬ叶片颜色标记(Leafcolor)用绿叶(D)㊁黄叶(B)表示ꎬ用joinmap4进行西瓜叶片黄化基因的定位ꎮ结果显示ꎬLeafcol ̄or定位于Clas97Chr02 ̄13950306与Clas97Chr02 ̄15517591标记之间(大小约为1 567Mb)(图2B)ꎬ以西瓜97103v2为参考基因组ꎬ该区间包含24个注释基因(图2C㊁表3)ꎮ表2㊀西瓜高密度遗传图谱构建结果Table2㊀Constructionofhighdensitygeneticmapofwatermelon基因组位置标记数量遗传长度(cM)平均遗传距离(cM)标记最大间隔(cM)Lg01437161.150.372.62Lg02504185.490.372.32Lg0310960.130.553.16Lg04628278.320.443.87Lg05314114.810.372.87Lg0638095.080.252.75Lg07481186.900.392.82Lg0820572.030.352.17Lg09437147.520.342.21Lg10459121.600.262.40Lg11319179.410.567.38合计42731602.440.39-861江苏农业学报㊀2024年第40卷第1期2.4㊀西瓜黄化叶片转录组分析及候选基因的筛选RNA ̄seq共检测12个样本ꎬ其中P1㊁P2分别选取3个样本ꎬF2代群体中叶片黄化类型㊁绿叶类型分别选取3个样本ꎬ每个样本平均获得6 4Gb高质量Cleanread数据ꎬQ30在92 0%以上ꎬ平均基因组比对率为91 4%ꎮ分别以P2G(亲本绿叶)与P1Y(亲本黄叶)和F2G(F2代绿叶)与F2Y(F2代黄叶)为对比组进行独立分析ꎬ其中P2G与P1Y对比组中共检测到1356个差异表达基因ꎬ其中上调表达的基因529个ꎬ下调表达的基因827个ꎻF2G与F2Y对比组中共检测到4180个差异表达基因ꎬ其中上调表达的基因1378个ꎬ下调表达的基因2802个(图3Aꎬ图3B)ꎮP2G与P1Y对比组和F2G与F2Y对比组中均显著下调表达的基因共有327个㊁均显著上调表达的基因共有132个(图3A)ꎮ以上结果表明ꎬ亲本中黄叶和绿叶差异表达基因数量显著小于F2代群体ꎬ说明P1和P2已相对纯合ꎻGO和KEGG富集分析结果表明ꎬ差异表达基因富集通路多与光合㊁应激反应等有关ꎬ说明黄叶和绿叶西瓜植株在光合作用等方面存在较大差异ꎮ表3㊀候选区间注释基因Table3㊀Genefunctionannotationinformationincandidateinterval基因㊀㊀染色体起始位置(bp)终止位置(bp)基因方向基因功能注释㊀㊀㊀㊀㊀Cla97C02G035890染色体21395641713957327-acanthoscurrin ̄1 ̄likeCla97C02G035900染色体21402996814031110-未知的蛋白质Cla97C02G035910染色体21403120214032265-acanthoscurrin ̄1 ̄likeCla97C02G035920染色体21403358014037379-未知的蛋白质Cla97C02G035930染色体21405567614057378-含BPTI/Kunitz结构域的蛋白质2亚型X2Cla97C02G035940染色体21415712214158310+未知的蛋白质Cla97C02G035950染色体21420137314202375-与TMA7相关的翻译机制蛋白质Cla97C02G035960染色体21426731014270809-B类锌指蛋白质转录因子ꎬ包含DUF1664结构域Cla97C02G035970染色体21427090614274847+脂质结合血清糖蛋白质Cla97C02G035980染色体21427768614278904-蛋白质核融合缺陷6ꎬ叶绿体/线粒体样亚型X1Cla97C02G035990染色体21428304714283329+未知的蛋白质Cla97C02G036000染色体21437008614372002+抗坏血酸氧化酶同源物Cla97C02G036010染色体21437643914376782+未知的蛋白质Cla97C02G036020染色体21446137614464307-双组分反应调节蛋白质Cla97C02G036030染色体21449460714497114+双组分反应调节蛋白质Cla97C02G036040染色体21454976514550425+包含DUF679结构域的蛋白质Cla97C02G036050染色体21455062614551935-DNAJ同源亚家族B成员13Cla97C02G036060染色体21467069314671707+蛋白质Ycf2Cla97C02G036070染色体21483721914875277-U11/U12小核核糖核蛋白(相对分子质量65000)蛋白质亚型X2Cla97C02G036080染色体21499052014990719-未知的蛋白质Cla97C02G036090染色体21505989915063209+环型E3泛素转移酶Cla97C02G036100染色体21515520915157456+含五肽重复的家族蛋白质Cla97C02G036110染色体21516514215226986+尼曼 ̄匹克C1蛋白样亚型X2Cla97C02G036120染色体21523146015231976-锌指家族蛋白质+ 表示基因注释在染色体正链ꎻ - 表示基因注释在染色体负链ꎮ㊀㊀对西瓜2号染色体13950306~15517591bp(大小约为1 56Mb)内的24个注释基因进行功能分析和转录组表达差异分析ꎬ结果显示ꎬ24个注释基因中有17个在植株叶片中表达ꎬ仅有基因Cla97C02G036060㊁961张朝阳等:BSA联合转录组分析发掘西瓜叶片黄化候选基因A:BSA定位结果ꎮB:西瓜2号染色体遗传图谱及叶色黄化标记定位ꎮC:根据西瓜参考基因组97103v2注释候选区域的基因ꎮSNPindex:单核苷酸多态性指数ꎮ图2㊀西瓜叶片黄化基因精细定位Fig.2㊀FinemappingofleafyellowinggenesinwatermelonA:P2G与P1Y对比组及F2G与F2Y对比组上调和下调基因数量Venn图ꎻB:P2G与P1Y对比组及F2G与F2Y对比组上调和下调基因数量柱形图ꎻC:F2G与F2Y对比组差异基因火山图ꎬ标注基因为候选区间基因ꎮP1Y:亲本黄叶ꎻP2G:亲本绿叶ꎻF2G:F2代绿叶ꎻF2Y:F2代黄叶ꎮ图3㊀西瓜黄叶与绿叶转录组差异表达基因分析Fig.3㊀Analysisofdifferentiallyexpressedgenesinthetranscriptomeofwatermelonyellowleafandgreenleaf071江苏农业学报㊀2024年第40卷第1期Cla97C02G035950㊁Cla97C02G036010㊁Cla97C02G036020在叶片黄化植株与绿叶植株中的表达存在显著差异ꎬCla97C02G036060在P2G和F2G中均显著上调表达(图3C)ꎬ其注释功能为Ycf2蛋白编码基因ꎬ该编码基因为被子植物中最重要的质体基因ꎬ与植物光合作用有关ꎮ3㊀讨论与结论化学EMS诱变是人工创造突变体最常用的处理方式之一ꎬ叶片黄化是最常见的诱变表型[22]ꎮ笔者所在课题组前期通过EMS诱变西瓜种子ꎬ获得稳定遗传的西瓜叶片黄化材料ꎬ其整个生育期均可保持黄化状态ꎮ植物叶片黄化突变ꎬ又称叶绿素缺乏突变ꎬ通常是由叶绿素合成或降解途径被破坏所致[38]ꎮ目前ꎬ研究者已经在水稻[39]㊁番茄[40]㊁黄瓜[19]㊁拟南芥[41]等植物中发现了黄化突变体ꎮ有研究发现ꎬ不同类型的叶色突变的遗传规律差异较大ꎬ有些叶色突变可能是核遗传ꎬ也可能是细胞质遗传ꎬ水稻[42]㊁玉米[43]㊁小麦[44]㊁黄瓜[45]㊁番茄[46]等都由1对或2对隐性核基因控制ꎮZhang等[21]研究证实ꎬ西瓜叶片白化突变是由1对隐性等位基因(jaja)控制的ꎮProvvidenti[20]发现ꎬ西瓜叶色斑驳突变由1对隐性基因(slv)控制ꎮKidanemariam等[30ꎬ47]发现ꎬ西瓜叶色后绿突变是由1个隐性基因(dgdg)控制的ꎮZhu等[25]研究发现ꎬ西瓜黄化突变体w ̄yl由1对隐性核基因控制ꎬ与本研究结果一致ꎮ西瓜作为重要的园艺经济作物[48 ̄51]ꎬ在中国的栽培面积和产量均居世界首位ꎮ经长期人工选择ꎬ栽培西瓜遗传背景狭窄ꎬ多态性分子标记开发受限ꎬ致使西瓜分子标记辅助育种及品种改良进展缓慢ꎮ高密度遗传图谱的构建不仅是开发西瓜重要农艺性状遗传基因/QTL紧密连锁分子标记的重要手段ꎬ亦是深入挖掘和解析西瓜重要农艺性状基因的基础ꎬ通过遗传图谱构建进行基因/QTL定位研究已经在西瓜多种性状研究中得到成熟应用[52 ̄53]ꎮ本研究基于BSA定位ꎬ将西瓜叶片黄化基因定位于2号染色上ꎬ为了进一步获得可靠定位基因ꎬ本研究开发了SNP标记ꎬ用于构建高密度西瓜遗传图谱ꎬ并将西瓜叶片黄化基因定位到2号染色体13950306~15517591bp(大小约为1 56Mb)ꎬ比对西瓜参考基因组97103v2发现ꎬ在候选区段内包含24个注释基因ꎬ17个基因在叶片中表达ꎬ4个基因在黄叶与绿叶转录组分析中存在显著差异表达ꎬ其中基因Cla97C02G036060是Ycf2蛋白的编码基因ꎬYcf2/FtsH调控的烟酰胺腺嘌呤二核苷酸 ̄苹果酸脱氢酶是叶绿体或非光合质体在黑暗中产生腺嘌呤核苷三磷酸的关键酶[54]ꎬ是光合生长必需的酶[55]ꎮ目前ꎬYcf2基因已被证实是被子植物中最重要的质体基因[56]ꎬ它在高等植物中发挥着重要功能[57]ꎮ在本研究中ꎬ由于双亲重测序深度不高ꎬ候选区间注释基因编码区中未发现可靠突变ꎬ但转录组结果显示ꎬYcf2在叶片黄化西瓜材料中的表达量显著下调ꎬ说明叶片黄化西瓜材料的光合作用系统可能与正常绿叶植株光合系统存在显著差异ꎬ相关机制需要进一步研究ꎮ本研究结果可为进一步挖掘叶片黄化植株光合作用机制奠定一定科学基础ꎮ参考文献:[1]㊀陈婷婷ꎬ符卫蒙ꎬ余㊀景ꎬ等.彩色稻叶片光合特征及其与抗氧化酶活性㊁花青素含量的关系[J].中国农业科学ꎬ2022ꎬ55(3):467 ̄478. [2]㊀徐明远ꎬ何㊀鹏ꎬ赖㊀伟ꎬ等.植物叶色变异分子机制研究进展[J].分子植物育种ꎬ2021ꎬ19(10):3448 ̄3455. [3]㊀马道承ꎬ王凌晖ꎬ梁㊀机.形态标记在植物中的应用研究进展[J].江苏农业科学ꎬ2022ꎬ50(8):55 ̄62.[4]㊀杨小苗.番茄EMS突变体库的构建及叶色黄化突变体的分析[D].沈阳:沈阳农业大学ꎬ2017.[5]㊀刘忠学ꎬ张渝竣ꎬ刘㊀林ꎬ等.水稻黄绿叶突变体yellow ̄greenleaf4的表型鉴定及候选基因定位和功能分析[J].南京农业大学学报ꎬ2022ꎬ45(4):627 ̄636.[6]㊀徐薪璐ꎬ蔡㊀鸥ꎬ秦㊀敏ꎬ等.植物叶色变异研究进展[J/OL].分子植物育种:1 ̄8[2022 ̄11 ̄21].http://kns.cnki.net/kcms/de ̄tail/46.1068.S.20220517.1326.020.html.[7]㊀ZHANGHTꎬLIJJꎬYOOJHꎬetal.Ricechlorine ̄1andchlo ̄rine ̄9encodeChlDandChloIsubunitsofMg ̄chelataseꎬakeyen ̄zymeforchlorophyllsynthesisandchloroplastdevelopment[J].PlantMolecularBiologyꎬ2006ꎬ62(3):325 ̄337.[8]㊀SUGLIAMꎬABDELKEFIHꎬKEHꎬetal.AnancientbacterialsignalingpathwayregulateschloroplastfunctiontoinfluencegrowthanddevelopmentinArabidopsis[J].PlantCellꎬ2016ꎬ28:661 ̄679. [9]㊀李素贞ꎬ杨文竹ꎬ陈茹梅.水稻黄绿叶突变体研究进展[J].生物技术通报ꎬ2018ꎬ34(11):15 ̄21.[10]赵绍路ꎬ刘㊀凯ꎬ宛柏杰ꎬ等.水稻叶色突变研究进展[J].大麦与谷类科学ꎬ2018ꎬ35(6):1 ̄6.[11]张文慧ꎬ杨宜豪ꎬ陈铭蔚ꎬ等.水稻一新黄绿叶突变体ygl10 ̄2(t)的遗传分析与基因定位[J].扬州大学学报(农业与生命科学版)ꎬ2019ꎬ40(1):1 ̄7.171张朝阳等:BSA联合转录组分析发掘西瓜叶片黄化候选基因[12]陈桂华ꎬ王㊀悦ꎬ熊跃东ꎬ等.水稻叶色突变体xws的基因定位与育种利用[J].分子植物育种ꎬ2018ꎬ16(1):155 ̄162. [13]李㊀秦ꎬ杜何为.玉米叶色突变体研究进展[J].南方农业ꎬ2019ꎬ13(28):14 ̄21ꎬ27.[14]NAGATANꎬTANAKARꎬSATOHSꎬetal.Identificationofavi ̄nylreductasegeneforchlorophyllsynthesisinArabidopsisthalianaandimplicationsfortheevolutionofProchlorococcusspecies[J].PlantCellꎬ2005ꎬ17(1):233 ̄240.[15]王㊀萌ꎬ赵㊀虎ꎬ赵曾菁ꎬ等.辣椒彩色斑叶突变体叶片显微结构及超微结构研究[J].西北植物学报ꎬ2022ꎬ42(4):600 ̄608. [16]赖㊀艳ꎬ付秋实ꎬ吕建春ꎬ等.一个新的薄皮甜瓜叶色突变体的生理特性及超微结构分析[J].四川农业大学学报ꎬ2018ꎬ36(3):372 ̄379.[17]朱华玉ꎬ张凯歌ꎬ宋芃垚ꎬ等.甜瓜黄绿叶色性状的遗传分析及其初步定位[J].河南农业大学学报ꎬ2019ꎬ53(6):855 ̄860. [18]陈远良ꎬ刘新宇ꎬ李树贤.黄瓜黄绿色叶片颜色遗传规律研究[J].北方园艺ꎬ2000(5):3 ̄4.[19]XIONGLRꎬDUHꎬZHANGKYꎬetal.AmutationinCsYL2.1encodingaplastidisoformoftriosephosphateisomeraseleadstoyellowleaf2.1(yl2.1)incucumber(CucumissativusL.)[J].In ̄ternationalJournalofMolecularSciencesꎬ2020ꎬ22(1):322. [20]PROVVIDENTIR.Inheritanceofapartialchlorophylldeficiencyinwatermelonactivatedbylowtemperaturesattheseedlingstage[J].HorticultureScienceꎬ1994ꎬ29(9):1062 ̄1063.[21]ZHANGXPꎬRHODESBBꎬBAIRDWVꎬetal.Developmentofgenicmale ̄sterilewatermelonlineswithdelayed ̄greenseedlingmarker[J].HorticultureScienceꎬ1996ꎬ31(1):123 ̄126. [22]侯㊀艳ꎬ朱子成ꎬ朱娜娜ꎬ等.EMS诱变西瓜突变体库的构建及表型分析[J].西北植物学报ꎬ2016ꎬ36(12):2411 ̄2420. [23]徐㊀铭ꎬ高美玲ꎬ郭㊀宇ꎬ等.西瓜后绿突变体光合特性分析[J].西北农林科技大学学报(自然科学版)ꎬ2022ꎬ50(3):91 ̄96ꎬ106.[24]任艺慈ꎬ朱迎春ꎬ孙德玺ꎬ等.一个西瓜叶色黄化突变体的生理特性分析[J].果树学报ꎬ2020ꎬ37(4):565 ̄573.[25]ZHUYꎬYUANGꎬWANGYꎬetal.Mappingandfunctionalveri ̄ficationofleafyellowinggenesinwatermelonduringwholegrowthperiod[J].FrontiersinPlantScienceꎬ2022ꎬ13:1049114. [26]GUOSGꎬZHANGJGꎬSUNHHꎬetal.Thedraftgenomeofwa ̄termelon(Citrulluslanatus)andresequencingof20diverseacces ̄sions[J].NatureGeneticsꎬ2013ꎬ45:51 ̄58.[27]GUOSGꎬZHAOSJꎬSUNHHꎬetal.Resequencingof414cul ̄tivatedandwildwatermelonaccessionsidentifiesselectionforfruitqualitytraits[J].NatureGeneticsꎬ2019ꎬ51(11):1616 ̄1623. [28]WUSꎬWANGXꎬREDDYUꎬetal.Genomeof CharlestonGray ꎬtheprincipalAmericanwatermeloncultivarꎬandgeneticcharacterizationof1365accessionsintheU.S.NationalPlantGermplasmSystemwatermeloncollection[J].PlantBiotechnologyJournalꎬ2019ꎬ17(12):2246 ̄2258.[29]LILIMꎬQINGWꎬYANYANZꎬetal.Cucurbitaceaegenomeevo ̄lutionꎬgenefunctionꎬandmolecularbreeding[J].HorticultureResearchꎬ2022ꎬ9:uhab057.[30]KIDANEMARIAMHG.西瓜叶色后绿和植株短蔓性状的遗传与分子机制研究[D].北京:中国农业科学院ꎬ2020. [31]周雨晴ꎬ郭宇玲ꎬ伊㊀然ꎬ等.基于BSA ̄Seq的黄瓜重要园艺性状遗传定位研究进展[J/OL].分子植物育种:1 ̄12[2023 ̄10 ̄10].http://kns.cnki.net/kcms/detail/46.1068.S.20220704.0904.002.html.[32]张菊平ꎬ张长远ꎬ张树珍.苦瓜基因组DNA提取和RAPD分析[J].广东农业科学ꎬ2002(4):18 ̄20.[33]LIH.AligningsequencereadsꎬclonesequencesꎬandassemblycontigswithBWA ̄MEM[J].arXivꎬ2013ꎬ1303.3997v2[q ̄bio.GN].DOI:10.48550/ARXIV.1303.3997.[34]VANDERAUWERAGAꎬCARNEIROMOꎬHARTLCꎬetal.FromFastQdatatohigh ̄confidencevariantcalls:thegenomeanal ̄ysistoolkitbestpracticespipeline[J].CurrentProtocolsinBioin ̄formaticsꎬ2013ꎬ43(1110):1 ̄33.[35]CINGOLANIPꎬPLATTSAꎬWANGLLꎬetal.Aprogramforan ̄notatingandpredictingtheeffectsofsinglenucleotidepolymor ̄phismsꎬSnpEff:SNPsinthegenomeofDrosophilamelanogasterstrainw1118ꎻiso ̄2ꎻiso ̄3[J].Flyꎬ2012ꎬ6(2):80 ̄92. [36]STAMP.Constructionofintegratedgeneticlinkagemapsusinganewcomputerpackage:JoinMap[J].ThePlantJournalꎬ1993ꎬ3(5):739 ̄744.[37]KIMDꎬPAGGIJMꎬPARKCꎬetal.Graph ̄basedgenomealign ̄mentandgenotypingwithHISAT2andHISAT ̄genotype[J].Na ̄tureBiotechnologyꎬ2019ꎬ37(8):907 ̄915.[38]崔慧琳ꎬ李志远ꎬ方智远ꎬ等.结球甘蓝自交系YL ̄1的高效遗传转化体系的建立及应用[J].园艺学报ꎬ2019ꎬ46(2):345 ̄355.[39]张天雨ꎬ周春雷ꎬ刘㊀喜ꎬ等.一个水稻温敏黄化突变体的表型分析和基因定位[J].作物学报ꎬ2017ꎬ43(10):1426 ̄1433. [40]姚建刚ꎬ张贺ꎬ许向阳ꎬ等.番茄叶色突变体的弱光耐受性研究[J].中国蔬菜ꎬ2010(4):31 ̄35.[41]SUNJLꎬTIANYYꎬLIANQCꎬetal.MutationofDELAYEDGREENINGimpairschloroplastRNAeditingatelevatedambienttemperatureinArabidopsis[J].JournalofGeneticsandGenomicsꎬ2020ꎬ47(4):201 ̄212.[42]孙立亭ꎬ林添资ꎬ王云龙ꎬ等.水稻白条纹突变体st13的表型分析及基因定位[J].中国水稻科学ꎬ2017ꎬ31(4):355 ̄363. [43]王㊀飞ꎬ段世名ꎬ李㊀彤ꎬ等.玉米叶色突变体遗传分析及基因定位[J].植物遗传资源学报ꎬ2018ꎬ19(6):1205 ̄1209. [44]蒋宏宝.小麦叶绿素缺失突变体B23的鉴定及基因定位[D].杨凌:西北农林科技大学ꎬ2018.[45]GAOMLꎬHULLꎬLIYHꎬetal.Thechlorophyll ̄deficientgoldenleafmutationincucumberisduetoasinglenucleotidesub ̄stitutioninCsChlIforthemagnesiumchelataseIsubunit[J].The ̄oreticalandAppliedGeneticsꎬ2016ꎬ129(10):1961 ̄1973. [46]郭丽杰.番茄杂色叶基因vg的遗传定位分析[D].武汉:华中农业大学ꎬ2017.[47]RHODESBB.Genesaffectingfoliagecolorinwatermelon[J].271江苏农业学报㊀2024年第40卷第1期JournalofHeredityꎬ1986ꎬ77(2):134 ̄135.[48]秦㊀涛ꎬ刘新社.氮钾肥配施对土壤微生物与西瓜形态建成㊁品质㊁产量的影响[J].江苏农业科学ꎬ2022ꎬ50(16):154 ̄161. [49]杨㊀柳ꎬ况佳颖ꎬ任春梅ꎬ等.江苏省主要葫芦科作物病毒种类及分布[J].江苏农业学报ꎬ2022ꎬ38(1):65 ̄72.[50]胡晨曦ꎬ张㊀甜ꎬ陈㊀刚ꎬ等.不同嫁接方式对西瓜幼苗生长和生理的影响[J].江苏农业科学ꎬ2022ꎬ50(1):139 ̄143. [51]何㊀毅ꎬ解华云ꎬ陈东奎ꎬ等.设施与露地兼用型优质西瓜新品种桂玲的选育[J].南方农业学报ꎬ2023ꎬ54(4):1216 ̄1223. [52]高美玲ꎬ刘小松ꎬ刘秀杰ꎬ等.基于GBS高密度遗传图谱初步定位西瓜种皮斑块基因[J].分子植物育种ꎬ2022ꎬ20(1):186 ̄192.[53]李兵兵ꎬ刘文革ꎬ路绪强ꎬ等.基于全基因组重测序构建西瓜高密度遗传图谱和果实相关性状的基因定位[J].中国瓜菜ꎬ2019ꎬ32(8):164 ̄165.[54]KIKUCHISꎬASAKURAYꎬIMAIMꎬetal.AYcf2 ̄FtsHihetero ̄mericAAA ̄ATPasecomplexisrequiredforchloroplastproteinim ̄port[J].PlantCellꎬ2018ꎬ30(11):2677 ̄2703.[55]PARKERNꎬWANGYXꎬMEINKED.AnalysisofArabidopsisaccessionshypersensitivetoalossofchloroplasttranslation[J].PlantPhysiologyꎬ2016ꎬ172(3):1862 ̄1875.[56]HUANGJLꎬSUNGLꎬZHANGDM.Molecularevolutionandphylogenyoftheangiospermycf2gene[J].JournalofSystematicsandEvolutionꎬ2020ꎬ48(4):240 ̄248.[57]DRESCHERAꎬRUFSꎬJRCALSATꎬetal.Thetwolargestchlo ̄roplastgenome ̄encodedopenreadingframesofhigherplantsareessentialgenes[J].PlantJournalꎬ2000ꎬ22(2):97 ̄104.(责任编辑:徐㊀艳)371张朝阳等:BSA联合转录组分析发掘西瓜叶片黄化候选基因。

植物叶色突变体

植物叶色突变体

植物生理学通讯 第 42 卷 第ຫໍສະໝຸດ 1 期,2006 年 2月3
图1 被子植物叶绿素生物合成途径(Beale 2005) 标有数字的箭头涉及表 1 中所列的酶;根据有效底物发生反应 1 2 或 1 3 ;反应 1 4 可利用 2 种底物。
1995)等关键酶在叶绿素合成过程中的功能。 4.2 血红素→光敏色素生色团生物途径中基因突变 叶绿素生物合成和血红素生物合成是四吡咯生物 合成途径的两个分支,原卟啉 IX 与 Mg 2+ 螯合产 生镁原卟啉 I X ,与 F e 2 + 螯合形成血红素,血红 素经一系列反应最终形成光敏色素生色团(图 2)。 叶绿素合成速率受细胞内血红素含量影响,若血 红素→光敏色素生色团途径受阻、细胞内血红素含 量上升,过剩的血红素将反馈抑制叶绿素合成, 引起突变体叶色变异(Terry和Kendrick 1999)。
基因沉默引起的叶色突变体主要用于分析特 定基因功能。目前仅从烟草(Monde 等 2000)、拟 南芥(Kumar和Soll 2000)等少数植物中分离出基因 沉默叶色突变体。 3 叶色突变体的遗传方式
叶色变异种类繁多,不同突变体的遗传规律 相差很大。叶色突变可能是数量性状,也可能是 质量性状;可能是细胞核遗传,也可能是细胞质 遗传。例如,芽黄突变体多数受单隐性核基因控 制,少数受两对核基因控制(肖松华等 1995),在 大豆中还发现了细胞质遗传芽黄突变体(马国荣等 1994)。与细胞核遗传叶色突变体相比,已发现的 细胞质突变体较少,仅在小麦(王保莉等 1996)、 大豆(马国荣等 1994)、烟草(Monde 等 2000; Barak 等 2000)等作物中有少量报道。这可能与植物细胞 中含有多个细胞器(叶绿体、线粒体) DNA 分子有 关。 4 叶色突变的分子机制

黄化处理对植物扦插生根的影响研究进展

黄化处理对植物扦插生根的影响研究进展

南方农业South China Agriculture第17卷第13期Vol.17No.132023年7月Jul.2023扦插是一种传统的植物无性繁殖方法,被广泛应用于林业和花卉种苗生产中。

当前国内外对扦插繁殖的研究主要集中在技术层面,对黄化处理促进扦插生根的综合评述较少。

基于此,本文就黄化处理的历史、方法、促进生根的原理和效果及应用情况进行总结。

1黄化处理的历史黄化处理是将整个植株或植株的一部分置于遮阴或完全黑暗的条件下,对生长发育期的母本进行扦插前预处理的过程。

黄化处理在植物无性繁殖中历史悠久。

根据文献记载,最早可以追溯到1537年[1]。

堆土压条、空中压条等都是黄化处理的具体操作。

1.1国外国外研究人员早在1537年就通过试验表明:对母株进行黄化处理,有利于插穗生根[1]。

20世纪20年代,黄化处理在众多木本植物中得到了广泛应用。

1937年,Gardner 在苹果扦插过程中发现,黄化枝条更易生根[2]。

试验人员在1970年通过黄化或弱光照处理,发现生长素和茶多酚具有协同作用[3]。

1978年,Nelson 报道黄化枝条中中柱鞘的形成减少[4]。

1982年,Herman 和Hess 报道,黄化枝条细胞分裂少,黄化作用可增加木槿和菜豆枝条中生长素协同物质的含量[5]。

近年来研究表明,黄化枝条生根率提高与形态学、生理学和分子的改变有关系。

1.2国内在我国,黄化处理对扦插生根的影响研究相对起步较晚。

最早有文献记载的是,周汉忠等于1966年在茶树扦插过程中,发现对母株黄化处理可以使插穗提前发根[6]。

20世纪90年代后,马锋旺证明了对枝条进行黄化处理可以明显提高生根率[7]。

此后,科技工作者对黄化枝条生理特性进行了深入研究。

卢楠等在对1年生四倍体刺槐硬枝的黄化处理中,测定了扦插后不同时间插穗的3种氧化酶活性和4种内源激素的质量分数,试验表明与未进行黄化处理的枝条相比,经过黄化处理的枝条生根质量明显提高;进一步证明,通过生长素和黄化插穗的结合,确实可以促进插穗形成不定根[8]。

洋葱黄色条纹突变体叶绿体基因组测序及嵌合体验证

洋葱黄色条纹突变体叶绿体基因组测序及嵌合体验证

惠林冲,陈 微,张仕林,等.洋葱黄色条纹突变体叶绿体基因组测序及嵌合体验证[J].江苏农业科学,2023,51(20):43-49.doi:10.15889/j.issn.1002-1302.2023.20.007洋葱黄色条纹突变体叶绿体基因组测序及嵌合体验证惠林冲,陈 微,张仕林,李威亚,何林玉,杨海峰,潘美红(连云港市农业科学院,江苏连云港222000) 摘要:为鉴定洋葱黄条纹突变体中叶绿体基因组基因突变,利用洋葱黄色条纹突变体进行黄色组织叶绿体基因组测序及差异位点验证分析,对突变体种子果夹表型特征与出苗后表型进行对比分析,并利用ABP1-1、KMOX-1和MYB-2分子标记对4份黄条纹黄化程度在50%以上的植株绿色和黄色组织DNA进行分子标记多态性检测。

结果表明,测序获得突变体叶绿体基因组153585bp,与洋葱叶绿体参考基因组比对筛选出5个差异位点,PCR扩增及测序分析发现叶绿体基因组碱基的突变、插入并不导致黄条纹突变;突变果夹黄化程度与母株上种子出苗后黄化程度成正比,果夹越黄,种子出苗叶片越黄,3个分子标记对同一株黄色和绿色组织进行PCR验证,发现绿色与黄色组织扩增条带不一致。

综上所述,洋葱叶片黄色条纹突变是一种嵌合体突变。

关键词:洋葱;黄条纹;叶绿体;嵌合体;基因组测序 中图分类号:S633.201 文献标志码:A 文章编号:1002-1302(2023)20-0043-06收稿日期:2022-11-30基金项目:江苏省连云港市财政专项(编号:QNJJ2206);连云港市第六期“521工程”科研项目(编号:LYG06521202134)。

作者简介:惠林冲(1988—),男,江苏灌南人,硕士,助理研究员,从事蔬菜育种、栽培及分子生物学研究。

E-mail:huilinchong@yeah.net。

通信作者:潘美红,硕士,副研究员,从事蔬菜育种、栽培及利用研究。

E-mail:7991454@163.com。

水稻叶色突变体的光合和生理生化特性研究的开题报告

水稻叶色突变体的光合和生理生化特性研究的开题报告

水稻叶色突变体的光合和生理生化特性研究的开题报告
一、研究背景及意义
水稻是我国重要的粮食作物之一,近年来随着对水稻产量和品质要求的不断提高,新品种的选育变得越来越关键。

而叶色突变体则是一类变异营养性的重要材料,其在
光合、生长发育和逆境适应等方面均存在显著的生理和生化差异,因此对其进行深入
的研究有助于了解水稻的生长发育机制,提高育种效率,提高作物产量和品质,实现
粮食安全和农业可持续发展。

二、研究内容及方法
本研究选取数种水稻叶色突变体为研究对象,包括绿叶、黄叶和红叶等类型,比较其与普通绿色叶子水稻在光合和生理生化方面的差异,探究其叶色突变的遗传基础
和生理机制。

具体研究内容和方法如下:
1.测定叶片光合参数
选取变异营养性较为明显的突变体,测定其叶片的光合速率、净光合速率、气孔导度、胞间CO2浓度等参数,比较各类型水稻叶片的光合特性,并探究其差异的生理生化基础。

2.测定叶片生理生化参数
测定各类型水稻叶片的叶绿素含量、类胡萝卜素含量、蛋白质含量、可溶性糖含量、丙二醛含量等生理生化参数,比较其差异,并分析其在叶色突变机制中的作用。

3.基因定位和生物信息学分析
对发现的叶色突变基因进行基因定位,比较其DNA序列、蛋白质结构、功能等
差异,并利用生物信息学工具预测蛋白质功能和相互作用网络,解析其遗传基础和分
子机制。

三、研究预期成果
通过上述研究内容和方法,本研究预期能够深入了解水稻叶色突变体的光合和生理生化特性,并探究其差异的生理生化基础和分子机制,揭示其叶色突变的遗传基础
和生理机制,为水稻育种提供理论支持和实际应用价值。

水稻叶色突变分子机制的研究进展

水稻叶色突变分子机制的研究进展

_1 1 l

O C 2 表 1。 sA0 i等( “ )
不正 常的 白化 、 黄化 、 浅绿 、 白、 绿 白翠 、 黄绿 、 黄和条 绿 纹等 [ 3 1 。突变基 因直接或间接影响 叶绿素 的合成和降
解 , 变叶绿 素含量 , 以大部分叶色 突变体 同时也是 改 所
5 氨基 乙酰丙 酸( L 的合 成是植物 四吡咯物质 一 A A) 合成途径 的关键 步骤 ,也是 整个叶绿素合成途径 中的
( 中国水稻研究所 国家水 稻改良中心 水稻生物学 国家重点实验室 , 浙江 杭州 30 0 ;通讯作者 , - a :qag 2 . m) 10 6 E m i stn@16 o l c 摘 要: 叶色突变表型明显 、 易于鉴别 , 在高等植物叶绿素代谢 、 叶绿体结构 、 功能和发育机理等基础研究 中具有
限速步骤 。谷 氨酰一R A还原酶 ( l R) A A合成 tN Gu 是 L T
叶绿 素突变体 。叶色突变通常在苗期表达 , 与其 他突 变体相 比具有表 型明显 、 易于鉴别 、 图位克 隆周期短等 特点 。 目前 在水 稻中 已经定位约 8 叶色突变 位点 , 0个
过程 中第一个 关键酶 , H M 由 E A基 因家族编码 。拟南 芥 中已经鉴定 出三个 H MA基 因-, E l 水稻 谷氨 酰一R 2 1 t— N A还原酶基 因 O Gu s 已经被克隆 , sl 也 R 其突变体表现 为叶片 黄化 , 呈现温 度特异性 , 并 株高 降低 , 抽穗 期推
二步 由 A A形成 原卟啉 I L X;第三步为原 卟啉 I x在镁 离子螯合酶 、叶绿 素合 成酶 以及叶绿素 a 氧化酶 的作 用下 最终合成 叶绿 素 a 叶绿素 b 和 。双子 叶模式植 物

2025年高考生物复习之小题狂练300题(解答题):植物生命活动的调节(10题)

2025年高考生物复习之小题狂练300题(解答题):植物生命活动的调节(10题)

2025年高考生物复习之小题狂练300题(解答题):植物生命活动的调节(10题)一.解答题(共10小题)1.水杨酸是一种小分子酚类化合物,为探究水杨酸对植物根生长的影响,科研人员取适量品质均一的油菜种子,播到含不同浓度的水杨酸的培养基上培养,种子发芽13d后对油菜幼根的侧根数目和主根长度分别进行计数,结果如下表。

测定项目水杨酸浓度/(μmol•L﹣1)00.080.40 2.0010.00侧根数目(条)15.7016.7021.3016.6210.33主根长度13.6512.6911.719.017.48(cm)回答下列问题:(1)植物激素作为参与调节植物的生命活动。

基于以上信息,还需确认,可初步判断水杨酸也属于植物激素。

(2)据表分析可得:①水杨酸对油菜侧根发生的影响为;②主根处理组中出现,表明一定浓度范围内,水杨酸对主根伸长的抑制作用随浓度增加而增强。

(3)有研究发现,水杨酸对主根伸长的抑制作用会随着主根生长时间的延长而减弱。

在上述实验基础上设计实验进行验证,实验思路是,预期实验结果是。

(4)植物根的生长还受等环境因素的调节(至少答出2点)。

2.光敏色素是一类能接受光信号的分子,主要吸收红光和远红光,具有非活化态(Pr)和活化态(Pfr)两种类型。

农田中玉米—大豆间作时,高位作物(玉米)对低位作物(大豆)具有遮阴作用,严重时引发“荫蔽胁迫”,此时,低位植物体内的光敏色素及多种激素共同响应荫蔽胁迫。

请回答下列问题。

(1)光敏色素是一类(化学本质)。

在不同的光照条件下,光敏色素接受光信号后,会经过信息传递系统传导至细胞核内,影响,从而表现出生物学效应。

(2)自然光被植物滤过后,其中红光(R)/远红光(FR)的值会下降,原因是。

发生荫蔽胁迫时,低位植物体内的光敏色素主要以形式存在。

此形式的光敏色素可(选填“减弱”或“增强”)对光敏色素互作因子(PIFs)的抑制作用,有利于多种激素共同响应荫蔽胁迫。

番茄叶色黄化突变体的遗传分析及SSR分子标记[1]

番茄叶色黄化突变体的遗传分析及SSR分子标记[1]

中国蔬菜 2010(14):31-35CHINA VEGETABLES番茄叶色黄化突变体的遗传分析及SSR分子标记郭 明 张 贺 李景富*(东北农业大学园艺学院,黑龙江哈尔滨 150030)摘 要:在番茄普通栽培品种中蔬4号06884中发现能稳定遗传的叶色黄化突变体06883,该突变体新出叶最初为绿色,四叶一心时第一片真叶开始转黄,果实转色慢,硬度大耐贮藏。

通过该突变体和栽培品种中蔬4号的正反交试验的遗传分析证明,该突变材料的叶片黄化性状由1对隐性主效核基因控制,该性状可以用来作为指示性状鉴定杂种纯度。

应用SSR分子标记技术对该突变基因进行初步定位,经连锁分析表明,该基因与LEaat006、LEtat002和Tom196-197连锁,与它们的连锁距离分别为8.9、16.3和18.7 cM。

关键词:番茄;叶色黄化突变;SSR;基因定位中图分类号:S634 文献标识码:A 文章编号:1000-6346(2010)14-0031-05 Genetic Analysis and SSR Molecule Marker on Tomato Yellow Leaf MutantGUO Ming, ZHANG He, LI Jing-fu*(College of Horticulture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China) Abstract:A natural yellow leaf mutant named 06883, found in tomato(Lycopersicon esculentum Mill.)variety‘Zhongshu No.4’, can be inherited stably. Originally the leaves were green, but the first true leaf color turned into yellow during the period of four leave and one shoot. The fruits turned to red slowly, and became hard which is good for storage. The mutant was reciprocally crossed with tomato variety ‘Zhongshu No.4’, and the genetic analysis indicated that the mutant is nucleolus inheritance and controlled by one recessive gene. It can be used as a phonotypical marker to identify purity of F1 hybrids. We roughly mapped the mutant gene using SSR molecular markers. Three SSR markers LEaat006, LEtat002 and Tom196-197 were linked to the mutant gene. They were 8.9 cM, 16.3 cM and 18.7 cM apart from the mutant gene, respectively.Key words:Tomato; Yellow leaf mutant; Simple sequence repeat(SSR)marker; Molecular mapping叶色突变是自然界比较常见的一种突变,由于突变基因往往是直接或间接影响叶绿素的合成和降解,改变叶绿素含量,所以叶色突变体也称为叶绿素突变体(何冰 等,2006)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0引言植物叶色突变是植物在生长过程中叶色发生变化的现象,由叶绿素合成受阻或降解加快所引起。

植物叶色突变的种类较多,性状较明显,通过观察叶片颜色即可鉴别。

根据叶色表型可将其分为白化、条纹、黄化、淡黄绿、淡绿、常绿、斑叶、紫叶、类病斑、白黄和白绿等类型(Manjaya ,2009;Vairam et al.,2014)。

1933年,Killough 和Horlacher 发现了陆地棉(Gossypium hirsutum )芽黄突变体,但由于叶色突变会造成作物减产甚至死亡,故被认为是有害突变,在当时未引起重视。

自1948年Granick 利用小球藻(Chlorella vulgaris )失绿突变体W 5验证原卟啉9是叶收稿日期:2017-03-27基金项目:国家重点研发计划项目(2016YFD0600605);江西省林业科技创新专项项目(201406);广西农业科学院基本科研业务专项项目(2017YT47)。

作者简介:*为通讯作者,章挺(1981-),副研究员,主要从事林木栽培及育种研究工作,E-mail :zhangtycx@ 。

刘新亮(1986-),博士,主要从事观赏植物选育及栽培研究工作,E-mail :liuxinliang1988@植物叶色黄化突变分子机理的研究进展刘新亮1,李先民2,何小三1,邱凤英1,章挺1*(1江西省林业科学院,南昌330032;2广西农业科学院花卉研究所,南宁530007)摘要:植物叶色黄化突变具有突变频率高、易鉴别等特点,不仅是基础研究的理想材料,在品种选育和改良中也有重要的利用价值。

文章从叶绿素生物合成、血红素代谢、叶绿体发育及叶绿体蛋白代谢等方面,对植物叶色突变相关基因的功能和作用机理进行综述,发现目前对叶色突变分子机理的研究主要集中在叶色突变相关基因功能方面,针对质核信号转导、转录因子及调控元件的研究较少,因此,今后在相关研究中可利用叶色突变体这一理想材料分析鉴定相关基因功能及其互作关系,从对单一基因的研究转向对多个基因甚至功能基因组的系统研究,尤其加强对质核信号转导、转录因子及调控元件的研究;叶色突变体作为作物品种改良的一类特殊种质资源,可通过人工诱导方式增加植物突变频率,在较短时间内获得大量叶色突变体,应用于基因功能及基因间的互作关系等研究,为黄叶植株的选育和遗传改良提供参考。

关键词:叶色黄化突变;叶绿素合成;叶绿体发育;叶绿体蛋白代谢中图分类号:S311文献标志码:A文章编号:2095-1191(2017)08-1358-09A review:Molecular mechanism of plant yellow leaf mutationLIU Xin-liang 1,LI Xian-min 2,HE Xiao-san 1,QIU Feng-ying 1,ZHANG Ting 1*(1Jiangxi Academy of Forestry ,Nanchang 330032,China ;2Flowers Research Institute ,Guangxi Academy ofAgricultural Sciences ,Nanning 530007,China)Abstract :Yellow leaf mutation are ideal materials for basic research with high mutation frequency and easily identi-fied in nature.They also have important value in variety breeding and improvement.Functions and mechanisms of genesrelated to leaf color mutation were reviewed from perspectives of chlorophyll synthesis ,heme metabolism ,chloroplast development and chloroplast protein metabolism.The current researches on mechanism of leaf mutants focused on the functions of genes related to leaf color mutation ,but nucleoplasm signal transduction ,transcription factor and regulatory element were only studied by a few.Therefore ,in the future ,leaf mutants ,which is ideal materials ,can be used to study the function of the related genes and their interactions ,and switch the research from single gene to multiple genes or even functional genomes ,especially strengthen the study in nucleoplasm signal transduction ,transcription factor and regulato-ry element.As a special germplasm resource ,leaf mutants can increase plant mutation frequency through artificial induc-tion ,obtain large amount of leaf mutants within short period of time and apply them into the study in interactions between gene functions and genes ,and proude reference for yellow leaf plants breeding and gentic improvement.Key words :yellow leaf mutation ;chlorophyll synthesis ;chloroplast development ;chloroplast protein metabolism8期·1359·绿素合成前体以来,叶色突变体研究逐渐受到关注,尤其是叶绿素合成途径研究(Beale and Appleman,1971)。

近年来,叶色突变体被广泛应用于遗传模式、色素合成、光合作用、细胞结构与发育等基础研究,已成为分子生物学和发育生物学的热点之一(Wang et al.,2014;Wu et al.,2014;Zhu et al.,2014;Brestic et al.,2016)。

在园林植物中,叶色黄化突变较为常见,将叶片呈现不同程度黄色的植物称金叶植物,品种名常冠以Aurea(种培芳和杨江山,2013)。

金叶植物色彩明亮、观赏周期长、易形成大色块景观,在淡花季节起到以叶代花的作用,具有较高的观赏价值和特殊园林用途。

因此,叶色黄化突变植物已成为园林造景和道路绿化的首选物种,如金叶女贞(Ligustrum vicaryi)、金叶榆(Ulmuspumila cv.jinye)、金叶国槐(Sophora japonica)、金边黄杨(Euonymus japonicus cv.Aureo-ma)等。

叶色突变体呈色是遗传因素和环境因素共同作用的结果,突变基因自发或受外界环境影响可直接或间接干扰叶绿素合成及其稳定性,从而影响色素的含量及比例,最终导致叶片颜色异常。

因此,遗传因素是叶色变异的根本原因。

目前,叶色突变体调控基因研究主要集中在少数模式植物和蔬菜作物上,其中对拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)的研究较透彻。

本文拟从叶绿素合成、血红素代谢、叶绿体发育及叶绿体蛋白代谢等方面,对叶色突变相关基因的功能进行综述,并剖析植物叶色黄化突变的分子机理,提出今后的研究方向,以期为黄叶植株的选育和遗传改良提供参考。

1叶绿素生物合成途径叶绿素普遍存在于植物的绿色组织中,是绿色植物中含量最多的色素,在叶片中常结合在叶绿体的类囊体膜上(Kobayashi et al.,2014)。

叶绿素合成与降解的主要场所是叶绿体,其代谢途径中任何基因突变均可能会影响叶绿素的正常代谢,改变叶绿体中色素比例,引起植物叶色变异。

高等植物叶绿素的合成以谷氨酸为前体,最终合成叶绿素a和叶绿素b,共经过20步反应,由30多个基因编码的18种关键酶参与(图1)(Tanaka and Tanaka,2006;Harpaz-Saad et al.,2007;Tanaka et al.,2011)。

Hu等(1998)、Williams等(2006)研究发现,尿卟啉Ш脱羧酶(UROD)基因突变使玉米(Zea mays)叶片呈病斑表型,而粪卟啉原氧化酶(HEMF)基因突变导致苗期玉米呈黄化坏死表型。

Tsang等(2003)研究发现,谷氨酰-1-半醛转氨酶(GSA-AT)催化谷氨酸-1-半醛生成5-氨基酮戊酸(ALA),其反义转基因能降低油菜(Brassica napus)叶绿素含量。

Kim等(2005)诱导烟草(Nicoti-ana tabacum)谷氨酰-tRNA合成酶(GluRS)基因沉默,从而导致叶片呈严重的黄化表型,表明其表达量降低导致叶绿素含量降低。

Kumar和Söll(2000)、Hedtke等(2007)研究发现,谷氨酰-tRNA还原酶(HEMA)基因沉默会导致拟南芥叶绿素和血红素含量降低,抑制HEMA1基因表达从而降低ALA和叶绿素含量。

Ayliffe等(2009)在大麦(Hordeum vulgare)突变体70a3中发现,尿卟啉Ш合酶(UROS)基因突变受发育调控,成熟叶呈坏死表型。

Tanaka等(2011)研究发现,5-氨基酮戊酸脱水酶(ALAD1)基因突变明显降低拟南芥植株中叶绿素含量,导致叶片呈淡绿色。

镁螯合酶(MgCh)是由ChlI、ChlD和ChlH3个亚基组成的蛋白复合体,催化Mg2+与原卟啉IX形成镁原卟啉IX,是叶绿素生物合成的另一个重要调控位点,在叶绿素合成和叶绿体发育中起重要作用。

相关文档
最新文档