对几种植被指数的认识

合集下载

常用植被指数

常用植被指数

常用植被指数
植被指数是用来描述植被生长状况的指标,常用的植被指数有以下几种:
1. 植被指数(NDVI):NDVI是最常用的植被指数,通过计算红外波段和可见光波段的反射率之间的比值,反映出植被的生长状况。

NDVI值越高,表示植被生长越旺盛。

2. 归一化差异植被指数(NDVI):NDVI是在NDVI的基础上,对植被指数进行归一化处理所得到的指数。

NDVI值越高,表示植被生长越旺盛。

3. 植被水分指数(VSWI):VSWI是通过计算近红外波段和中红外波段的反射率之间的比值,反映出植被受到的水分供应状况。

VSWI 值越高,表示植被水分供应越充足。

4. 综合植被指数(EVI):EVI是在NDVI的基础上,对大气影响和土壤背景影响进行了修正所得到的指数,可以更准确地反映出植被生长状况。

EVI值越高,表示植被生长越旺盛。

以上几种常用的植被指数,可以通过遥感技术获取相应的遥感数据,用于植被生长监测、土地利用变化分析等方面的研究。

- 1 -。

几种常见植被指数

几种常见植被指数

常用的植被指数,土壤指数,水体指数有哪些?植被指数与土壤指数一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

1、对土壤背景的变化极为敏感;四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。

1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。

与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。

ENVI中常见植被指数介绍

ENVI中常见植被指数介绍

作业9 植被指数植被指数概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。

植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。

不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。

Broadband Greenness(5 indices)(宽带绿色指标(5))宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。

宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。

宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。

下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。

1. Normalized Difference Vegetation Index归一化植被指数增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。

简称NDVI: NDVI=(NIR-R)/(NIR+R)(1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;(2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;(3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;(4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;2.Simple Ratio Index比值植被指数在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。

几个植被指数

几个植被指数

RVI比值植被指数RVI=NIR/R,或两个波段反射率的比值。

1.绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;2.RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量3.植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显着降低;4.RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

NDVI归一化植被指数NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1.NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2.-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大3.NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4.NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关GVI绿度植被指数k-t变换后表示绿度的分量。

1.通过k-t变换使植被与土壤的光谱特性分离。

植被生长过程的光谱图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤的含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。

2.kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同的含义。

如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。

ENVI中常见植被指数介绍

ENVI中常见植被指数介绍

作业9 植被指数植被指数概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。

植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。

不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。

Broadband Greenness(5 indices)(宽带绿色指标(5))宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。

宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。

宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。

下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。

1. Normalized Difference Vegetation Index归一化植被指数增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。

简称NDVI: NDVI=(NIR-R)/(NIR+R)(1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;(2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;(3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;(4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;2.Simple Ratio Index比值植被指数在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。

ENVI中常见植被指数介绍

ENVI中常见植被指数介绍

作业9 植被指数植被指数概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。

植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。

不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。

Broadband Greenness(5 indices)(宽带绿色指标(5))宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。

宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。

宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。

下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。

1. Normalized Difference Vegetation Index归一化植被指数增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。

简称NDVI: NDVI=(NIR-R)/(NIR+R)(1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;(2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;(3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;(4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;2.Simple Ratio Index比值植被指数在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。

几种常用植被指数介绍

几种常用植被指数介绍

对几种常用植被指数的认识植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。

在学习和使用植被指数时必须由一些基本的认识:1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;~4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

几种常用植被指数介绍

几种常用植被指数介绍

几种常用植被指数介绍植被指数是通过遥感技术获取的植被信息量化指标,包括植被覆盖度、生长状态、植被类型等信息,广泛应用于土地利用、资源管理、环境监测等领域。

在本文中,将介绍几种常用的植被指数,包括归一化植被指数(NDVI)、广域植被指数(EVI)、归一化差值水体指数(NDWI)、颜色指数(CI)、土地覆盖指数(LCI)等。

1. 归一化植被指数(NDVI)归一化植被指数(Normalized Difference Vegetation Index,NDVI)是最早被广泛应用的植被指数,由罗浮(Rouse)等人于1974年提出。

它以红光波段和近红外波段的反射率之差的比值来度量植被状况,公式为:NDVI = (NIR - RED) / (NIR + RED)其中,NIR为近红外波段的反射率,RED为红光波段的反射率。

NDVI取值范围为-1到1之间,数值越大代表植被覆盖度越高,生长状况越好。

广域植被指数(Enhanced Vegetation Index,EVI)是对NDVI的一种改进,由胡侃(Huete)等人于1994年提出。

EVI在NDVI的基础上增加了大气校正、背景亮度校正等,公式为:其中,NIR、RED和BLUE分别为近红外波段、红光波段和蓝光波段的反射率。

EVI相比NDVI具有更好的大气校正能力和对土壤、雪等因素的较好抵抗能力,能够更准确地反映植被状况。

其中,Green为绿光波段的反射率。

NDWI值越低代表水体覆盖度越高,可以用于监测水体的位置和面积变化,以及水资源的管理和保护。

4. 颜色指数(CI)颜色指数(Color Index,CI)是一种基于色彩特征的植被指数,由Stiles于1954年提出。

它使用波段之间的差值来计算颜色特征,公式为:其中,GREEN、RED和BLUE分别为绿光波段、红光波段和蓝光波段的反射率。

CI能够反映植被的颜色特征,可以用于识别植被类型、估算植被生物量等。

土地覆盖指数(Land Cover Index,LCI)是一种基于土地覆盖类型的指数,由Gao和Ji于2008年提出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对几种常用植被指数的认识
植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。

在学习和使用植被指数时必须由一些基本的认识:
1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;
2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息
3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响
一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;
2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;
3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;
4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;
2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;
3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;
4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;
三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

1、对土壤背景的变化极为敏感;
四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:
SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。

1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。

与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。

L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。

2、SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。

因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI
3、SAVI4等改进模型。

小结:上述几种VI均受土壤背景的影响大。


被非完全覆盖时,土壤背景影响较大
五、GVI——绿度植被指数,k-t变换后表示绿度的分量。

1、通过k-t变换使植被与土壤的光谱特性分离。

植被生长过程的光谱图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤的含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。

2、kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同的含义。

如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。

3、第一二分量集中了>95%的信息,这两个分量构成的二位图可以很好的反映出植被和土壤光谱特征的差异。

4、GVI是各波段辐射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。

六、PVI——垂直植被指数,
在R-NIR的二为坐标系内,植被像元到土壤亮度线的垂直距离。

PVI=((S R-VR)2+(SNIR-VNIR)2)1/2,S是土壤反射率,V是植被反射率。

1、较好的消除了土壤背景的影响,对大气的敏感度小于其他VI
2、PVI是在R-NIR二位数据中对GVI的模拟,两者物理意义相同
3、PVI=(DNnir-b)cosq-DNr´sinq,b是土壤基线与NIR截距,q是土壤基线与R的夹角。

七、其他1、根据具体情况改进型:如MSS的DVI = B4-aB2,PVI=(B4-aB2-b)/(1+a2)1/2,SARVI = B4/(B2+b/a);RDVI=(NDVI´DVI)1/2等2、应用于高光谱数据的VI,如CARI(叶绿素吸收比值指数)和CACI(叶绿素吸收连续区指数)等。

相关文档
最新文档