CDMA功率控制

合集下载

cdma扩频通讯工作原理

cdma扩频通讯工作原理

cdma扩频通讯工作原理CDMA(Code Division Multiple Access)是一种扩频通信技术,它的工作原理如下:1. 物理层码分多址:CDMA通过将每一个用户的信息进行编码,使其在物理层上以不同的码片序列来传输。

码片序列是一种短且快速变化的比特序列,不同用户的码片序列之间使用不同的编码方式。

这样,在同一时间、频率和空间上,多个用户可以同时传输和接收数据,各用户的信号通过码片序列进行区分。

在接收端,利用相关法则可以将自己的码片序列与接收到的信号进行匹配解码,得到用户的信息。

2. 扩频:CDMA通信中的扩频技术是指将用户的宽带信息信号转换为具有较大带宽的扩频信号,然后与码片序列进行乘积运算,实现用户信号的扩展。

扩频可以提高信号在频域上的带宽,从而增强信号的抗干扰能力。

同时,通过乘积运算可以将用户信号与其他用户信号进行隔离,实现多用户同时传输和接收的能力。

3. 功率控制:CDMA系统需要对每个用户的传输功率进行控制,以保证系统中所有用户的信号在接收端能够以相同的强度到达。

功率控制是为了解决多用户之间的干扰问题,使得不同用户在干扰环境下的接收性能得到保证。

4. 应用层调度和碰撞避免:CDMA系统中的应用层调度算法和碰撞避免机制用于确定哪个用户在特定时间和频率上进行传输。

调度算法根据用户的需求和系统资源等因素,合理地分配时间和频率资源,以优化系统性能。

碰撞避免机制用于避免不同用户在相同时间和频率上进行传输时的碰撞问题,从而避免数据丢失和信号质量下降。

总之,CDMA通过物理层码分多址、扩频、功率控制和应用层调度等技术,实现了多用户同时传输和接收的能力,提供了更高的频谱利用效率和抗干扰能力,是一种高效可靠的通信技术。

CDMA通信的基本原理功率控制

CDMA通信的基本原理功率控制

CDMA通信的基本原理功率控制CDMA通信与传统的通信系统像比较,发端多了扩频调制,收端多了扩频解调CDMA通信在发端将待传入的话音,通过A/D转换将模拟语音转变成了二进制数据信息,通过高速率的伪随机扩频调制,从原理上讲,两者相乘,扩展到一个很宽的频带,因而在信道中传输信号的带宽远大于信息带宽。

在接受端,接受机不仅接受到有用的信号,同时还接受到各种干扰信号和噪声。

利用本地产生的伪随机序列进行相关解扩。

本地伪码与接受到的扩频信号中伪码一致,通过相关运算可还原成原始窄带信号,顺利通过窄道滤波器,恢复原始数据,再通过数/模(D/A)转换,恢复原始语音。

接收机接收到的干扰和噪声,由于和本地伪随机序列不相关,经过接收扩解,将干扰和噪声频谱大大扩展,频谱功率密度大大下降,落入窄带滤波器的干扰和噪声分量大大下降,因此在窄带滤波器输出端的信噪比或信干比得到极大改善,其改善程度就是扩频的处理增益。

CDMA蜂窝网的关键技术--功率控制CDMA蜂窝移动通信系统中,所以的用户使用相同的频带发送信息,如果各移动台以相同的功率发射信号,则信号到达基站时,因为传输路程不同,基站接受到到的靠近基站的用户发送的信号比在小区边缘用户发射的信号强度大,因此远端的用户信号被近端的用户信号湮没,这时间所谓的"远近效应"。

通常,路径损耗的总动态范围在80dB的范围内。

为了获得高质量和高的容量,所有的信号不管离基站的远近,到达基站的信号功率都应该相同,这就是功率控制的目的:使每个用户到达基站的功率相同。

从不同的角度考虑有不同的功率控制方法。

比如若从通信的正向、反向链路角度来考虑,一般可以分为反向功率控制和正向功率控制;若从实现功控的方式则可划分为集中式功率控制和分布式控制;还可以从功率控制环路的类型来划分,有可分为开环功控、闭环功控(外环功控和内环功控)。

1.反向功控CDMA系统的通信质量和容量主要受限于收到干扰功率的大小。

PHS、GSM、CDMA、WCDMA功率控制之比较

PHS、GSM、CDMA、WCDMA功率控制之比较

一、MS TX POWER的两个方面手机发射功率在PHS、GSM、cdma2000 1x、wcdma等协议中,被设计得越来越复杂,它的重要性已不言而喻,哪手机发射功率是大些好哪,还是小些好哪?事实上单纯的说大些好或者小些好,都实在不是一个明智的回答,因为在设计手机功率时,要考虑以下两个方面:1、在能保证正常通信情况下,手机发射功率越小越好*、手机发射功率越小,手机的耗电量就越小,待机时间、通话时间越长;*、手机发射功率越小,对同系统别的手机的干扰越小,这不仅给同系统别的手机创造了好的无线环境,同时对于cdma2000 1x、wcdma来说,这就意味着小区容量越大;*、手机发射功率越小,对别的无线设备干扰越小,这就给别的无线设备创造了好的无线环境;2、在有些情况下,为了能保证通信质量,手机发射功率希望能被调整的大些,再大些,再大些......*、手机在小区的远端时,为了保证手机信号经过长距离传输到达基站后,手机信号仍能被正确解调,也就是手机发射功率要足够大,以克服信号经过长距离传输的衰减;*、手机被建筑物或其它遮挡,在无线阴影区内,手机发射功率也要足够大,以克服手机信号必须经过多次的反射、折射及长距离传输的衰减;*、手机在干扰比较大的情况下,如邻信道、同信道干扰,阻塞等等,手机发射功率也要足够大,以克服噪声的干扰。

综上所述,手机发射功率存在着两面性,一方面在能保证正常通信情况下,手机发射功率越小越好;另一方面,在有些情况下,为了能保证通信质量,手机发射功率必须要大一些,甚至要再大一些。

这两方面看似矛盾,实为统一,准确表述为:手机必须发出足够大的功率,以保证通信质量,在保证通信质量的前提下,手机发射功率越小越好。

换言之,手机发射功率最好根据实际情况能够被控制,该大则大,该小则小。

二、PHS手机发射功率PHS(Personal Handyphone system的缩写)为***独立开发出的第三代数字无绳电话系统——个人携带电话系统,它具有很多突出的优点:建设费用低、系统扩充方便,超低的资费标准,因协议简单,而使手机制造成本降低,最终导致手机拥有价格上的优势等等。

WCDMA中的功率控制

WCDMA中的功率控制

第5章功率控制5.1 概述功率控制技术是WCDMA系统中一项非常重要的技术。

WCDMA 系统的频率复用系数为1,是一个自干扰系统,远近效应的影响很突出,如果没有功率控制,那么整个系统的容量将大大降低。

引入功率控制后,通过调整发射功率,保持上下行链路的通信质量,克服阴影衰落和快衰落,有助于降低网络干扰,提高系统质量和容量。

按移动台和基站是否同时参与又分为开环功率控制和闭环功率控制两大类。

闭环功控是指发射端根据接收端送来的反馈信息对发射功率进行控制的过程。

而开环功控不需要接收端的反馈,发射端根据自身测量得到的信息对发射功率进行控制。

开环功率控制又可以分为上行开环功率控制和下行开环功率控制。

闭环功率控制则是通过内环功率控制和外环功率控制一起来实现的。

5.2 开环功控与闭环功控本节介绍功率控制的大致流程,包括闭环功控和开环功控的区别,以及内环功控和外环功控如何协调工作的问题。

开环功控提供初始发射功率的粗略估计。

它是根据测量结果对路径损耗和干扰水平进行估计,从而计算初始发射功率的过程。

同时,由于开环功控是采用下行链路的路径损耗来估计上行链路损耗,但实际上WCDMA系统中上下行链路的频段相隔190M,快衰落特性不相关,因此这种估算的准确度有限,只能起到粗略控制的作用。

适用场合包括:●决定接入初期发射功率的时候●切换时,决定切换后初期发射功率的时候闭环功率控制是通过内环功率控制和外环功率控制一起来实现的。

内环功控通过测量信道的实际SIR值SIRest,并将测量值SIRest与目标值SIRtar比较,根据比较结果发出功率调整的指令。

内环功控算法包括上行内环功控算法和下行内环功控算法。

上行内环功控算法在基站内实现,基站比较上行信道SIR测量值SIRest和目标值SIRtar,根据比较结果设置相应的功控指令(TPC,Transmit Power Control)通知手机调整上行发射功率。

下行内环功控算法在手机内实现,手机比较下行信道SIR测量值SIRest和目标值SIRtar,根据比较结果设置相应的功控指令(TPC,Transmit Power Control)通知基站调整下行发射功率。

CDMA关键技术及优点

CDMA关键技术及优点
上一页 下一页 返回
5.1 关键技术
• 5.1.3 RAKE接收机
• 如图5-1-3所示,RAKE接收机的基本原理是利用了空间分集 技术。发射机发出的扩频信号,在传输过程中受到不同建筑物、山冈 等各种障碍物的反射和折射,到达接收机时每个波束具有不同的延迟 ,形成多径信号。如果不同路径信号的延迟超过一个伪码的码片时延 ,则在接收端可将不同的波束区别开来。将这些不同波束分别经过不 同的延迟线,对齐以及合并在一起,则可达到变害为利,把原来是干 扰的信号变成有用信号组合在一起。
上一页 下一页 返回
5.1 关键技术
• 3)反向外环功率控制 • 在反向闭环功率控制中,信噪比门限不是恒定的,而是处于动态地调
整中。这个动态调整的过程就是反向外环功率控制。 • 在反向外环功率控制中,基站统计接收反向信道的误帧率FER。 • 如果误帧率FER高于误帧率门限值,说明反向信道衰落较大,于是
上一页 下一页 返回
5.1 关键技术
• (2)T_DROP:基站将此值设置为移动台对导频信号下降监测 的门限。当移动台发现有效集或候选集中的某个基站的导频信号强度 小于T_DROP时,就启动该基站对应的切换去掉计时器。
• (3)T_TDROP:基站将此值设置为移动台导频信号下降监测 定时器的预置定时值。如果有效集中的导频强度降到T_DROP以 下,移动台启动T_TDROP计时器;如果计时器超时,这个导频 将从有效集退回到邻区集。如果超时前导频强度又回到T_DROP 以上,则计时器自动被删除。
• 1)前向闭环功率控制 • 闭环功率控制把前向业务信道接收信号的Eb/Nt (Eb是平均比
特能量;Nt指的是总的噪声,包括白噪声、来自其他小区的干扰) 与相应的外环功率控制设置值相比较,来判定在反向功率控制子信道 上发送给基站的功率控制比特的值。 • 2)前向外环功率控制 • 前向外环功率控制实现点在移动台,基站需要做的工作就是把外环控 制的门限值在寻呼消息中发给移动台,其中包括FCH和SCH的外 环上下限和初始门限。

cdma知识总结

cdma知识总结

CDMA是采用扩频的码分多址技术。

所有用户在同一时间、同一频段上、根据不同的编码获得业务信道CDMA是一种基于用户数量的干扰受限系统cdma2000直接序列扩频码分多址,频分双工FDD方式。

空中接口特性如下(1)空中接口采用cdma2000兼容IS-95(2)信号带宽N 1.25MHz N 1,3,6,9,12(3)码片速率N 1.2288Mcps(4)语音编码8k/13k QCELP或8k EVRC语音编码(5)同步方式基站需要GPS/GLONASS同步方式运行(6)功率控制上下行闭环加外环功率控制方式(7)发射分集方式下行可以采用正交发射分集OTD Orthogonal TransmitDiversity和空时扩展分集STS Space Time Spreading提高信道的抗衰落能力改善了下行信道的信号质量(8)解调方式上行采用导频辅助的相干解调方式提高了解调性能(9)编码方式采用卷积码和Turbo码的编码方式(10)调制方式上行BPSK和下行QPSK调制方式远近效应:如果小区中的所有用户均以相同功率发射,则靠近基站的移动台到达基站的信号强,远离基站的移动台到达基站的信号弱,导致强信号掩盖弱信号,这就是移动通信中的“远近效应”问题。

多径传播效应:由于高大建筑物或远处高山等阻挡物的存在常常会导致发射信号经过不同的传播路径到达接收端这即是所谓的Multipath Propagation多普勒效应:是由于接收的移动信号高速运动而引起传播频率扩散而引起的其扩散程度与用户运动速度成正比软切换:有以下几种情况同一BTS内不同扇区相同载频之间(又称更软切换);同一基站、相同频率、不同扇区的CDMA信道间。

同一BSC内不同BTS相同载频之间;同一MSC内,不同BSC相同载频之间;伪随机序列(PN码):具有类似噪声序列的性质,是一种貌似随机但实际上有规律的周期性二进制序列。

•不同的用途前向信道:长码扰码,短码正交调制(标识基站)反向信道:长码扩频(标识用户),短码正交调制MSC:移动交换中心:它提供交换功能负责完成移动用户寻呼接入信道分配呼叫接续话务量控制计费基站管理等功能并提供面向系统其它功能实体和面向固定网PSTN ISDN PDN 的接口功能。

第八章CDMA移动通信系统 一

第八章CDMA移动通信系统 一

第八章CDMA移动通信系统一在当今通信技术飞速发展的时代,CDMA 移动通信系统作为其中的重要一员,具有独特的优势和特点。

CDMA,即码分多址(Code Division Multiple Access),是一种扩频通信技术。

与传统的频分多址(FDMA)和时分多址(TDMA)技术不同,CDMA 允许所有用户在同一时间、同一频段上进行通信,通过为每个用户分配特定的编码序列来区分不同的用户信号。

CDMA 移动通信系统的核心原理在于扩频技术。

扩频通信将待传输的信息信号扩展到一个很宽的频带上,使得信号的功率谱密度降低,从而提高了通信的保密性和抗干扰能力。

在接收端,通过与发送端相同的编码序列进行相关解调,恢复出原始信号。

CDMA 系统具有诸多优点。

首先是抗干扰能力强。

由于采用了扩频技术,CDMA 信号在传输过程中能够有效地抵抗各种干扰,包括自然干扰和人为干扰。

即使在信号较弱的情况下,也能保持较好的通信质量。

其次,CDMA 系统具有较高的频谱利用率。

多个用户可以共享同一频段,大大提高了频谱资源的利用效率。

再者,CDMA 系统的保密性好。

每个用户的编码序列都是唯一的,且具有随机性,使得窃听者难以获取有用信息。

CDMA 移动通信系统的网络结构主要包括移动台(MS)、基站子系统(BSS)和网络子系统(NSS)。

移动台是用户终端设备,如手机等。

基站子系统负责与移动台进行无线通信,包括基站收发信机(BTS)和基站控制器(BSC)。

网络子系统则负责整个网络的管理和控制,包括移动交换中心(MSC)、归属位置寄存器(HLR)、拜访位置寄存器(VLR)等。

在 CDMA 系统中,功率控制是一项关键技术。

由于所有用户共享同一频段,如果某个用户的发射功率过大,会对其他用户造成干扰;反之,如果发射功率过小,又会影响自身的通信质量。

因此,需要进行精确的功率控制,使得每个用户的发射功率既能满足通信需求,又不会对其他用户造成过多干扰。

功率控制分为前向功率控制和反向功率控制。

CDMA功率控制

CDMA功率控制

功控的目的和原则
• 目前环境中的底噪必须足够低。也就是说,在系统的工作频段内没有 外界干扰。 • 功率控制在CDMA系统中是非常重要的。离基站距离近的移动台发射 功率较小,离基站远的移动台发射功率较大。所有移动台以尽可能小 的功率发射,每一个移动台所发射的功率对其他用户来说就是噪声。 • 酒会上,每对用户使用不同的语言交流,就好比使用不同的码来区分 用户一样。
谢谢!
1
功控的数据配置
前向FCH初始功率 前向FCH最大功率 前向FCH最小功率
这组参数分别表示前向FCH发射增益的最小值,最大值以及初始值。 平衡设置:这些值的设置要注意在话音质量和掉话率以及前向系统容量 之间获得一个平衡。设得高有利于改善话音质量降低掉话率,但减小 了前向容量。 对应于不同的功控方式都有一组参数可设置,对于IS2000,初始 功率通过设置“前向FCH初始功率修正值 ”。
288 bits(20ms) 14400bps 帧 1 E
267
信息比特
12 F
8 T
功控的分类及算法
• • • EIB功控算法的速度:1比特1帧,即50次/每秒。 好帧/坏帧的监测在F-FCH上进行,EIB功控算法的延时一般为2帧 EIB功率控制速率为50次 /秒,速度较快,对反向业务信道无影响。
功控的算法
反向开环功控原理
FCH ( 2000 ) V FCH ( 95 )or PICH ( 2000 ) Ⅳ Ⅲ Ⅱ Ⅰ Imported to
ACH
Ⅰ: Ⅱ: Ⅲ : Ⅳ: Ⅴ : Tx_power = -Mean Rx_Power INIT_PWR Tx_power= Ⅰ + PWR_STEP + offsetpower + NOM_PWR +
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CDMA系统中的功率控制技术
1. 引言:
在常见的多址通信技术中,CDMA(码分多址接入)通信技术采用同频率复用方式实现更大的系统容量,并且有发射功率低、保密性能强、覆盖范围大等优点,CDMA个人通信将成为今后个人通信的主流和发展方向。

功率控制技术、PN码技术、RAKE接收技术、软切换技术、话音编码技术等称为IS-95CDMA蜂窝移动通信系统中的关键技术。

由于CDMA是一个自干扰系统,所有移动用户和周围小区中的其他用户所造成的自干扰成为限制系统容量的主要因素,功率控制被认为是所有关键技术的核心。

如果不采用功率控制,所有用户就会以相同的功率发射信号,这样离基站较近的移动台就会对较远的移动台造成相当大的干扰,这种现象称为远近效应。

因此设计一种良好的功率控制方案对于CDMA系统的正常运行是非常重要的。

研究表明,不采用功率控制技术的CDMA系统容量很小,甚至会小于FDMA 系统的容量。

在CDMA系统中采用功率控制的另一个原因,尽可能利用最小的发射功率获得所需的传输质量,以延长用户终端中电池的寿命。

在功率控制中需要移动台(MS)和基站(BS)共同协调进行动态的功率控制才能够实现。

本文主要介绍CDMA系统中现有的常用的功率控制技术,并在此基础上提出了一些理论上的改进的功率控制算法,加以说明和比较。

2.CDMA系统中现有的功率控制技术:
2.1 功率控制技术的分类:
功率控制技术可按多种方式进行分类,如图1所示:
图1 功率控制技术的分类
从通信的上、下行链路考虑,功率控制可以分为前向功率控制和反向功率控制,前向和反向功率控制是独立进行的。

所谓的反向功率控制,就是对手机的发射功率进行控制,而前向功率控制,就是对基站的发射功率进行控制。

从功控的环路类型来划分,功率控制算法还可分成开环功率控制、闭环功率控制和外环功率控制。

开环功率控制仅是一种对移动台平均发射功率的调节;闭环功率控制式MS根据BS发送的功率控制指令(功率控制比特TPCbit携带的信息)来调节MS发射功率;外环功率控制是为了适应无线信道的衰耗变化,达到系统所要求的误帧率而动态调整反向闭环功控中的信噪比门限。

2.2 功率控制的原理:
2.2.1 前向链路功率控制:
前向链路功率控制的目的在于,减小为那些静止状态、离基站较近、几乎不受多径衰落和阴影效应影响、或受其它小区干扰很小的用户所消耗的功率,以便将节省下来的功率给那些信道条件较差、离基站较远、或误码率很高的用户。

基站通过移动台对前向链路误帧率的报告和临界值比较来决定是增加发射功率还是减小发射功率。

移动台的报告分为定期报告和门限报告。

定期报告就是隔一段时间汇报一次,门限报告就是当FER(误帧率)达到一定门限时才报告。

这个门限由运营者根据对话音质量的不同要求设置的。

这两种报告可以同时存在,也可以只要一种,或者两种都不用,根据运营者的具体要求来设定。

在TDD模式下,在前向链路中,由小区内信号的同步性和移动台相干解调带来的增
益会使前向链路的质量远好于反向链路。

故在前向链路只需加入一个慢速的功控即可。

2.2.2 反向链路功率控制:
·反向开环功控:
当移动台发起呼叫或响应基站的呼叫时首先工作的。

目的是使所有移动台发出的信号在到达基站时有相同的功率值。

若移动台接收到的信号功率小,则表明在前向链路上此刻的衰耗大,并由此认为反向链路上的衰耗也将较大,于是为补偿这种预测的信道衰落,移动台将增大发射功率,反之减小。

由于开环功控是为了补偿信道中的平均路径损耗、阴影效应以及地形地势所引起的信号的慢变化,所以有一个很大的动态范围:FDD模式85dB,TDD模式-32dB~32dB,限制了它的功控效果。

·反向闭环功控:
这是反向功率控制的核心。

由基站协助移动台,对移动台做出的开环功率估测迅速进行纠正,使移动台始终保持最理想的发射功率。

移动台根据在前向业务信道上收到的功率控制指令快速(每1.25ms)校正自己的发射功率,其中的功率控制指令(升或降)是由基站根据它所接收的移动台信号的质量来决定的;基站每隔1.25ms检测一次解调的反向业务信道信号的信噪比SNR,然后将其与一设定的门限值作比较,以产生相应的功率控制命令,插入前向业务信道发送给移动台。

功率控制比特(“0”或“1”)是连续发送的,其速率为每比特1.25ms(即800bit/s)。

“0”比特指示移动台增加平均输出功率,“1”比特指示移动台减少平均输出功率。

每个功率控制比特使移动台增加或减少功率的大小为1dB。

其功率控制过程可用下图描述:
图2 反向闭环功率控制原理
·反向外环功控:
为了适应无线信道的衰耗变化,达到系统所要求的反向业务信道的误帧率而动态调整反向闭环功控中的信噪比门限。

以保证在信道环境不断变化的情况下,维持通信质量不变。

通常系统都有一定的服务质量目标值,该目标值设置不能太低或太高,过低将使通信链路质量不能满足业务需求,过高会造成大量资源浪费,降低整体系统容量。

2.3 几种功率控制算法的比较:
开环功率控制完全是建立在对接收信号能量的评估和比较的基础之上的,算法相对简单。

它对移动台发射功率的调整使用的是“一步到位”的方法,信道衰落多少就补偿多少。

因而,在这个意义上,开环功率控制具有很高的功控“梯度”。

这在快变得信道里将会带来误调,造成系统性能的恶化。

一般地,这种功控的不准确性要通过更精确的闭环功控来补偿。

闭环功率控制是基于检测接收机端的接收信噪比来进行发射功率调整的。

不同的功控速度、步长和信噪比门限都会影响功控的效果。

其中,信噪比门限的确定对功控的影响尤为重要。

这就要求,调整该门限的外环功控要及时反映信道特性的变化,即可认为该门限是特定用户所处信道环境衰落速度和衰落特性的函数。

许多研究已证明,小区内所有用户的功控信噪比门限的均值直接决定了系统容量。

在WCDMA、TD-SCDMA的上下行链路都采用了快速功率控制,所以上下行链路都需外环功控。

WCDMA的上下行都支持1.5kHz频率的快速功率控制,GSM中只有慢速功率控制(2Hz),IS-95只在上行支持800Hz的功率控制,TD-SCDMA功控频率为200Hz。

相关文档
最新文档