焊接断裂原因分析

合集下载

铜电阻焊焊缝裂纹

铜电阻焊焊缝裂纹

铜电阻焊焊缝裂纹
铜电阻焊焊缝裂纹的原因如下:
1.结晶裂纹:焊接熔池凝固结晶时,在液相与固相并存的温度区间,由于结晶偏析和收缩应力应变的作用,焊接金属沿一次结晶晶界形成的裂纹。

2.液化裂纹:焊接过程中,在焊接热循环峰值温度作用下,在多层焊缝的层间金属与母材近缝区金属中,由于晶间金属受热重新熔化,在一定的收缩应力作用下,沿奥氏体晶界开裂的现象。

3.高温低塑性裂纹:在液相结晶完成以后,焊接金属从材料的塑性恢复温度开始冷却,对于某些材料,当冷却到一定的温度范围内,由于应变速率和一些冶金因素的相互作用,引起塑性下降,导致焊接金属沿晶界开裂。

4.焊接温度过高或过低:焊接温度过高时,会导致焊点热裂;焊接温度过低时,会导致焊缝太窄,无法达到合适的强度。

5.热处理不当:热处理的过程和温度也会影响焊点的质量和强度。

6.材料质量问题:铜线本身的质量也是影响焊点质量的重要因素。

7.焊接过程中振动或应力过大:焊接过程中,若受到振动或者应力过大的作用,也会导致焊点开裂。

焊接结构发生脆断的原因及预防

焊接结构发生脆断的原因及预防

焊接结构发生脆断的原因及预防随着焊接结构在工业生产中应用范围和数量的增大,焊接结构因脆性断裂而失效的事故也越来越多。

脆性断裂是焊接结构最可怕的失效形式,它都是在应力不高于结构的设计应力和没有显著的塑性变形的情况下发生的,并瞬时扩展到结构整体,具有突然破坏的性质,因此其后果往往是灾难性的,造成的经济损失也往往是巨大的。

一、焊接结构产生脆性断裂的原因分析焊接结构产生脆性断裂的原因基本上可归纳为三个方面:(一)材料的韧性不足材料缺口尖端处的微观塑性变形能力差,特别是焊接结构的缺口、尖端处,脆性断裂在大多数情况下从焊接区开始,所以焊缝及热影响区的韧性不足往往是造成低应力脆性破坏的主要原因。

(二)存在裂纹等缺陷断裂总是从材料缺陷处开始,缺陷中则以裂纹为最危险,而焊接则是产生裂纹的主要原因。

(三)设计和制造工艺不合理不正确的设计和不良的制造工艺会产生较大的焊接残余应力,该应力过大时,则导致结构的脆性断裂。

二、影响脆性断裂的主要因素同一种材料在不同条件下可以显示出不同的破坏形式。

最重要的影响因素是温度、应力状态和加载速度。

温度越低,加载速度越大、材料应力状态越严重,则产生脆性断裂的倾向就越大。

(一)应力状态的影响当材料处于三向拉应力下,呈现脆性。

在实际结构中,三向拉应力应该由三向载荷产生,但更多的情况下是由于几何不连续性引起的。

虽然整个结构处于单轴双向拉应力状态下,但其局部区域由于设计不佳,工艺不当,往往出现形成局部三轴应力状态的缺口效应。

因此,脆断事故一般都起源于具有严重应力集中效应的缺口处。

(二)温度的影响随着温度的降低,焊接结构的破坏方式会发生变化,即从延性破坏变为脆性破坏。

当温度降至某一临界值时,将出现塑性到脆性断裂的转变,此为脆性转变温度。

脆性转变温度高,则脆性倾向严重。

(三)加载速度的影响试验证明,加载速度越快,焊接结构越容易发生脆性断裂。

在同样加载速率下,当结构中有缺口时,应变速率可呈现出加倍的不利影响。

ER70S—6盘条拉拔断裂原因分析

ER70S—6盘条拉拔断裂原因分析

ER70S—6盘条拉拔断裂原因分析
ER70S-6是一种常用的焊丝材料,常用于焊接碳钢和低合金钢。

在电弧焊接过程中,
焊接过程中产生较高的热量和应力,使得焊接材料易发生断裂。

本文将探讨ER70S-6盘条
拉拔断裂的原因,并提出预防措施。

1. 基材质量不佳
ER70S-6焊接材料常用的为碳钢和低合金钢,若基材质量不佳,则会导致焊接材料的
质量也有所降低。

基材质量不佳的原因有很多,如未经处理的原材料、灰砂铸造的材料、
杂质含量过高的材料等等,这些情况都会导致焊接材料的质量不稳定。

2. 水分和油污
ER70S-6焊接材料的表面需要干净,无油污和水分,否则就会导致焊接材料出现断裂。

油污和水分对焊接材料的含氧量有很大影响,导致氧化不充分,易引起断裂。

因此,在存
放和使用过程中,焊接材料的表面应保持清洁和干燥。

3. 焊接过程中的应力
在焊接过程中,因应力过大或太快,会导致焊接材料的结构出现变化,从而使焊接材
料发生断裂。

应尽量避免这种情况发生,可以通过加工等方法减小应力。

4. 等温过程
在成型过程中,需要进行等温处理。

如果操作不当,会导致焊接材料的中心温度高于
晶化温度,容易形成粗晶,从而造成断裂。

此类情况较为复杂,需根据实际情况进行分析
和解决。

综上所述,ER70S-6盘条拉拔断裂的原因有很多,需要考虑多方面的因素来确保焊接
材料的质量稳定。

常规的预防措施包括松散防潮、焊接过程的加工方式和控制等等。

此外,需要定期对材料进行检测和保养,及时发现和处理潜在问题。

ER70S—6盘条拉拔断裂原因分析

ER70S—6盘条拉拔断裂原因分析

ER70S—6盘条拉拔断裂原因分析
ER70S-6是一种常用的焊接材料,在工业中使用广泛。

但是,有时在操作过程中,焊丝会发生断裂。

这篇文章将会分析ER70S-6盘条拉拔断裂的原因。

1. 焊丝质量:焊丝质量是影响焊丝断裂的主要因素之一。

如果焊丝本身质量不好,内部可能存在气孔、夹杂物等缺陷,那么在拉拔的过程中,焊丝容易断裂。

2. 盘条存放环境:焊丝盘条在存放过程中,应该远离有害化学物质和湿度较高的环境。

如果焊丝盘条在湿度较高的环境中长时间存放,就会被氧化,从而影响焊丝的使用寿命。

3. 焊接过程的控制:焊接过程中,无论是焊接温度还是电流的控制,都是决定焊接效果和焊接质量的关键因素。

如果焊接温度过高或电流过大,焊丝就会变得异常脆弱,拉拔过程中容易出现断裂现象。

4. 盘条的拉拔方式:在拉拔焊丝盘条时,应该使用合适的拉拔工具和正确的方法,避免焊丝被折弯和拉伸引起应力集中。

如果拉拔过程中错误地使用力量,从而导致焊丝发生损坏或折断,也是造成焊丝断裂的原因之一。

5. 对焊丝质量的控制:厂家在出厂之前应对焊丝的质量进行检测和控制,以确保焊丝的质量稳定。

在生产过程中,所有焊丝应经过仔细的检查和测试。

如果检测不良或者制造过程中有质量问题被忽略,那么就有可能导致焊丝质量不稳定,或者焊丝内部可能存在缺陷等,从而影响焊接的质量和稳定性。

总之,焊丝的断裂可能由多种因素引起。

这就要求我们在焊接过程中注意一些基本的操作原则和事项,确保焊接质量和稳定性。

钢管氩弧焊焊缝裂纹

钢管氩弧焊焊缝裂纹

钢管氩弧焊焊缝出现裂纹是焊接过程中常见的问题,可能由多种因素引起。

以下是导致焊缝裂纹的一些原因及相应的解决办法:1. 材料匹配问题:如果焊接材料的选择与被焊接的钢管材质不匹配,可能会导致焊缝无法承受焊接后的应力拉伸或收缩,从而产生裂纹。

解决这个问题需要进行工艺评定,选择最合适的焊接材料。

2. 焊接工艺参数不当:电流过大或过小都可能导致焊缝裂纹。

电流过大时,热输出量大,应力大;电流过小时,熔深浅,受力小,容易产生裂纹。

解决办法是进行工艺评定,测试并确定最合理的焊接参数。

3. 操作技巧问题:操作收弧时如果没有掌握好,可能会导致收弧处产生气孔或裂纹。

为了避免这种情况,可以在收弧处多添加一些焊接材料,或者如果设备有电流缓降功能,可以设置电流缓慢降低。

4. 焊接应力和拘束力:焊接过程中由于热胀冷缩,自然会使焊接结构产生应力。

如果焊接结构本身存在拘束力和刚性,也可能导致焊缝开裂。

因此,需要正确分析出开裂的主要因素和次要因素,然后采取相应措施解决。

5. 焊缝清洁度:母材表面的清洁度不足也可能导致焊缝裂纹。

在焊接前,确保焊缝和母材表面清洁,无油污、锈蚀等杂质。

6. 预热和后热处理:适当的预热可以减少焊接应力,而后热处理可以消除焊接过程中产生的残余应力,两者都是防止焊缝裂纹的有效方法。

7. 焊接速度:过快或过慢的焊接速度都可能影响焊缝的成形质量,应根据实际情况调整焊接速度。

8. 多层焊接:在多层焊接中,如果层间温度控制不当,也可能导致焊缝裂纹。

应注意控制层间温度,避免过高或过低。

9. 焊接技术:焊工的技术水平也是一个重要因素,经验丰富的焊工能够更好地控制焊接过程,减少裂纹的产生。

10. 环境因素:环境温度、湿度等也可能影响焊接质量,应在适宜的环境中进行焊接作业。

总之,钢管氩弧焊焊缝裂纹是一个复杂的问题,需要综合考虑多种因素,并采取相应的预防和补救措施。

在实际操作中,应根据具体情况进行分析和处理,以确保焊接质量。

焊接结构的脆性断裂及预防措施

焊接结构的脆性断裂及预防措施

焊接结构的脆性断裂及预防措施一、脆性断裂的原因焊接结构之所以发生脆性断裂,是因为焊缝接头处几何的不连续性形成或多或少的焊接缺陷,从而引起应力集中,形成断裂源。

另外,还由于焊接接头处的力学性质的不均匀,使附近热影响区材料性质变脆,以及焊缝接头处总是不可避免地要产生焊接变形及焊接残余应力。

所有这些都可能成为焊接结构破坏的直接原因或间接原因。

特别是一些直接承受动载荷的焊接结构,或是处于低温工作环境时,焊接结构更易发生脆性断裂。

二、脆性断裂的特征脆性断裂在工程结构上是一种非常危险的破坏。

其特点是裂纹扩展迅速,能量的消耗远小于韧性断裂,以低应力破坏为重要特征。

它是靠结构内部蓄积的弹性能的释放而自动传播导致破坏的,因而很少发现可见的塑性变形,断裂之前没有明显的预兆,而是突然发生的,所以说这种断裂往往会造成巨大的损失。

一般来说,金属脆性断裂时,无论是具有解理形断口,还是呈光泽的结晶状外观断口,都与板面大体垂直,而且板厚方向上的变形很小,在表面上附有一层剪切壁,呈无光泽灰色纤维状的剪断形,材料越脆,断裂的剪切壁越薄,断口上花样的尖端总是指向启裂点的方向,形成山形花样,追踪这个花样可以找到启裂点。

三、焊接结构防止脆性断裂的设计原则脆性断裂往往是瞬间完成的,其原因是构件中存在着焊接或冶金缺陷。

首先产生一小的裂纹,而后该裂纹以极快的速度扩展,部分或全部贯穿于结构中,造成脆性失效。

因此.防止焊接结构脆性破坏事故有效的设计方法是要使焊接结构最薄弱的部位具有抵抗脆性裂纹产生的能力。

同时,如果这些部位产生了脆性小裂纹时,其周围母材有将其迅速止住的能力。

在上述设计方法中,一般主要着眼点放在焊缝接头的抗脆性裂纹产生的能力上,以此作为设计的依据。

对于中低强度钢来说,由于残余应力的作用,焊缝接头处一旦产生脆性裂纹,通常向母材方向扩展,因此需要母材有一定的止裂性能。

这时,对于防止结构的脆性断裂是有意义的。

而对于高强度钢来说,裂纹的产生和扩展主要发生在焊缝中,这是因为由于母材强度的提高,接头中更易出现焊接缺陷,产生裂纹。

焊接裂纹_精品文档

焊接裂纹_精品文档

3、防止结晶裂纹的措施
1)、冶金方面
①控制焊缝中有害杂质的含量, 限制S、P、C含量S、P<0.03-0.04 焊丝C<0.12% (低碳钢) 焊接高合金钢,焊丝超低碳焊丝 ②改善焊缝的一次结晶 细化晶粒,加入Mo、V、Ti、Nb、Zr、
Al
2)、工艺方面(减少拉应力)
应变率 , E ↑、
↑应变率 ↓
例如:强度为600MPa焊条研究
焊缝成分分析
焊缝 C
S
P Mn Si Cr Ni
成分
Ao 0.10 0.037 0.017 0.94 0.54 0.20 0.87
A1 0.09 0.015 0.014 1.25 0.44 0.19 0.83
注:A1 焊缝中加入轻稀土1%
图2 焊缝冲击断口扫描形貌
b)、C
i)、C<0.1% C↑结晶温度区间↑,裂纹↑
ii)、C>0.16% Mn/S↑无效,加剧P有害作
用 裂↑
iii)、C>0.51% 初生相
初生相
S、P在小相中溶解度低,析
出S、P集富在晶界上,裂纹↑
c)、Mn
Mn具有脱S作用
其中Mn熔
点高,早期结晶星球状分布,抗裂↑
含碳量C<0.016% S↑裂↑但加入Mn↑裂↓
结 晶 裂 纹
2)、熔池各阶段产生结晶裂纹的 倾向
在焊缝金属凝固结晶的后期,低熔点共晶物 被排挤在晶界,形成一种所谓的“液态薄膜” ,在焊接拉应力作用下,就可能在这薄弱地带 开裂,产生结晶裂纹。
产生结晶裂纹原因:①液态薄膜
②拉伸应力
液态薄膜—根本原因
拉伸应力—必要条件
以低碳钢焊接为例可把熔池的结晶分 为以下三个阶段

导线焊点断裂的原因

导线焊点断裂的原因

导线焊点断裂的原因
1. 焊接温度过高啊,就像煮东西火开太大,那导线焊点能不受伤吗?比如你焊接时温度都快赶上炼钢了,焊点不就被“烤”坏啦,这不就容易断裂嘛!
2. 焊接时间过长呀,好比一直拉着橡皮筋不松手,能不断吗?就像那次焊接,都焊了老半天了还不停,焊点不就受不了啦,最后肯定会断裂呀!
3. 焊点受到过大的外力拉扯,这就好像有人拼命拽着你的胳膊,能不疼吗?像那次不小心碰到导线,那么大劲,焊点不就被扯断啦!
4. 焊接材料质量不行呀,这就跟盖房子用劣质材料一样,能牢固吗?就说那次用了便宜的焊料,结果焊点没多久就断裂了。

5. 焊接工艺不恰当,这不就跟走路姿势不对一样别扭嘛!比如焊接时该怎么做都不知道,那焊点能不断裂吗?
6. 环境因素也很重要啊,潮湿的环境就像让焊点泡在水里,能不坏事吗?上次在那么潮湿的地方焊接,后来焊点果然断裂了。

7. 导线本身质量差,这就好比身体虚弱的人容易生病一样。

就像那根导线本身就有问题,焊点当然容易断裂啦!
8. 反复弯曲导线,这不是折腾焊点吗?就像总折一根铁丝,能不断吗?那次就是反复弯曲后焊点断了。

9. 焊接时没清理干净接触面,这就好像脸上有脏东西还化妆,能好看吗?那次就是没清理好就焊,最后焊点就断了。

10. 操作人员技术不过关,这跟不会做饭还非要下厨有啥区别?就像那个新手焊接,焊点不断裂才怪呢!
我的观点结论:导线焊点断裂的原因真是多种多样啊,得从各个方面注意,才能避免出现焊点断裂的情况呀!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.焊接结构脆性断裂的防治
1. 焊接结构脆性断裂的原因 • ① 由大量破坏、失效事故的分析研究中发 现,焊接结构低应力脆断破坏的根本原因 在于结构中存在着各种缺陷和裂纹。 • ② 这些裂纹和缺陷的产生一部分是在结构 的加工制造过程中。另一部分是在使用过 程中如疲劳裂纹、应力腐蚀裂纹。 • ③ 其中裂纹是最严重的缺陷,而焊接则是 产生裂纹的主要原因。
提高焊接结构疲劳强度的方法
2.1 降低应力集中 凡是降低应力集中的措施都可提高结构的疲劳强 度,有: ① 合理设计构件的结构形式,减少应力集中。 ② 尽量选择应力集中系数小的焊接接头形式,并 保证母材与焊缝之间平缓过渡。 2.2 减少、调整焊接应力 对于焊接接头,减小、消除残余拉应力或使该处 产生残余应力都可提高疲劳强度。 2.3 焊缝表面打磨、抛光,表面强化处理
2 防止和控制焊接结构产生应力腐蚀的措施 2.1 设计方面的控制 2.2 制造工艺过程中的控制 ① 焊接材料选择 ② 焊接工艺条件的控制 ③ 控制冷作变形
4.焊接结构应力腐蚀断裂的防治
1 应力腐蚀裂纹产生的机理和影响因素 1.1 定义: 应力腐蚀:指敏感金属或合金在一定拉应 力和一定腐蚀介质环境共同作用下所引起 的腐蚀断裂过程。 1.2 两种机理: 1.2.1 电化学应力腐蚀机理 1.2.2 机械破裂应力腐蚀开裂机理
防止和控制焊接结构产生应力腐蚀 的措施
1 降低结构局部区域的应力水平 ① 设计过程中的控制措施 ②制造工艺中的控制措施 ③消除焊接残余应力
焊接结构脆性断裂的防治方法
2 减少结构缺陷 ① 合理设计 ② 优化制造工艺
焊接结构脆性断裂的防治方法
3 改善材料的断裂韧性 ① 正确的设计选材 应采用“等韧性”或“等性能”原则,才 能保证 焊缝区不成为结构的薄弱环节, 以避免脆 性断裂。 ② 优化焊接工艺 ③ 合理制订、严格执行耐压试验规程
焊接过程引起的两种脆化
• ① 焊接时由于加热、冷却引起接头区冶金 组织变化,冷却过程中形成的高碳马氏体 和粗大晶粒等金相组织将使焊接接头区韧 性降低,另外,微量有害元素偏聚和氢含 量增加也是导致韧性降低的原因。 • ② 焊接热循环过程中产生的塑性应变会引 起热应变脆化。
焊接结构脆性断裂的防治方法
3 焊接结构疲劳断裂的防治方法
1.焊接结构疲劳断裂的原因和影响因素 疲劳断裂是在循环应力、拉应力和塑性 应变这三者的共同作用下发生的低应力破 坏。由于焊接结构易于存在焊接缺陷和较 严重的应力集中,所以焊接结构的疲劳往 往是从焊接接头处产生。
焊接结构疲劳断裂的原因和影响因素
1.应力的影响 ① 增加拉伸应力会降低疲劳寿命,而增加压 缩应力则可提高疲劳强度。 ② 焊接残余应力会降低焊接接头的疲劳强度, 这时构件的平均应力随之提高,应力比增大, 裂纹扩展速率会增加。 2.接头形式及应力集中的影响 3.焊接缺陷的影响 4.热影响区金属性能变化的影响
Chapter 4 焊接结构的断裂失效与防治
本章重点:1.焊接结构断裂失效的分类及危害 2.焊接脆性断裂的防治方法 3.焊接疲劳断裂的防治方法 4.焊接应力腐蚀断裂防治方法 本章难点:1.焊接结构断裂失效的分类及危害 2.焊接脆性断裂的防治方法
1.焊接结构断裂失效的分类及危害
5.1 焊接结构断裂失效的分类及危害 焊接结构断裂失效中,最为严重的是脆性断裂 失效、疲劳断裂失效和应力腐蚀断裂失效三种类 型。 1. 脆性断裂失效 脆性断裂---通常称为低应力脆断。一般都在应力 低于结构的设断裂失效的分类及危害
疲劳断裂失效 金属材料及其结构因受交变载荷而 发生损坏或断裂的现象,称为 疲劳断裂。 疲劳断裂过程一般由三个阶段组成: ① 初始疲劳裂纹在应力集中区孕育、 萌生; ② 裂纹亚临界扩展或稳定扩展; ③ 失稳扩展,以至与断裂。
焊接结构断裂失效的分类及危害
应力腐蚀断裂失效 腐蚀是材料与周围介质作 用产生的物理化学过程。 而应力腐蚀是指敏感金 属或合金在一定的拉应 力和一定腐蚀介质环境 共同作用下所产生的腐 蚀断裂过程。
相关文档
最新文档