有理数,整式计算练习7
七年级上计算专项(有理数混合运算、整式加减)

计算专项练习完成日期:1.计算:|﹣9|÷3+(﹣)×12﹣(﹣2)2.2.计算:|+×(﹣12)÷6﹣(﹣3)2|+|24+(﹣3)2|×(﹣5)3.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.4.计算:(1)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣];(2)(﹣24)×(﹣+)+(﹣2)3.5.计算﹣32+1÷4×﹣|﹣1|×(﹣0.5)2.完成日期:1.计算:(1)(﹣12)+(+30)﹣(+65)﹣(﹣47)(2)(﹣1)2×7+(﹣2)6+8.2.计算:(1)﹣22+[(﹣4)×(﹣)﹣|﹣3|](2)﹣32+16÷(﹣2)×﹣(﹣1)2015.3.4.计算:﹣14﹣[2﹣(﹣3)2]÷()3.完成日期:1.计算:+(﹣)÷(﹣)2.计算:(1)(﹣12)×(﹣)(2)﹣2.3. [(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2| 4.计算:﹣23﹣(﹣1)2×+(﹣1)2005.5.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].1.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).2.计算(1)(﹣2)2﹣(++)×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7)3.计算:(1)12﹣(﹣18)+(﹣7)﹣15(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.1.计算÷[32﹣(﹣2)2].29.计算:(1)﹣3﹣(﹣4)+2 (2)(﹣6)÷2×(﹣)(3)(﹣+﹣)×(﹣24)(4)﹣14﹣7÷[2﹣(﹣3)2]30.计算①(﹣6)×﹣8÷|﹣4+2|②(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.1.计算:(1)(2)2.计算:﹣14﹣×〔2﹣(﹣3)2〕×(﹣2)3 3.﹣10+8÷(﹣2 )2﹣(﹣4)×(﹣3)4..5.计算与化简:(1)计算:(2)25×.1.计算:(1)﹣(﹣)+(﹣0.75)(2)﹣2.5÷×(﹣)(3)﹣22﹣6÷(﹣2)×﹣|﹣9+5|.2.计算:.3.计算下列各式(1)﹣(﹣1)4+(1﹣)÷3×(2﹣23)(2)(﹣+)×(﹣12)4.计算:0.752﹣×+0.52.5.计算:(﹣1)3﹣×[2﹣(﹣3)2].1.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.2.25×﹣(﹣25)×+25×(﹣)3.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2|(3)[(﹣+)×(﹣36)+2]÷(﹣14)4.计算(1)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](2)﹣14﹣(1﹣0.5)××[4﹣(﹣2)3].5.计算:(﹣4)2×(﹣2)÷[(﹣2)3﹣(﹣4)].1.计算:﹣12+3×(﹣2)3+(﹣6)÷(﹣)2.2.计算:[(﹣3)2﹣(﹣5)2]÷(﹣8)+(﹣3)×(﹣1)3.计算:(﹣1)2003+(﹣3)2×|﹣|﹣43+(﹣2)4.4.a与b互为相反数,c与d互为倒数,求的值.5.计算:(1)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](2)﹣24÷(﹣2)2+5×(﹣)﹣0.25.1.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.3.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.4.先化简,再求值:﹣2x2﹣[3y2﹣2(x2﹣y2)+6],其中x=﹣1,y=﹣.5.先化简,再求值:(1)(5x+y)﹣(3x+4y),其中x=,y=;(2)(a﹣b)2+9(a﹣b)+15(a﹣b)2﹣(a﹣b),其中a﹣b=.1.有理数a、b在数轴上位置如图所示,试化简|1﹣3b|+2|2+b|﹣|3b﹣2|.2.去括号,合并同类项(1)﹣3(2s﹣5)+6s (2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab)(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)3.化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.4.已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.5.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.6.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)1.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.2.已知|x+1|+(y﹣2)2=0,求(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]的值.3.先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.4.4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.5.化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中1.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.2.(1)计算:()﹣2+(3.14﹣π)0﹣|﹣5|(2)先化简,再求值:(2x+1)(2x﹣1)﹣5x(x﹣1)+(x﹣1)2,其中x=﹣.3.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.4.先化简,再求值:(x+y)2﹣2x(x+2y)+(x+3y)(x﹣3y),其中x=﹣1,y=2.5.当时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.1.先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B 的值.2.化简求值:5ab﹣2a2b+[3ab﹣2(4ab2﹣a2b)],其中a、b、c满足|a﹣1|+(b﹣2)2=0.3.9a2﹣[7a2+2a﹣(a2+3a)],其中a=﹣1.4.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中,.5.若单项式a3b n+1和2a2m﹣1b3是同类项,求3m+n的值.6.a是绝对值等于2的负数,b是最小的正整数,c的倒数的相反数是﹣2,求代数式4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3]的值.1.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.2.为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)3.合并同类项①3a﹣2b﹣5a+2b ②(2m+3n﹣5)﹣(2m﹣n﹣5)③2(x2y+3xy2)﹣3(2xy2﹣4x2y)4.已知A=2x2﹣3x,B=x2﹣x+1,求当x=﹣1时代数式A﹣3B的值.1.已知A=y2﹣ay﹣1,B=2y2+3ay﹣2y﹣1,且多项式2A﹣B的值与字母y的取值无关,求a的值.2.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.3.化简求值:已知:(x﹣3)2=0,求3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2的值.4.已知A=x2+ax,B=2bx2﹣4x﹣1,且多项式2A+B的值与字母x的取值无关,求a,b的值.5.化简(1)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)(2)5ab2﹣[a2b+2(a2b﹣3ab2)]6.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.1.先化简再求值:(x+y)(x﹣y)﹣x(x﹣y)﹣xy,其中x=2016,y=﹣1.2.(1)已知(x+2)2+|y+1|=0,求x,y的值(2)化简:.3.化简:(1)2x2﹣3x+1﹣(5﹣3x+x2)(2).4.先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.5.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.6.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.1.先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.2.求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.3.已知A=,B=a2+3a﹣1,且3A﹣B+C=0,求代数式C;当a=2时,求C的值.4.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|.5.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式a2﹣2b+4ab的值.1.先化简,再求值:,其中.2.化简:(1)3a2+5b﹣2a2﹣2a+3a﹣8b(2)(8x﹣7y)﹣2(4x﹣5y)(3)﹣(3a2﹣4ab)+[a2﹣2(2a2+2ab)].。
初中数学计算专练—有理数计算+整式化简求值(60题)

七年级计算+整式化简求值(60练)1.(2021秋•乐东县期末)先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.2.(2021秋•顺义区期末)先化简,再求值:x2﹣(2x2﹣4y)+2(x2﹣y),其中x=﹣1,y=.3.(2021秋•芝罘区期末)化简后再求值:x+2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.4.(2021秋•庐江县期末)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.5.(2021秋•赣县区期末)先化简,再求值2(3ab2﹣a3b)﹣3(2ab2﹣a3b),其中a=﹣,b=4.6.(2022秋•海陵区校级期中)合并同类项:(1)3a2﹣2ab﹣a2+5ab(2)3(x2﹣xy+y2)﹣2(y2﹣3xy+x2)7.(2021秋•重庆期末)已知代数式A=x2+xy+2y﹣,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)当x=﹣1,y=﹣2时,求2A﹣B的值.8.(2022秋•徐州期中)先化简,再求值.6(x2y﹣3x)﹣2(x﹣2x2y)﹣2(1﹣10x),其中x=﹣2,y=.9.(2021秋•莘县期末)已知A=2x2+3mx﹣2x﹣1,B=﹣x2+mx﹣1.求(1)3A+6B;(2)若3A+6B的值与x无关,求m的值.10.(2015春•南岗区校级期中)先化简,再求值:3(2x2y﹣3xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.11.(2021秋•包河区校级期末)先化简,再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=﹣1,y=1.12.(2021秋•平定县期末)化简求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.13.(2021秋•八公山区期末)化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.14.(2021秋•红河州期末)先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1)+(2﹣a2+4a),其中a=﹣2.15.(2022秋•上杭县期中)先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣,b=.16.(2021秋•槐荫区期末)先化简,再求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=1.17.(2021秋•济阳区期末)先化简,再求值:(4a2+2a﹣2)+(a﹣1),其中a=.18.(2021秋•十堰期末)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a、b满足|a+1|+(b+2)2=0.19.(2022秋•市南区期末)先化简,再求值:﹣2(mn﹣3m2)+(mn﹣m2),其中m=﹣2,n=﹣3.20.(2021秋•长海县期末)先化简,再求值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2);其中x=,y=﹣3.21.(2021秋•怀化期末)先化简,再求值:5ab+2(2ab﹣3a2)﹣(6ab﹣7a2),其中a,b满足(1+a)2+|b﹣|=0.22.(2021秋•凉山州期末)先化简,再求代数式的值:(xy﹣2xy2)﹣(﹣3x2y2+2xy)﹣(3xy﹣2xy2),其中x=,y=﹣2.23.(2021秋•富川县期末)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.24.(2021秋•东港区期末)先化简,再求值:3x2y﹣[2x2﹣(xy2﹣3x2y)﹣4xy2],其中|x|=2,y=,且xy<0.25.(2021秋•蓝山县期末)先化简,再求值:5xy﹣(2x2﹣xy)+2(x2+3),其中x=1,y=﹣2.26.(2021秋•南昌县期末)先化简,再求值:x﹣2(x﹣y2)+(﹣),其中x=﹣2,y=.27.(2021秋•永顺县期末)先化简,再求值:2(x2+2x﹣2)﹣(x2﹣2x﹣1),其中x=﹣.28.(2021秋•长寿区期末)先化简再求值:3x2y﹣[2x2y﹣(xyz﹣2xz2)﹣3x2y]﹣2xyz,其中x=1,y=﹣2,z=﹣1.29.(2021秋•达州期末)先化简,再求值:2(xy﹣x2y)﹣6(xy﹣x2y),其中x,y满足|x﹣|+(y+4)2=0.30.(2021秋•农安县期末)先化简,再求值:5a2﹣[a2﹣(2a﹣5a2)﹣2(a2﹣3a)],其中a=4.31.(2022秋•朝阳区校级期中)先化简,再求值:(9ab2﹣3)+a2b+3﹣2(ab2+1),其中a=﹣2,b=3.32.(2022秋•北票市期中)先化简,后求值:3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2,其中a,b满足:(a+2)2+|b﹣1|=0.33.(2022秋•大兴区期末)先化简,再求值:3x2﹣[5x+(x﹣y)+2x2]+2y,其中x=2,y=.34.(2021秋•舒兰市期末)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中,b=﹣3.35.(2022秋•越秀区校级期中)已知A=﹣3x2+3x+1,B=2x2+2mx﹣1,且2A+3B的值与x无关,求m的值.36..(2021秋•栖霞市期末)已知多项式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).(1)若多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.37.(2021秋•永昌县校级期末)先化简,再求值:a﹣2(a﹣b2)+(﹣a+b2),其中a=﹣2,b=.38.(2022秋•拜泉县校级期中)化简求值:2x3+4x﹣2x2﹣(x+3x2﹣2x3),其中x=﹣2.39.(2021秋•朝阳区校级期末)已知A=2x2+3xy+2x﹣1,B=x2+xy+3x﹣2.(1)当x=y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x无关,求y的值.40.(2022秋•吉安期中)先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2),其中x=,y=﹣3.41.(2021秋•同安区期末)先化简,再求值:3(2a2b﹣ab2)﹣(5a2b﹣3ab2),其中a=2,b=﹣1.42.(2021秋•峡江县期末)已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.43.(2021秋•海口期末)先化简,再求值.3(x2﹣2xy)﹣[3x2+2(﹣2xy+y2+3)﹣4y2],其中,.44.(2021秋•修水县期末)3a﹣[﹣2b+2(a﹣3b)﹣4a],其中a=﹣3,b=.45.(2021秋•铜官区期末)化简求值:3(x2﹣2xy)﹣(2x2﹣xy),其中x=2,y=3.46.(2021秋•高新区期末)先化简,再求值:4(3a2b﹣ab2)﹣5(﹣ab2+3a2b),其中a=2,b=﹣3.47.(2021秋•廉江市期末)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+x2y2],其中x=3,y=﹣.48.(2022秋•庐阳区校级期中)化简:2(2b﹣3a)+3(2a﹣3b).49.(2021秋•港南区期末)先化简,再求值:5xy﹣(4x2+2xy)﹣2(2.5xy+10),其中x=1,y=2.50.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.51.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.52.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.53.(2022秋•沙洋县期中)化简或求值(1)化简:5x2﹣[3x﹣2(2x﹣3)﹣4x2](2)先化简,再求值:,其中x=2,y=﹣1.54.(2021秋•临沂期末)已知2x m y2与﹣3xy n是同类项,计算m﹣(m2n+3m﹣4n)+(2nm2﹣3n)的值.55.(2022秋•阳新县期中)如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式的值.56.(2021秋•宿城区期末)先化简,再求值:3(2a2b﹣ab2)﹣(5a2b﹣4ab2),其中a=2,b=﹣1.57.(2021秋•利通区校级期末)化简:.58.(2021秋•鹿邑县期末)(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.59.(2021秋•曲阳县期末)先化简,再求值:﹣(3x2+3xy﹣)+(+3xy+),其中x=﹣,y =2.60.(2021秋•播州区期末)先化简,再求值:3y2﹣x2+(2x﹣y)﹣(x2+3y2),其中x=1,y=﹣2.七年级计算+整式化简求值参考答案与试题解析一.解答题(共60小题)1.(2021秋•乐东县期末)先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y当x=﹣2,y=时,原式=44+﹣=512.(2021秋•顺义区期末)先化简,再求值:x2﹣(2x2﹣4y)+2(x2﹣y),其中x=﹣1,y=.【解答】解:原式=x2﹣2x2+4y+2x2﹣2y=x2+2y,当x=﹣1,y=时,原式=1+1=2.3.(2021秋•芝罘区期末)化简后再求值:x+2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.【解答】解:原式=x+6y2﹣4x﹣8x+4y2=﹣11x+10y2,∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,即x=2,y=﹣1,当x=2,y=﹣1时,原式=﹣12.4.(2021秋•庐江县期末)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.【解答】解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.5.(2021秋•赣县区期末)先化简,再求值2(3ab2﹣a3b)﹣3(2ab2﹣a3b),其中a=﹣,b=4.【解答】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=﹣,b=4时,原式=﹣.6.(2022秋•海陵区校级期中)合并同类项:(1)3a2﹣2ab﹣a2+5ab(2)3(x2﹣xy+y2)﹣2(y2﹣3xy+x2)【解答】解:(1)原式=2a2+3ab(2)原式=3x2﹣3xy+3y2﹣2y2+6xy﹣2x2=x2+3xy+y27.(2021秋•重庆期末)已知代数式A=x2+xy+2y﹣,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)当x=﹣1,y=﹣2时,求2A﹣B的值.【解答】解:(1)2A﹣B=2(x2+xy+2y﹣)﹣(2x2﹣2xy+x﹣1)=2x2+2xy+4y﹣1﹣2x2+2xy﹣x+1=4xy﹣x+4y;(2)当x=﹣1,y=﹣2时,原式=4×(﹣1)×(﹣2)﹣(﹣1)+4×(﹣2)=8+1﹣8=1.8.(2022秋•徐州期中)先化简,再求值.6(x2y﹣3x)﹣2(x﹣2x2y)﹣2(1﹣10x),其中x=﹣2,y=.【解答】解:原式=6x2y﹣18x﹣2x+4x2y﹣2+20x=10x2y﹣2,当x=﹣2,y=时,原式=10×(﹣2)2×﹣2=58.9.(2021秋•莘县期末)已知A=2x2+3mx﹣2x﹣1,B=﹣x2+mx﹣1.求(1)3A+6B;(2)若3A+6B的值与x无关,求m的值.【解答】解(1)3A+6B=3(2x2+3mx﹣2x﹣1)+6(﹣x2+mx﹣1)=6x2+9mx﹣6x﹣3﹣6x2+6mx﹣6=15mx﹣6x﹣9=(15m﹣6)x﹣9,(2)该多项式的值与x无关,所以15m﹣6=0,则m=10.(2015春•南岗区校级期中)先化简,再求值:3(2x2y﹣3xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.【解答】解:原式=6x2y﹣9xy2﹣xy2+3x2y=9x2y﹣10xy2,当x=,y=﹣1时,原式=﹣1﹣=﹣.11.(2021秋•包河区校级期末)先化简,再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=﹣1,y=1.【解答】解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=﹣1,y=1时,原式=﹣5﹣5=﹣10.12.(2021秋•平定县期末)化简求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.【解答】解:5(4a2﹣2ab3)﹣4(5a2﹣3ab3)=20a2﹣10ab3﹣20a2+12ab3=2ab3当a=﹣1,b=2时,原式=2×(﹣1)×23=﹣16.13.(2021秋•八公山区期末)化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.【解答】解:原式=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2,=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2,=xy2+xy,当中x=3,y=﹣时,原式=3×+3×(﹣)=﹣1=﹣.14.(2021秋•红河州期末)先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1)+(2﹣a2+4a),其中a=﹣2.【解答】解:原式=4a2﹣3a﹣2a2﹣a+1+2﹣a2+4a=a2+3,当a=﹣2时,原式=(﹣2)2+3=7.15.(2022秋•上杭县期中)先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣,b=.【解答】解:原式=15a2b﹣5ab2﹣5﹣ab2﹣3a2b+5=12a2b﹣6ab2,当a=﹣,b=时,原式=1+=1.16.(2021秋•槐荫区期末)先化简,再求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=1.【解答】解:当x=1时,原式=﹣x2+x﹣2﹣x+1=﹣x2﹣1=﹣1﹣1=﹣217.(2021秋•济阳区期末)先化简,再求值:(4a2+2a﹣2)+(a﹣1),其中a=.【解答】解:原式=﹣2a2﹣a+1+a﹣1=﹣2a2,当a=时,原式=﹣.18.(2021秋•十堰期末)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a、b满足|a+1|+(b+2)2=0.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=﹣ab2,∵|a+1|+(b+2)2=0,∴a+1=0,b+2=0,解得:a=﹣1,b=﹣2,则原式=4.19.(2022秋•市南区期末)先化简,再求值:﹣2(mn﹣3m2)+(mn﹣m2),其中m=﹣2,n=﹣3.【解答】解:原式=﹣2mn+6m2+mn﹣m2=5m2﹣mn,当m=﹣2,n=﹣3时,原式=20﹣6=14.20.(2021秋•长海县期末)先化简,再求值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2);其中x=,y=﹣3.【解答】解:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2)=2xy﹣2xy+4x2y2+6xy﹣10x2y2=6xy﹣6x2y2当x=,y=﹣3时,原式=6××(﹣3)﹣6×()2×(﹣3)2=﹣6﹣6=﹣12.21.(2021秋•怀化期末)先化简,再求值:5ab+2(2ab﹣3a2)﹣(6ab﹣7a2),其中a,b满足(1+a)2+|b﹣|=0.【解答】解:∵a,b满足(1+a)2+|b﹣|=0,∴(1+a)2与|b﹣|互为相反数.又∵(1+a)2≥0,|b﹣|≥0,∴(1+a)2=0,|b﹣|=0,∴1+a=0,b﹣=0,∴a=﹣1,b=,则5ab+2(2ab﹣3a2)﹣(6ab﹣7a2)=5ab+4ab﹣6a2﹣6ab+7a2=3ab+a2=﹣1+1=0.22.(2021秋•凉山州期末)先化简,再求代数式的值:(xy﹣2xy2)﹣(﹣3x2y2+2xy)﹣(3xy﹣2xy2),其中x=,y=﹣2.【解答】解:原式=xy﹣2xy2+3x2y2﹣2xy﹣3xy+2xy2=3x2y2﹣4xy,∵x=,y=﹣2,∴原式=3×()2×(﹣2)2﹣4××(﹣2)=.23.(2021秋•富川县期末)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.【解答】解:∵x,y互为相反数,且|y﹣3|=0,∴y=3,x=﹣3,2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+3y﹣x+3y2﹣2x3=﹣y2﹣2x+3y,当x=﹣3,y=3时,原式=﹣32﹣2×(﹣3)+3×3=6.24.(2021秋•东港区期末)先化简,再求值:3x2y﹣[2x2﹣(xy2﹣3x2y)﹣4xy2],其中|x|=2,y=,且xy<0.【解答】解:原式=3x2y﹣2x2+xy2﹣3x2y+4xy2=5xy2﹣2x2,∵|x|=2,y=,且xy<0,∴x=﹣2,y=,则原式=﹣﹣8=﹣.25.(2021秋•蓝山县期末)先化简,再求值:5xy﹣(2x2﹣xy)+2(x2+3),其中x=1,y=﹣2.【解答】解:原式=5xy﹣2x2+xy+2x2+6=6xy+6,当x=1,y=﹣2时,原式=﹣12+6=﹣6.26.(2021秋•南昌县期末)先化简,再求值:x﹣2(x﹣y2)+(﹣),其中x=﹣2,y=.【解答】解:原式=x﹣2x+y2﹣x+y2=x﹣2x+y2﹣x+y2=﹣3x+y2,把x=﹣2,y=代入得:原式=6.27.(2021秋•永顺县期末)先化简,再求值:2(x2+2x﹣2)﹣(x2﹣2x﹣1),其中x=﹣.【解答】解:原式=2x2+4x﹣4﹣x2+2x+1=x2+6x﹣3,当x=﹣时,原式=﹣3﹣3=﹣5.28.(2021秋•长寿区期末)先化简再求值:3x2y﹣[2x2y﹣(xyz﹣2xz2)﹣3x2y]﹣2xyz,其中x=1,y=﹣2,z=﹣1.【解答】解:原式=3x2y﹣2x2y+xyz﹣2xz2+3x2y﹣2xyz=4x2y﹣2xz2﹣xyz,当x=1,y=﹣2,z=﹣1时,原式=﹣8﹣2﹣2=﹣12.29.(2021秋•达州期末)先化简,再求值:2(xy﹣x2y)﹣6(xy﹣x2y),其中x,y满足|x﹣|+(y+4)2=0.【解答】解:原式=2xy﹣3x2y﹣6xy+4x2y=x2y﹣4xy,∵|x﹣|+(y+4)2=0,∴x=,y=﹣4,则原式=﹣9+24=15.30.(2021秋•农安县期末)先化简,再求值:5a2﹣[a2﹣(2a﹣5a2)﹣2(a2﹣3a)],其中a=4.【解答】解:原式=5a2﹣a2+2a﹣5a2+2a2﹣6a=a2﹣4a,当a=4时,原式=16﹣16=0.31.(2022秋•朝阳区校级期中)先化简,再求值:(9ab2﹣3)+a2b+3﹣2(ab2+1),其中a=﹣2,b=3.【解答】解:原式=3ab2﹣1+a2b+3﹣2ab2﹣2=a2b+ab2,当a=﹣2,b=3时,原式=12﹣18=﹣6.32.(2022秋•北票市期中)先化简,后求值:3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2,其中a,b满足:(a+2)2+|b﹣1|=0.【解答】解:原式=3a2b﹣2ab2+2ab﹣3a2b﹣ab+3ab2=ab2+ab,∵(a+2)2+|b﹣1|=0,∴a=﹣2,b=1,则原式=﹣2﹣2=﹣4.33.(2022秋•大兴区期末)先化简,再求值:3x2﹣[5x+(x﹣y)+2x2]+2y,其中x=2,y=.【解答】解:原式=3x2﹣5x﹣x+y﹣2x2+2y=x2﹣x+3y,当x=2,y=时,原式=4﹣11+1=﹣6.34.(2021秋•舒兰市期末)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中,b=﹣3.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2,当a=,b=﹣3时,原式=﹣9﹣27=﹣36.35.(2022秋•越秀区校级期中)已知A=﹣3x2+3x+1,B=2x2+2mx﹣1,且2A+3B的值与x无关,求m的值.【解答】解:把A=﹣3x2+3x+1,B=2x2+2mx﹣1代入得:2A+3B=2(﹣3x2+3x+1)+3(2x2+2mx﹣1)=(6m+6)x﹣1,由结果与x无关,得到6m+6=0,解得:m=﹣1.36.(2021秋•栖霞市期末)已知多项式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).(1)若多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.【解答】解:(1)原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,由结果与x取值无关,得到a+3=0,2﹣2b=0,解得:a=﹣3,b=1;(2)原式=3a2﹣3ab+3b2﹣3a2﹣ab﹣b2=﹣4ab+2b2,当a=﹣3,b=1时,原式=﹣4×(﹣3)×1+2×12=12+2=14.37.(2021秋•永昌县校级期末)先化简,再求值:a﹣2(a﹣b2)+(﹣a+b2),其中a=﹣2,b=.【解答】解:原式=a﹣2a+b2﹣a+b2=﹣3a+b2,当a=﹣2,b=时,原式=6.38.(2022秋•拜泉县校级期中)化简求值:2x3+4x﹣2x2﹣(x+3x2﹣2x3),其中x=﹣2.【解答】解:原式=2x3+4x﹣2x2﹣x﹣3x2+2x3=4x3﹣5x2+3x,当x=﹣2时,原式=﹣32﹣20﹣6=﹣58.39.(2021秋•朝阳区校级期末)已知A=2x2+3xy+2x﹣1,B=x2+xy+3x﹣2.(1)当x=y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x无关,求y的值.【解答】解:(1)∵A=2x2+3xy+2x﹣1,B=x2+xy+3x﹣2,∴A﹣2B=(2x2+3xy+2x﹣1)﹣2(x2+xy+3x﹣2)=2x2+3xy+2x﹣1﹣2x2﹣2xy﹣6x+4=xy﹣4x+3,当x=y=﹣2时,原式=4+8+3=15;(2)由A﹣2B的值与x无关,得到y﹣4=0,即y=4.40.(2022秋•吉安期中)先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2),其中x=,y=﹣3.【解答】解:原式=2x2﹣x2+3xy+2y2﹣x2+xy﹣2y2=4xy,当x=,y=﹣3时,原式=﹣3.41.(2021秋•同安区期末)先化简,再求值:3(2a2b﹣ab2)﹣(5a2b﹣3ab2),其中a=2,b=﹣1.【解答】解:原式=6a2b﹣3ab2﹣5a2b+3ab2=a2b,当a=2,b=1时,原式=﹣4.42.(2021秋•峡江县期末)已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.【解答】解:原式=2m2﹣2mn﹣6m2+9mn﹣2m2+4m2﹣2mn+2m2﹣1=5mn﹣1,∵2a3m b和﹣2a6b n+2是同类项,∴3m=6,n+2=1,即m=2,n=﹣1,则原式=﹣10﹣1=﹣11.43.(2021秋•海口期末)先化简,再求值.3(x2﹣2xy)﹣[3x2+2(﹣2xy+y2+3)﹣4y2],其中,.【解答】解:原式=3x2﹣6xy﹣3x2+4xy﹣2y2﹣6+4y2=﹣2xy+2y2﹣6,当x=,y=﹣时,原式=﹣2××()+2×()2﹣6=1+﹣6=﹣.44.(2021秋•修水县期末)3a﹣[﹣2b+2(a﹣3b)﹣4a],其中a=﹣3,b=.【解答】解:原式=3a+2b﹣2a+6b+4a=5a+8b,当a=﹣3,b=时,原式=﹣15+4=﹣11.45.(2021秋•铜官区期末)化简求值:3(x2﹣2xy)﹣(2x2﹣xy),其中x=2,y=3.【解答】解:原式=3x2﹣6xy﹣2x2+xy=x2﹣5xy,当x=2,y=3时,原式=4﹣30=﹣26.46.(2021秋•高新区期末)先化简,再求值:4(3a2b﹣ab2)﹣5(﹣ab2+3a2b),其中a=2,b=﹣3.【解答】解:原式=12a2b﹣4ab2+5ab2﹣15a2b=﹣3a2b+ab2,当a=2,b=﹣3时,原式=36+18=54.47.(2021秋•廉江市期末)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+x2y2],其中x=3,y=﹣.【解答】解:原式=3x2y﹣2xy+2xy﹣3x2y﹣x2y2=﹣x2y2,当x=3,y=﹣时,原式=﹣1.48.(2022秋•庐阳区校级期中)化简:2(2b﹣3a)+3(2a﹣3b).【解答】解:原式=4b﹣6a+6a﹣9b=﹣5b.49.(2021秋•港南区期末)先化简,再求值:5xy﹣(4x2+2xy)﹣2(2.5xy+10),其中x=1,y=2.【解答】解:5xy﹣(4x2+2xy)﹣2(2.5xy+10)=5xy﹣4x2﹣2xy﹣5xy﹣20=5xy﹣2xy﹣5xy﹣4x2﹣20=﹣2xy﹣4x2﹣20;当x=1,y=2时,原式=﹣2xy﹣4x2﹣20=﹣2×1×2﹣4×12﹣20=﹣28.50.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.【解答】解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.51.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.【解答】解:原式=3xy+10y+5x﹣2xy﹣2y+3x=xy+8y+8x=8(x+y)+xy,当xy=2,x+y=3时,原式=8×3+2=26.52.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.【解答】解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=时,原式=﹣4×(﹣1)2×=﹣.53.(2022秋•沙洋县期中)化简或求值(1)化简:5x2﹣[3x﹣2(2x﹣3)﹣4x2](2)先化简,再求值:,其中x=2,y=﹣1.【解答】(1)解:原式=5x2﹣3x+2(2x﹣3)+4x2=5x2﹣3x+4x﹣6+4x2=9x2+x﹣6;(2)解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=2,y=﹣1时,原式=﹣2×22×(﹣1)﹣2×(﹣1)2=8﹣2=6.54.(2021秋•临沂期末)已知2x m y2与﹣3xy n是同类项,计算m﹣(m2n+3m﹣4n)+(2nm2﹣3n)的值.【解答】解:∵2x m y2与﹣3xy n是同类项,∴m=1,n=2,∴m﹣(m2n+3m﹣4n)+(2nm2﹣3n)=m﹣m2n﹣3m+4n+2nm2﹣3n=nm2﹣2m+n,当m=1,n=2时,原式=2﹣2+2=2.55.(2022秋•阳新县期中)如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式的值.【解答】解:(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,∴2﹣2b=0,a+3=0,b=1,a=﹣3,∴=a3﹣2b2﹣a3+3b2=a3+b2=×(﹣3)3+12=﹣+1=﹣.56.(2021秋•宿城区期末)先化简,再求值:3(2a2b﹣ab2)﹣(5a2b﹣4ab2),其中a=2,b=﹣1.【解答】解:3(2a2b﹣ab2)﹣(5a2b﹣4ab2)=6a2b﹣3ab2﹣5a2b+4ab2…(2分)=6a2b﹣5a2b﹣3ab2+4ab2…(3分)=a2b+ab2…(5分)当a=2,b=﹣1时,原式=22×(﹣1)+2×(﹣1)2=﹣2.57.(2021秋•利通区校级期末)化简:.【解答】解:原式=3y﹣1+2y+2=5y+1.58.(2021秋•鹿邑县期末)(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2,=﹣x2+y2,将x=﹣1,y=2代入可得:﹣x2+y2=3.59.(2021秋•曲阳县期末)先化简,再求值:﹣(3x2+3xy﹣)+(+3xy+),其中x=﹣,y =2.【解答】解:﹣(3x2+3xy﹣)+(+3xy+)=﹣3x2﹣3xy+++3xy+=y2.当x=﹣,y=2时,原式=22=4.60.(2021秋•播州区期末)先化简,再求值:3y2﹣x2+(2x﹣y)﹣(x2+3y2),其中x=1,y=﹣2.【解答】解:原式=3y2﹣x2+2x﹣y﹣x2﹣3y2=﹣2x2+2x﹣y,当x=1,y=﹣2时,原式=﹣2×12+2×1﹣(﹣2)=2.。
七年级计算专项练习题

七年级计算专项练习题一、有理数四则计算1.计算:-1.5+1.4-4.3-5.2+3.6答案:-6.02.计算:-12/4+11/13-(-2/3)+2.5-1.75答案:-4.253.计算:3/5+2/4+3/24答案:29/604.计算:-1.5+4/11答案:-1.2845.计算:40答案:406.计算:-3-(-4.9)-0.6+2.75-5 答案:-10.757.计算:-48-(-20)+20答案:-488.计算:-0.4-(-0.8)-(-20)答案:19.69.计算:-36-(-10/3)-(-6)答案:-29.33310.计算:-7/3×(-2)答案:4.66711.计算:-6×(-3×(-2))/5+(-1)×(2/3+3/4+3/24)答案:-4.12712.计算:(-5)×(-3)答案:1513.计算:[-81-(-2)+(-7)×(-3)+12×(-3)×(-4)]÷(14-16) 答案:-4314.计算:-2+1×2-3答案:-315.计算:31/26-56/15答案:-139/15016.计算:-8×(-2.5)×(-0.02) 答案:0.417.计算:-22+4+11×(-8) 答案:-8518.计算:(-7)×8×(-3)答案:16819.计算:-72÷(-5)-(-3)×16 答案:-4820.计算:-112/23×(-1)×2+(-1)×(11-3-[-5+(1-0.2×2)÷(-2)]) 答案:-9.65221.计算:11-3-[-5+(1-0.2×2)÷(-2)]答案:-1.422.计算:(-2+3)×(17-3)÷(15+12-11)答案:223.计算:-2-(-3)×(60×(-60×(-1/3))+2)答案:24.计算:-2.5×7.3+2.5×(-2.4)-2.5×(-1.7)+3.5答案:-11.95二、解方程1.解方程:-x+2/123=0 答案:x=-2/1232.解方程:4x-x=1答案:x=1/33.解方程:x-4=-12+x答案:无解4.解方程:2-3.5x=4.5x-1 答案:x=0.445.解方程:4x=5+3x答案:x=56.解方程:3y+7=-3y-5答案:y=-4/37.解方程:2(x-1)+4=8答案:x=38.解方程:4-(3-x)=-2答案:x=39.解方程:(x+1)-2(x-1)=1-3x 答案:x=1/210.解方程:2(x-2)-6(x-1)=3答案:x=7/411.解方程:4(x-1)-10(1-2x)=-3(2x+1) 答案:x=1/812.解方程:2(x-1)-(x+3)=(2.5x-0.5) 答案:x=5/213.解方程:3(x-7)-2[9-4(2-x)]=22答案:x=-714.解方程:3x-2=10-x答案:x=215.解方程:2(x-3)-4(x-1)=2x-6答案:x=016.解方程:(2/3)x-1/4=2/5答案:x=3/217.解方程:(21/3x+1)+2/3=2x-2答案:x=7/218.解方程:(3-x)/10-x/3=1/2答案:x=6注:第二题中有一项被遗漏,无法计算,第三题无解,已删除。
初中二年级数学上册计算题专项训练题(744)

初中二年级数学上册计算题专项训练题(744)好的,以下是针对初中二年级数学上册计算题专项训练题(744)的内容:一、有理数的混合运算1. 计算:\(-3 - (-2) + 4\)2. 计算:\(\frac{1}{2} \times \frac{3}{4} - \frac{1}{3}\times \frac{2}{3} + \frac{5}{6}\)3. 计算:\(-2^2 + 3^3 - (-4)^4\)4. 计算:\(\frac{3}{8} \div \frac{3}{4} \times \frac{2}{3}\)二、整式的加减5. 计算:\(3x^2 - 5x + 2 - (2x^2 + 4x - 7)\)6. 计算:\(4y^2 - 3y + 5 - 2(2y^2 + y - 3)\)三、解一元一次方程7. 解方程:\(2x - 3 = 5x + 1\)8. 解方程:\(\frac{1}{2}x + 3 = 2x - 5\)四、解二元一次方程组9. 解方程组:\[\begin{cases}3x + 2y = 8 \\2x - y = 1\end{cases}\]10. 解方程组:\[\begin{cases}4x - 3y = 5 \\x + 2y = 7\end{cases}\]五、代数式求值11. 当 \(x = 2\),\(y = -1\) 时,求 \(x^2 - 2xy + y^2\) 的值。
12. 当 \(a = -3\),\(b = 4\) 时,求 \(a^2 - 2ab + b^2\) 的值。
六、因式分解13. 因式分解:\(2x^2 - 8x + 8\)14. 因式分解:\(3x^2 - 12x + 12\)七、多项式乘多项式15. 计算:\((x + 2)(x - 3)\)16. 计算:\((2x - 3)(3x + 4)\)八、完全平方公式17. 利用完全平方公式计算:\((x - 3)^2\)18. 利用完全平方公式计算:\((2x + 1)^2\)九、平方差公式19. 利用平方差公式计算:\((x + 2)(x - 2)\)20. 利用平方差公式计算:\((3x - 2)(3x + 2)\)这些题目覆盖了初中二年级数学上册的主要计算题型,包括有理数混合运算、整式的加减、解一元一次方程、解二元一次方程组、代数式求值、因式分解、多项式乘多项式、完全平方公式和平方差公式等。
初中数学单元测试卷有理数整式练习题含答案

(2)
5、化简求值:
,其中
五、解答题。根据题目要求解答,并写出解题步骤。(共 5 题,每题 1 分,共 5 分) 1、求代数式的值:2x2﹣3x+ 1,其中 x=3;
2、(每小题 6 分,共 12 分)解方程
(1)解方程:
(2)先化简,再求值:2(5a2-7ab+9b2)-3(14a2-2ab+3b2),其中 a=
5、答案:化简得
,.
(3)
B.
,故原选项错误;
C.
,该选项正确;
D.
,错误.
故选 C.
考点:合并同类项.
8、答案:A.试题分析:A、x3?x2=x5,故本选项正确; B、(x3)3=x9,故本选项错误; C、x5+x5=2x5,故本选项错误; D、x6-x3≠x3,故本选项错误. 故选 A. 考点:1.合并同类项;2.同度数幂的乘法;3.幂的乘方.
27、下列各式中,运算正确的是(
)
A.3a-4a+a=0 B.x3 +x3 =2x6 C.5x2 -2xy2 =3xy D.5m-m=4
28、下列计算中,结果正确的是( ▲)
A.2x2+3x3=5x5 B.2x3·3x2=6x6 C.2x3÷x2=2x D.(2x2)3=2x6
29、已知:
,那么
的值为(
.
3、(5 分) 先化简,再求值:
,其中
4、图 1 是一个长为 2 ,宽为 2 的长方形,沿图中虚线剪开,可分成四块小长方形. (1)求出图 1 的长方形面积;
(2)将四块小长方形拼成一个图 2 的正方形.利用阴影部分面积的不同表示方法,直接写出代数式
(
)2、(
七年级数学复习有理数与整式

复习测试(满分120)一选择题(每题1分)1.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg2.飞机上升了-80米,实际上是()A.上升80米B.下降-80米C.先上升80米,再下降80米D.下降80米3.学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边70米,小明同学从家出发,向北走了50米,接着又向南走了-20米,此时小明的位置是()A.在家B.在书店C.在学校D.在家的北边30米处5.若a<b<0<c<d,则以下四个结论中,正确的是()A.a+b+c+d一定是正数B.c+d-a-b可能是负数C.d-c-a-b一定是正数D.c-d-a-b一定是正数7.下列说法正确的是()①在+5与-6之间没有正数②在-1与0之间没有负数③在+5与+6之间有无数个正分数④在-1与0之间没有正分数A.仅④正确 B.仅③正确 C.仅③④正确D.①②④正确8.下列说法中不正确的是()A.零是整数,也是自然数B.有最小的正整数,没有最小的负整数C.-(+3)是负数,也是正数D.一个整数不是奇数,就是偶数9.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数10.下列说法中,正确的是()A.没有最大的正数,但有最大的负数B.有绝对值最小的数,没有绝对值最大的数C.有理数包括正有理数和负有理数D.相反数是本身的数是正数11.如图,数轴上的点P、O、Q、R、S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间12.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,x n表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:(1)x3=3;(2)x5=1;(3)x108<x104;(4)x2007<x2008;其中,正确结论的序号是()A.(1)、(3)B.(2)、(3)C.(1)、(2)、(3)D.(1)、(2)、(4)13.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或200614.已知如图:数轴上A,B,C,D四点对应的有理数分别是整数a,b,c,d,且有c-2a=7,则原点应是()A.A点B.B点C.C点D.D点15.已知数轴上A、B两点坐标分别为-3、-6,若在数轴上找一点C,使得A与C的距离为4;找一点D,使得B与D的距离为1,则下列何者不可能为C与D的距离()A.0 B.2 C.4 D.616.如果x<0,y>0,x+y<0,那么下列关系式中正确的是()A.x>y>-y>-x B.-x>y>-y>x C.y>-x>-y>x D.-x>y>x>-y17.如图数在线的O是原点,A、B、C三点所表示的数分别为a、b、c.根据图中各点的位置,下列各数的絶对值的比较何者正确()A.|b|<|c| B.|b|>|c| C.|a|<|b| D.|a|>|c|18.在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排列,求第10个数为何()A.13 B.14 C.16 D.1719.若0<x<1,则x,1/x,x2的大小关系是()A.1/x<x<x2B.x<1/x<x2C.x2<x<1/x D.1/x<x2<x20.对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b| B.a+b=-(|a|+|b|)C.a+b=-(|a|-|b|)D.a+b=-(|b|-|a|)21.把-1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()A.B.C.D.22.下表是某电台本星期的流行歌曲排行榜,其中歌曲J是新上榜的歌曲,箭头“↑”或“↓”分别表示该歌曲相对于上星期名次的变化情况,“↑”表示上升,“↓”表示下降,不标注的则表明名次没有变化,已知每首歌的名次变化都不超过两位,则上星期排在第1,5,7名的歌曲分别是()A.D,E,H B.C,F,I C.C,E,I D.C,F,H23.若x<0,y>0,且|x|>|y|,那么x+y是()A.正数B.负数C.0 D.正、负不能确定24.5个有理数中,若其中任意4个数的和都大于另一个数,那么这5个有理数中()A.最多有4个是0 B.最多有2个是0C.最多有3个是0 D.最多有1个是025.下列判断:①两个有理数相加,它们的和一定大于每一个加数;②一个正数与一个负数相加一定得0;③两个负数的和的绝对值一定等于它们的绝对值的和;④两个正数的和一定是正数.其中正确的个数有()A.4个B.3个C.2个D.1个26.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B .a 1+ a 4+ a 7+ a 3+ a 6+ a 9=2(a 2+ a 5+ a 8)C .a 1+ a 2+ a 3+ a 4+ a 5+ a 6+ a 7+ a 8+ a 9=9a5D .(a 3+ a 6+ a 9)-(a 1+ a 4+ a 7)=(a 2+ a 5+ a 8)27.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,328.2012年5月25日有700多位来自全国各地的知名企业家聚首湖北共签约项目投资总额为909260000000元,将909260000000用科学记数法表示为表示(保留3个有效数字),正确的是( )A .909×1010B .9.09×1011C .9.09×1010D .9.0926×101129.任意有理数a ,式子1-|a|,|a+1|,|-a|+a ,|a|+1中,值不能为0的是( )A .1-|a|B .|a+1|C .|-a|+aD .|a|+130.当式子|x-1|+|x-2|+|x-3|+…+|x-1997|取得最小值时,实数x 的值等于( )A .999B .998C .1997D .031.已知x 为实数,且|3x-1|+|4x-1|+|5x-1|+…+|17x-1|的值是一个确定的常数,则这个常数是( )A .5B .10C .15D .7532.若|m-3|+(n+2)2=0,则m+2n 的值为( )A .-4B .-1C .0D .433.若|a-2|与(b+3)2互为相反数,则b a 的值为( )A .-6B .-8C .8D .934.下列说法错误的是( )A .3a+7b 表示3a 与7b 的和B .7x2-5表示x2的7倍与5的差C .1a-1b 表示a 与b 的倒数差D .x2-y2表示x ,y 两数的平方差35.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(a-10%)(a+15%)万元B .a (1-10%)(1+15%)万元C .(a-10%+15%)万元D .a (1-10%+15%)万元36.在代数式,3x 2-2x-3,abc ,0,,π,x+yz ,中,下列结论正确的是( )A .有4个单项式,2个多项式B .有5个单项式,3个多项式C .有7个整式D .有3个单项式,2个多项式37.若-3x 2m y 3与2xy 2n 是同类项,则|m-n|的值是( )y x a+b ab 1 2 b 2A.0 B.1 C.7 D.-1二、填空题(每题2分)1.对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x-y);且规定P n(x,y)=P1(P n-1(x,y))(n为大于1的整数).如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2).则P2011(1,-1)=2.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是3.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n=4.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是5.已知x、y是实数,且满足(x+4)2+|y-1|=0,则x+y的值是6.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是(填图形的名称)▲■★■▲★▲■★■▲★▲…7.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是8.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是9.若|a-b|=b-a,且|a|=3,|b|=2,则(a+b)3的值为10.有理数a,b,c在数轴上的位置如图,则化简|a+c|+|b+c|+|c-1|+|a-2c|-|b-c|的结果是11. 若a、b、c为非零的有理数,则|a|/a+b/|b|+|c|/c的值是12.若m=x3-3x2y+2xy2+3y3,n=x3-2x2y+xy2-5y3,则2x3-7x2y+5xy2+14y3的值为13.计算(-3)3+52-(-2)2之值为14.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a+b+c+d的值为15.甲,乙,丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是16..若a ,b ,c 均为整数,且|a-b|2001+|c-a|2000=1,则|a-c|+|c-b|+|b-a|的值为17.已知1+x+x 2+x 3+x 4=0,则多项式1+x+x 2+x 3+…+x 2004的值等于18.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是19.化简5(2x-3)-4(3-2x )之后,可得20.已知A=3a 2+b 2-c 2,B=-2a 2-b 2+3c 2,且A+B+C=0,则C=三、解答题(1到3每题8分,4题9分 第5题10分)1. 阅读材料,解决问题:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…, 不难发现3的正整数幂的个位数字以3、9、7、1为一个周期循环出现,由此可以得到: 因为3100=34×25,所以3100的个位数字与34的个位数字相同,应为1;因为32009=34×502+1,所以32009的个位数字与31的个位数字相同,应为3.(1)请你仿照材料,分析求出299的个位数字及999的个位数字;(2)请探索出22010+32010+92010的个位数字;(3)请直接写出92010-22010-32010的个位数字.2. 试求出所有的整数n ,使是整数.3. 图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n= .如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是多少;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和.24n 2+15 3n+2 n(n+1)24.如图,是一张面积为630cm2的矩形张贴广告,它的上、下、左、右空白部分的宽度都是2cm.设印刷部分(矩形)的一边为x cm,印刷面积为y cm2.(1)试用x的代数式表示y;(2)若印刷面积为442 cm2时,求张贴广告的长和宽.5.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.。
初中一年级数学下册计算题专项训练题(779)
初中一年级数学下册计算题专项训练题(779)好的,我将为你生成一份初中一年级数学下册计算题专项训练题。
这份题目将涵盖初一数学下册的重点计算题型,难易适中,适合学生巩固计算能力。
以下是题目内容:一、有理数的混合运算(共5题)1. (-3) × 2 + 4 × (-6) + 5 × (-7)2. (-2)^3 + 3^2 - 4^23. (-1)^4 × (-3)^2 - 2^3 × (-2)^24. (-1/2) × (-3/4) ÷ (-1/3) × 2/55. (-2)^3 × (-3)^2 + 4^2 - 5^2二、整式的加减(共3题)6. 3x^2 + 5x - 7 - (2x^2 - 4x + 1)7. 4y^2 - 3y + 2 - (5y^2 + 2y - 3)8. 2a^2 - 3ab + 4b^2 - (a^2 + 2ab - b^2)三、整式的乘法(共4题)9. (3x - 2)(2x + 3)10. (a + b)(a - b)11. (x^2 + 2x - 3)(x - 1)12. (2a + 3b)(3a - 2b)四、平方差公式(共2题)13. (2x + 3)^2 - (2x - 3)^214. (a + b)^2 - (a - b)^2五、完全平方公式(共2题)15. (x + 2)^2 + (x - 2)^216. (2a + b)^2 - (2a - b)^2以上就是一份初中一年级数学下册计算题专项训练题。
题目涵盖了有理数混合运算、整式的加减乘法、平方差公式和完全平方公式等重点计算题型。
题目难易适中,适合学生巩固计算能力。
希望这份题目对你有所帮助。
如果还有任何其他需要,欢迎随时告诉我。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均数是()A.B.C.D.【答案】D.【解析】因为m个数的平均数x,则m个数的总和为mx;n个数的平均数y,则n个数的总和为ny;然后求出m+n个数的平均数为:.故选D.【考点】加权平均数.2.若,则若则【答案】-4,18【解析】由得,则;由,.【考点】有理指数幂运算.3.观察下列各式:32-12=4×2,102-82=4×9,172-152=4×16…你发现了什么规律?(1)试用你发现的规律填空:352-332=4×,642-622=4×.(2)请你用含一个字母n(n≥1)的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.【答案】(1)32,64;(2),说明见解析.【解析】(1)观察一系列等式,得到规律,填写即可.(2)归纳总结得到一般性规律,证明即可.试题解析:(1).(2)可以得出规律:,说明如下:∵左边=,右边=4n+4,∴.【考点】1.探索规律题(数字的变化类);2.平方差公式.4.如图,两个正方形的边长分别为和,如果a+b=10,ab=20,那么阴影部分的面积是()A.B.C.D.【答案】B【解析】S阴影部分=S△BCD+S正方形CEFG﹣S△BGF=•a•a+b2﹣•b•(a+b)=a2+b2﹣ab﹣b2= [(a2+b2)﹣ab]= [(a+b)2﹣3ab],= [102﹣3×20]=20.当a+b=10,ab=20时,S阴影部分故选B.【考点】整式的混合运算.5.多项式3ma2-6mab的公因式是.【答案】3ma.【解析】3ma2-6mab中,3与6的公因式是:3,ma2与mab的公因式是:ma,∴多项式3ma2-6mab的公因式是:3ma.故答案是3ma.【考点】公因式.6.先化简,再求值:(2x+1)(x-2)-(2-x)2, 其中x=-2.【答案】-4.【解析】先化简原式,利用整式的乘法和加法,再代入x=-2求值即可.原式=2x2-3x-2-4+4x-x2=x2+x-6当x=-2时,原式=(-2)2+(-2)-6=-4.【考点】整式的混合运算—化简求值.7.若,,则____________;【答案】7【解析】根据完全平方公式以及整体代换的思想即可得出答案观察题目,联想到完全平方公式.∵,∴两边平方得:(1),又∵,∴整体代入(1)式得:【考点】1.完全平方公式;2.整体代换思想.8.已知则。
初一有理数+整式练习(含答案)
9. 分 ) ( 据 资3料 显 示 , 地 球 的 海 洋 面 积 约 为 360000平0方00十 米 , 请 用 科 学 记 数 法 表 示 地 球 海 洋 面 积 面 积 约
为 ( “ 平 方于 米
A. 36x 107
B. 3.6x 108
C. 0.3x610°
D. 3.x610°
10.(3 分 )2017 年 能 源 汽 车 销 量 达 77.7 万 辆 , 市 场 占 比 2.7%,77.7
鲍坻4分)如果吾凰伽俨钊与_:妻z6燮2n′皇同蒙宴工亘i, 那 么 mn 的 值 为 51.(4 分 ) 苞 多 项 式 z8 + (2m 十 2) 22 — 3z - 1 不 含 二 汀 项 , 则 m = 52〉斛分〉如果]个单项式一萼的系数和次数分别为m、 几 , 那么 2mn =
53.(4分 ) 已 知 z — 4y 二 2, 那 么 一 5 十 2z — 8y 的 值 为
35.分()5当 5m — 3n = --4时 ,求代 数 式 2 (m — n) 十 4(2m — n) 十 2 的 值
36分.) 已(知5a = 2, 求 出 下 列 代 数 式 的 值 a 一 2a 一 5 十 3 (2a2 —a) .
37.分 )(先5化 简 , 后 求 值 :
(DM 二 (-2m2 十 z 一 切 一 〈一2z2 - 暑## 十 1〉 , 其 中 z 万 2;
人 , 一 21
B. 35
7.G 分 )a 十 1 的 相 反 数 是 C
A 一Q 十 工
B. —(a+1)
8.G 分 ) 下 列 说 法 正 确 的 是 ( )
A 非 负 数 包括 零 和 整 数 C. 零 是 最 小 的 整 数
七年级数学第一章 有理数、第二章整式加减复习题
秋季期段考复习练习题(第一、第二章内容)一、选择题:1. 2011的倒数是 ( )A 、B 、2011C 、﹣2011D 、2. -0.125 ( )A 是负数;但不是分数B 不是分数;是有理数C 是分数;不是有理数D 是分数;也是负数3.在数轴上距 -2有3个单位长度的点所表示的数是( ) A 、-5 B 、1 C 、-1 D 、-5或14、a 、b 为有理数;它们在数轴上的对应点的位置如图所示;把a ;-a ;b ;-b 按照从小到大的顺序排序是 ( )A 、-b ﹤-a ﹤a ﹤bB 、-a ﹤-b ﹤a ﹤bC 、-b ﹤a ﹤-a ﹤bD 、-b ﹤b ﹤-a ﹤a5.小明做题时;画了一个数轴;在数轴上原有一个点A ;其表示的数是-3;由于粗心;把数 轴的原点标错了位置;使点A 正好落在了-3的相反数的位置;想想;要把数轴画正确;原 点要向哪个方向移动几个单位长度?( )。
6. 如图;a 、b 两个数在数轴上的位置如图所示;则下列各式正确的是( ). A .0<+b a B .0<ab C .0<-a b D .0>ba7.若实数a 、b 互为相反数;则下列等式中恒成立的是( ) A .0a b -= B .0a b += C . 1ab = D .1ab =- 8.()[]n m ---去括号化简得( )(A )n m -- (B )n m +- (C )n m - (D )n m + 9. 去括号:()a b c --+=( ).A .a b c -++B .a b c -+-C .a b c --+D .a b c ---10.下列各题去括号所得结果正确的是( )A.z y x x z y x x 2)2(22++-=+--B. 132)132(22+-+=-+--y x x y x xC. 23)2(322+-=--x x x xD. 2212)4(21222--=--x x x x11.若3-=b a ;则a b -=( ). A .3 B .3- C .0 D .6,2,3=+=-d c b a 则)()(d a c b --+的值是( ) .A . 1-B .1C .-5D .1513、已知33-=-y x ;则y x 35+-的值是( ) A .0 B .2C .5D .814.代数式722++y y 的值是6;则5842-+y y 的值是( ) A .9 B .9- C .18 D .18- 15.已知代数式y x 2+的值是3;则代数式142++y x 的值是( )(A )1 (B )4 (C )7 (D )不能确定 16、已知代数式 的值为2;那么142+-a a 值为 ( ) A 、61 B 、59 C 、13 D 、117.如果1-=x 时;那么)52(222x x x ---的值是( ). A .4 B .-4 C .-2 D .2 18.当x =-1时;多项式ax 5+bx 3+cx -1的值是5;则当x =1时;它的值是( ).A .-7B.-3C .-17D.719. 下列各式正确的是( )A .358-=--B .ab b a 734=+C .54x x x -= D .()572=--- 20.下列计算正确的是( ).A .235xx x B . 2242x x x C .xy y x 32=+ D . 2222y y y 21.下列计算正确的是( )A. 2233x x -=B.85332x x x =+C. x x x 325-=--D. 2222xy xy xy -=+-22.下列运算正确的是( ).A .3-(x -1)=2-xB .3-(x -1)=2+xC .3-(x -1)=4-xD .3-(x -1)=4+x 23.下列计算正确的是( ).A. 246x x x += B.2242x x x += C. 222-2x x x -=- D.22254x x x -+=- 24.将()()()y x y x y x +-+++42合并同类项得( )(A )y x + (B )y x -- (C )y x +- (D )y x -b a 2和y b a 23-是同类项时( )A 、0=y B 、1=y C 、2=y D 、3=y26.如果n m y x 2和qp y x -是同类项;则( )(A )pq mn = (B )q p n m +=+ (C )p n q m ==, (D )q p n m ==,27.若多项式32281xx x -+-与多项式323253x mx x +-+的和不含二次项;则m 等于( ). A .2 B .-2 C .4 D .-4 28.一个多项式与2x -2x +1的和是3x -2;则这个多项式为( )A.2x -5x +3B.-2x +x -1C.-2x +5x -3D.2x -5x -1329、已知一个多项式与239x x +的和等于2341x x +-;则这个多项式是( )A .51x --B .51x +C .131x --D .131x +30. 若2(2)10x y -++=;则x y +等于( ).A .1 B .1- C .3 D .3- 31. 下列说法正确的是( ) .A .0.600有4C .6.610精确到千分位D .410708.2⨯有5个有效数字 32.在下面所给的2008年12月份的日历表中;任意圈出一竖列上相邻的三个数的和不可能是A .69.B .54.C .27.D .40. 33、下列一组按规律排列的数:1;2;4;8;16;… A 、22011 B 、22011-1 C 、22010 D 、 以上答案都不对34、一个容器装有1升水;按照如下要求把水倒出:第1次倒出12升水;第2次倒出的水量是12升的13;第3次倒出的水量是13升的14;第4次倒出的水量是14升的15;…按照这种倒水的方法;倒了10次后容器内剩余的水量是( )A 、1011升 B 、19升 C 、110升 D 、111升 二、填空题:1、国家游泳中心——“水立方”是2008年奥运会标志性建筑之一;其工程占地面积为62828m 2;将62828用科学记数法表示为(保留两个有效数字) 。