小升初入学测试奥数必考四大知识点
小升初数学(奥数)知识点汇总

小升初数学(奥数)知识点汇总一、质数、倍数、倍数、约数、整除问题1、质数(素数)①只有1和它本身两个约数的整数称为质数;②100以内质数共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;③最小的偶合数是4,最小的奇合数是9;④0、1既不是质数也不是合数。
⑤每一个合数分解质因数形式是唯一的。
⑥公因数只有1的两个非零自然数,叫做互质数。
2、倍数、约数性质①一个数最小的倍数是这个数本身,没有最大的倍数;②“0”没有约数和倍数,一般认为“1”只有约数“1”;③假如几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。
例如:26、39是13的倍数,则2639也是13的倍数。
④一般的数字的约数的个数都是偶数个,但是平方数的约数个数是奇数个。
例如:“9”有3个约数(1、3、9),“16”有5个约数(1、二、4、8、16)。
⑤约数和倍数必须强调出是哪个数字的约数和倍数。
⑥一个数既是它本身的倍数又是它本身的约数。
⑦一个数如果有偶约数,则这个数必为偶数。
3、整除性质①能被“2”整除的数的特点:末尾数字是“0、2、4、6、8”;②能被“3(9)”整除的数的特点:各位上数字和能被“3(9)”整除;③能被“4(25)”整除的数的特点:末尾两位能被“4(25)”整除;④能被“5”整除的数的特点:末尾数字是“0或5”;⑤能被“8(125)”整除的数的特点:这个数末三位能被“8(125)”整除;⑥能被“7、11、13”整除的数的特点:这个数从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被“7、11、13”整除。
如果求余数时,则奇数节和小于偶数节和时,需要将奇数节和加上若干个“7、11、13”,再相减。
⑦能被“11”整除的数的另一个特点:这个数奇数位数字和与偶数位数字和的差能被11整除。
例如:“122518”分析:奇数位数字和1+2+1=4,偶数位数字和2+5+8=15,差为11,说明这个数可以被11整除。
小升初数学知识点及奥数知识点汇总

小升初数学知识点及奥数知识点汇总在小学升初中的这个重要阶段,数学知识的掌握至关重要。
接下来,咱们就一起梳理一下小升初数学的常见知识点以及奥数中的重点知识。
一、数与代数1、整数整数包括正整数、零和负整数。
要熟练掌握整数的四则运算(加、减、乘、除),以及整数的大小比较。
2、自然数表示物体个数的数叫自然数,自然数从 0 开始,一个接一个,组成一个无穷的集体。
3、分数把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
分数的基本性质要牢记:分数的分子和分母同时乘或除以相同的数(0 除外),分数的大小不变。
4、小数由整数部分、小数部分和小数点组成。
小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
5、百分数表示一个数是另一个数的百分之几的数叫百分数,也叫百分率或百分比。
6、因数和倍数如果数 a 能被数 b 整除(b≠0),a 就叫做 b 的倍数,b 就叫做 a 的因数。
7、奇数和偶数不能被 2 整除的数叫奇数,能被 2 整除的数叫偶数。
8、质数和合数一个数,如果只有 1 和它本身两个因数,这样的数叫做质数;一个数,如果除了 1 和它本身还有别的因数,这样的数叫做合数。
9、简易方程含有未知数的等式叫方程。
解方程的依据是等式的性质。
二、图形与几何1、平面图形(1)三角形:由三条线段围成的图形。
三角形的内角和是180 度。
按角分,三角形可分为锐角三角形、直角三角形和钝角三角形;按边分,三角形可分为等边三角形、等腰三角形和不等边三角形。
(2)四边形:由四条线段围成的图形。
常见的四边形有平行四边形、长方形、正方形和梯形。
(3)圆形:圆是一种曲线图形,圆的周长公式为C=2πr 或C=πd,面积公式为S=πr²。
2、立体图形(1)长方体:有 6 个面,每个面都是长方形(可能有两个面是正方形),相对的面面积相等;有 12 条棱,相对的棱长度相等;有 8 个顶点。
(2)正方体:有 6 个面,每个面都是正方形,6 个面的面积都相等;有 12 条棱,12 条棱的长度都相等;有 8 个顶点。
小升初奥数知识点奥数必考30个知识点考前复习

小升初奥数知识点奥数必考30个知识点考前复习1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数_倍数=大数和-小数=大数差÷(倍数-1)=小数小数_倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距_段数=总长棵数=段数-1棵距_段数=总长棵数=段数棵距_段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数_总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数_总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
(完整版)小升初四大数学常考知识点汇总

(完整版)小升初四大数学常考知识点汇总
小升初是每个小学六年级学生都要经历的重要阶段。
数学是其中一个重要科目,掌握好数学的基础知识对于顺利升入初中至关重要。
以下是小升初数学常考知识点的汇总,供参考:
1. 四则运算
- 加法、减法、乘法、除法的基本运算规则
- 分数的加减乘除运算
- 带括号的混合运算
2. 小数和分数
- 小数和分数的互换
- 小数的加减乘除运算
- 分数之间的大小比较
3. 几何图形
- 点、线、面的定义
- 直线、射线、线段的区别与联系
- 角的种类及性质,如直角、锐角、钝角等
- 三角形、矩形、正方形、平行四边形等常见几何图形的特征
4. 算式变形与方程式
- 算式的等价变形
- 一元一次方程的解的求法
- 设方程式和解方程式的基本能力
5. 数据的处理与统计
- 平均数的概念及求法
- 数据表的读写能力
- 图表的解读与分析
这些是小升初数学考试中常见且重要的知识点,掌握了这些知识点,学生就能在数学考试中取得好成绩。
因此,在备考阶段,学生应该重点关注这些知识点的研究和巩固。
希望这份汇总对你有所帮助,祝你在小升初数学考试中取得好成绩!。
小升初奥数备考知识点汇总

小升初奥数备考知识点汇总1. 数学基础知识
- 数字的读写
- 加法、减法、乘法和除法运算
- 分数与小数
- 数字的序数和分类
- 数量的比较和排序
2. 几何学知识
- 点、线、面的认识
- 角、直角、钝角、锐角的认识
- 线段、直线、射线的区分
- 图形的分类与命名
- 对称图形和轴对称图形
3. 时间与物体运动
- 时间的认识与读写
- 时钟和日历的使用
- 运动物体的速度与距离的关系- 运动物体的简单计算问题
- 时间和运动的综合问题
4. 逻辑推理
- 推理与判断的思维训练
- 数列的认识和推理
- 奥数中常见的逻辑问题
- 分析与解决逻辑题的具体方法5. 数据处理与统计
- 数据的收集与整理
- 图表的认识与分析
- 常见的统计概念与计算方法- 统计与概率的关系
- 数据处理问题的解答方法
6. 空间思维能力
- 空间方位与方向的认知
- 空间几何图形的建构与转换
- 空间图形的旋转与镜像
- 空间图形的解析与折纸
以上是小升初奥数备考的主要知识点汇总。
在备考过程中,建议多做练习题和模拟试题,加强对知识点的理解和应用。
通过不断练习与思考,相信你能在奥数考试中取得优异的成绩!。
小升初奥数知识点

小升初奥数知识点对于即将面临小升初的孩子们来说,奥数知识的掌握可能会成为他们在升学考试中脱颖而出的关键。
奥数不仅能够锻炼孩子的思维能力,还能培养他们解决问题的创新思维和方法。
接下来,让我们一起了解一些常见且重要的小升初奥数知识点。
一、计算类1、速算与巧算这部分主要涉及到一些运算定律和性质的灵活运用,比如加法交换律、结合律,乘法交换律、结合律和分配律等。
通过对数字的观察和分析,将复杂的计算转化为简单的运算。
例如:计算 99×25,可以将 99 转化为 100 1,然后利用乘法分配律进行计算,即 99×25 =(100 1)×25 = 100×25 1×25 = 2500 25 =2475 。
2、分数计算包括分数的加减乘除运算,通分、约分等基本操作。
还有分数与小数的互化,以及利用分数的性质进行简便计算。
比如:计算 1/2 + 1/6 + 1/12 + 1/20 ,可以将每个分数拆分成两个分数的差,即 1/2 = 1 1/2 , 1/6 = 1/2 1/3 , 1/12 = 1/3 1/4 , 1/20= 1/4 1/5 ,然后进行计算,原式= 1 1/2 + 1/2 1/3 + 1/3 1/4 + 1/41/5 = 1 1/5 = 4/5 。
二、数论类1、整数的性质了解整数的奇偶性、整除性等性质。
比如能被 2、3、5、9 等整除的数的特征。
例如:一个数各位数字之和能被 3 整除,这个数就能被 3 整除;一个数的末两位能被 4 整除,这个数就能被 4 整除。
2、质数与合数知道质数和合数的概念,会判断一个数是质数还是合数,以及分解质因数。
比如:1 既不是质数也不是合数,2 是最小的质数,4 是最小的合数。
3、最大公因数与最小公倍数掌握求最大公因数和最小公倍数的方法,如短除法。
例如:求 18 和 24 的最大公因数和最小公倍数,用短除法可得最大公因数是 6,最小公倍数是 72 。
小升初奥数知识点汇总
小升初数学(奥数)知识点汇总一、质数、倍数、倍数、约数、整除问题1、质数(素数)①只有1和它本身两个约数的整数称为质数;② 100以内质数共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;③最小的偶合数是4,最小的奇合数是9;④ 0、1既不是质数也不是合数。
⑤每一个合数分解质因数形式是唯一的。
⑥公因数只有1的两个非零自然数,叫做互质数。
2、倍数、约数性质①一个数最小的倍数是这个数本身,没有最大的倍数;② “0”没有约数和倍数,一般认为“1”只有约数“1”;③假如几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。
例如:26、39是13的倍数,则2639也是13的倍数。
④一般的数字的约数的个数都是偶数个,但是平方数的约数个数是奇数个。
例如:“9”有3个约数(1、3、9),“16”有5个约数(1、二、4、8、16)。
⑤约数和倍数必须强调出是哪个数字的约数和倍数。
⑥一个数既是它本身的倍数又是它本身的约数。
⑦一个数如果有偶约数,则这个数必为偶数。
3、整除性质①能被“2”整除的数的特点:末尾数字是“0、2、4、6、8”;②能被“3(9)”整除的数的特点:各位上数字和能被“3(9)”整除;③能被“4(25)”整除的数的特点:末尾两位能被“4(25)”整除;④能被“5”整除的数的特点:末尾数字是“0或5”;⑤能被“8(125)”整除的数的特点:这个数末三位能被“8(125)”整除;⑥能被“7、11、13”整除的数的特点:这个数从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被“7、11、13”整除。
如果求余数时,则奇数节和小于偶数节和时,需要将奇数节和加上若干个“7、11、13”,再相减。
⑦能被“11”整除的数的另一个特点:这个数奇数位数字和与偶数位数字和的差能被11整除。
例如:“122518”分析:奇数位数字和1+2+1=4,偶数位数字和2+5+8=15,差为11,说明这个数可以被11整除。
小学数学】小升初必考奥数30个知识点大汇总
小学数学】小升初必考奥数30个知识点大汇总1.和差倍问题和差问题和倍问题是常见的数学问题,而差倍问题则是二者的结合。
已知条件可以是几个数的和与差,几个数的和与倍数,或者几个数的差与倍数。
公式适用范围是已知两个数的和、差或倍数关系。
关键问题是求出同一条件下的和与差或和与倍数或差与倍数。
2.年龄问题年龄问题有三个基本特征:两个人的年龄差是不变的,两个人的年龄是同时增加或者同时减少的,两个人的年龄的倍数是发生变化的。
3.归一问题归一问题的基本特点是问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。
关键问题是根据题目中的条件确定并求出单一量。
4.植树问题植树问题有几种基本类型:在直线或者不封闭的曲线上植树,两端都植树,在直线或者不封闭的曲线上植树,两端都不植树,在封闭曲线上植树,只有一端植树。
基本公式是棵数=段数+1,棵距×段数=总长或者棵数=段数-1,棵距×段数=总长或者棵数=段数,棵距×段数=总长。
关键问题是确定所属类型,从而确定棵数与段数的关系。
5.鸡兔同笼问题鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来。
基本思路是假设某种现象存在(甲和乙一样或者乙和甲一样),假设后发生了和题目条件不同的差,找出这个差是多少,每个事物造成的差是固定的,从而找出出现这个差的原因。
基准数法:为了求一组数的平均数,我们可以选择一个基准数,并计算每个数与基准数的差。
将这些差加起来,求出它们的平均数,再将这个平均数加上基准数,就是所求的平均数。
一般来说,我们会选择与所有数比较接近的数或者中间数作为基准数。
具体关系可以参考基本公式②。
抽屉原理:抽屉原理指出,如果将(n+1)个物体放在n个抽屉里,那么至少会有一个抽屉中放有2个或多于2个物体。
例如,将4个物体放在3个抽屉里,就会有至少一个抽屉中放有2个或多于2个物体。
我们可以通过将4分解成三个整数的和来验证这一点。
奥数资料小升初复习必备资料奥数七大模块重要知识点
奥数资料小升初复习必备资料奥数七大模块重要知识点奥数是指奥林匹克数学竞赛,是国内外通用的一个数学竞赛项目。
奥数不仅要求学生有扎实的数学基础,还要求学生有良好的逻辑思维和问题解决能力。
小升初时,家长们常常会让孩子参加奥数培训,以提高孩子的数学水平。
下面是奥数小升初复习必备资料。
奥数的内容主要分为七大模块,分别是算术,代数,几何,数论,综合题,应用题和证明题。
每个模块都有其重要的知识点,在小升初复习时,要对这些知识点有充分的了解和掌握。
1.算术:四则运算是算术的基础,包括加减乘除和整数的运算法则。
在小学阶段,学生应对四则运算有扎实的掌握,能够熟练进行运算。
2.代数:代数是数学的一门重要分支,包括代数式的简化、方程的解法等。
在小升初的复习中,要掌握基本的代数式简化方法和方程的求解方法。
3.几何:几何是研究空间形状和其性质的学科,包括平面几何和立体几何。
在小升初的复习中,要掌握基本的平面几何和立体几何的概念和性质。
4.数论:数论是研究整数的性质和关系的学科,包括最大公因数、最小公倍数等。
在小升初的复习中,要掌握数论的基本概念和性质,能够进行数论问题的解答。
5.综合题:综合题是将多个数学知识点结合起来进行解答的题目。
在小升初的复习中,要能够灵活运用所学的知识进行综合题的解答。
6.应用题:应用题是将数学知识应用到实际问题中进行解答的题目。
在小升初的复习中,要能够理解应用题的背景和要求,运用所学的知识进行解答。
7.证明题:证明题要求学生通过严谨的推理和证明来解决问题。
在小升初的复习中,要能够理解证明题的要求和思路,能够进行证明题的解答。
在复习奥数时1.理解基础概念:奥数的知识点是建立在基础概念之上的,所以首先要理解数学的基本概念和定义。
2.熟练运用公式和定理:奥数中会使用到很多公式和定理,要能够熟练运用这些公式和定理,进行问题的解答。
3.掌握解题方法:对于不同类型的题目,要学会不同的解题方法,培养灵活的思维和解题能力。
小升初数学知识点及奥数知识点汇总
小升初数学知识点及奥数知识点汇总小学升初中是孩子们学习生涯中的一个重要转折点,数学作为主要学科之一,其知识点的掌握对于顺利过渡至关重要。
以下是小升初数学的常见知识点以及奥数知识点的汇总,希望能对孩子们的学习有所帮助。
一、数的认识1、整数:包括正整数、零和负整数。
要理解整数的读法、写法、大小比较以及四则运算。
2、自然数:用以计量事物的件数或表示事物次序的数,即用数码0,1,2,3,4……所表示的数。
3、小数:由整数部分、小数部分和小数点组成。
要掌握小数的性质、读法、写法以及小数的加减法。
4、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
要理解分数的意义、性质以及分数的加减法和乘除法。
二、数的运算1、四则运算:加法、减法、乘法和除法。
掌握运算顺序和运算法则,能够进行准确计算。
2、简便运算:运用运算定律(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律)进行简便计算。
3、整数、小数和分数的四则混合运算:先乘除后加减,有括号先算括号内的。
三、常见的量1、时间单位:年、月、日、时、分、秒,掌握它们之间的换算关系。
2、长度单位:千米、米、分米、厘米、毫米,能进行单位换算和实际测量。
3、面积单位:平方千米、公顷、平方米、平方分米、平方厘米,理解面积单位的换算。
4、体积单位:立方米、立方分米、立方厘米,以及容积单位升和毫升,知道体积和容积的区别与联系。
5、质量单位:吨、千克、克,能进行质量的换算和估量。
四、图形与几何1、平面图形:三角形:按角分为锐角三角形、直角三角形、钝角三角形;按边分为等边三角形、等腰三角形。
掌握三角形的内角和是 180 度,三角形的面积公式。
四边形:包括平行四边形、长方形、正方形、梯形,了解它们的特征和面积公式。
圆形:掌握圆的周长和面积公式,理解圆周率的概念。
2、立体图形:长方体:有 6 个面,12 条棱,8 个顶点,表面积和体积的计算方法。
正方体:是特殊的长方体,6 个面都相等,12 条棱都相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019小升初入学测试奥数必考四大知识点众所周知,小升初要实现"笑胜出",孩子在重点中学的数学测验中脱颖而出是十分必要的。
从三年级就开始学习的奥数积累到六年级,孩子做过无数的题目,见过无数的题型,但能反映在小升初那张试卷上的,无非也就那么几个知识点。
而在这些知识点中,重要的无非也就是这么几个——"数、行、形、算"。
何谓"数、行、形、算",也就是数论,行程,图形、计算四个问题。
数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。
由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据统计清华附中近年来的这几大问题的考题占据全部了80%左右,北师大附属实验中学,仁华学校六年级等对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的50%.如何复习这四方面的内容呢?
对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。
计算的技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方
法。
数论在数论学习中学生往往容易犯如下几个错误:
1、读题障碍。
数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。
2、知识僵化。
由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来"消化"所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。
例如,说起奇偶性都知道怎么回事,马上就开始背:"奇数+奇数=偶数……"可是在做题的时候就想不到用。
3、只见树木,不见森林。
对于数论定理的灵活运用很欠缺。
提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。
知识体系:
整除问题:
(1)数的整除的特征和性质(小升初常考内容)
(2)位值原理的应用(用字母和数字混合表示多位数)
质数合数:
(1)质数、合数的概念和判断(2)分解质因数(重点)
约数倍数:
(1)最大公约最小公倍数(2)约数个数决定法则(小升初常
考内容)
余数问题:
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,
偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。
对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。
长期坚持,不断训练,幼儿说话胆量也在不断提高。
(1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)。