九年级数学上册24.1 圆的基本性质(4) 同步练习
人教版数学九年级上册 24.1 圆的有关性质 同步训练习题(含答案)

人教版九年级上册24.1 圆的有关性质同步训练一、选择题1. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为 ()A.1B.2C.3D.42. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°3. 如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°4. 如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A. 5B. 7C. 9D. 115. 如图,在⊙O中,点A,O,D以及点B,O,C分别在一条直线上,则图中的弦有()A .2条B .3条C .4条D .5条6. 如图,在⊙O 中,AB ︵=CD ︵,∠1=45°,则∠2等于( )A .60°B .30°C .45°D .40°7. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 38. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米9. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°10. 如图,量角器的零刻度线与三角尺ABC的斜边AB重合,其中量角器的零刻度线的端点N与点A重合,射线CP从CA处出发按顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是()A.48°B.64°C.96°D.132°二、填空题11. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O 的半径是.12. 如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.13. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.14. 如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=________.15. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.16. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.17. 2018·曲靖如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =________°.18. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题19. 如图,在⊙O中,AB=DE,BC=EF.求证:AC=DF.20. 如图,两个正方形彼此相邻且内接于半圆.若小正方形的面积为16 cm2,求该半圆的半径.21. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与⊙O交于点G.设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.22. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.人教版九年级上册24.1 圆的有关性质同步训练-答案一、选择题1. 【答案】C2. 【答案】A∵=,∴∠CAB=∠DAB=35°.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=55°,故选A.3. 【答案】B4. 【答案】A5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】D9. 【答案】C10. 【答案】C二、填空题11. 【答案】2∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2,∴CH=,∴OH=1,∴OC=2.12. 【答案】50°13. 【答案】10或70由垂径定理得:BC=AB=30 cm.在Rt△OBC中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm时,圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm时,水面上升的高度为:40+30=70(cm).综上可得,水面上升的高度为10 cm或70 cm.故答案为10或70.14. 【答案】 4-715. 【答案】816. 【答案】317. 【答案】n18. 【答案】⎝ ⎛⎭⎪⎫360n m ° 三、解答题19. 【答案】证明:∵AB =DE ,BC =EF , ∴AB ︵=DE ︵,BC ︵=EF ︵, ∴AB ︵+BC ︵=DE ︵+EF ︵, ∴AC ︵=DF ︵,∴AC =DF .20. 【答案】解:如图,连接OA ,OB .根据正方形的面积公式可得小正方形的边长为4 cm. 设大正方形的边长为x cm ,则OD =12x cm.根据勾股定理,得OA 2=OD 2+AD 2,OB 2=OC 2+BC 2. 又∵OA =OB ,∴(12x )2+x 2=(12x +4)2+42,解得x 1=8,x 2=-4(不符合题意,舍去), ∴大正方形的边长为8 cm ,OD =4 cm , ∴OA 2=OD 2+AD 2=42+82=80, ∴OA =80=4 5(cm).故该半圆的半径为4 5 cm.21. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD≌△EGD,∠EBC=∠ECB,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG=45°,β=∠ACB=135°,∴∠ECB=45°,∠CEB=90°,△ECD、△BEC、△ABG 都是等腰直角三角形,由CD的长,可得出BE和CE的长,再由题干条件△ABE 的面积是△ABC的面积的4倍可得出AC的长,利用勾股定理在△ABE中求出AB的长,再利用勾股定理在△ABG求出AG的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)22. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC.又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,解得∠BOD=120°,∴∠BAD=12∠BOD=12×120°=60°,∠OBC=∠ODC=180°-∠BOD=180°-120°=60°.又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=∠ABC+∠ADC-(∠OBC+∠ODC)=180°-(60°+60°)=60°.word 版 初中数学11 /11②如图(b)所示,连接AO .∵OA =OB ,∴∠OBA =∠OAB .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAB =∠OAD +∠BAD , ∴∠OBA =∠ODA +∠BAD =∠ODA +60°.如图(c),同理可得∠ODA =∠OBA +60°.。
精品人教版九年级数学上册24.1 圆的基本性质(4) 同步练习 含答案

24.1 圆(第四课时)--------圆周角知识点1、圆周角定义:顶点在,并且两边都和圆的角叫圆周角。
2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的。
推论1、在同圆或等圆中,如果两个圆周角,那么它们所对的弧。
推论2、半圆(或直径)所对的圆周角是;900的圆周角所对的弦是。
3、圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。
性质:圆内接四边形的对角一、选择题1.如图,在⊙O中,若C是BD的中点,则图中与∠BAC相等的角有()A.1个B.2 个C.3个D.4个2.如图,△ABC内接于⊙O,∠A=40°,则∠BOC的度数为()A. 20°B.40°C.60°D.80°3.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40 º,则∠B的度数为()A.80 º B.60 ºC.50 ºD.40 º4.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°5.如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°6.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠BMO=120°,则⊙C的半径为()A.6 B.5 C.3 D.7、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,O的半径为()A.B.C.8 D.128、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()1O上,∠.2.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.3.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE=.4.如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=..5、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=.6、如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC=cm.AB7、如图所示⊙O 中,已知∠BAC=∠CDA=20°,则∠ABO 的度数为 .8、如图,△ABC 内接于⊙O ,∠BAC=120°,AB=AC ,BD 为⊙O的直径,AD=6,则DC= .9、如图,圆心角∠AOB=30°,弦CA ∥OB ,延长CO 与圆交于点D ,则∠BOD= .10、如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒,点E 在量角器上对应的读数是度.三、解答题1、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.2. 如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .3、如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形;(2)求圆心O 到BC 的距离OD .4、如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD(1)求证:BD 平分∠ABC ;(2)当∠ODB=30°时,求证:BC=OD .B5、如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O 的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.24.1 圆(第四课时)--------圆周角知识点1.圆上相交2.相等一半相等一定相等直角直径3.圆内接多边形这个多边形的外接圆互补一、选择题1.C2.D3.C4.C5. C6.C7、A8、C二、填空题1.150°2.25°3.60°4. 40°.5、20°6、57、50°8.9、30°10、144°三、解答题1、B222BC 8cmCD ACBACD BCD 45AD BDAD BDBD AB 100AD BD ∴∠∠︒∴===∠∴∠=∠=︒∴=∴=+==∴===解:AB 是O 的直径ACB=ADB=90在Rt ABC 中,AB=10cm,AC=6cm,平分在Rt ADC 中,AB=10cmAD 2.解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1又∵C 是弧BD 的中点,∴∠1﹦∠A ∴∠1﹦∠2,∴ CF ﹦BF ﹒(2) ⊙O 的半径为5 , CE 的长是524﹒3、B解:(1)在△ABC中,∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°,∴△ABC是等边三角形;(2)∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OD=8×12=4.4、证明:(1)∵OD⊥AC OD为半径,∴CD AD=,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=12 AB,∵OD=CD AD=AB,∴BC=OD.5、(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.。
2019年人教版九年级数学上24章《圆》同步练习题含答案

九年级数学上册第24章《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切»AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D.2024.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD 等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为 cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A.18.求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长. O EDCB A20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是⊙O 的直径,DE 切⊙O 于点D ,且DE ⊥MN 于点E .(1)求证:AD 平分∠CAM .(2)若DE=6,AE=3,求⊙O 的半径.22.(10分)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,点E 在⊙O 外,∠EAC=∠B .(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧AC的长(结果保留π).参考答案1.C2.B .3.B .4.A5.B .6.D .7.B .8.B .9.310.24π.11.4π.12.4.13.1.14.36. 15.3π.16.43.17.23.18.证明:(1)∵AB 为⊙O 的直径∴∠D=90°, ∠A+∠ABD=90° ∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC ⊥AB∴BC 是⊙O 的切线19.∵OC ∥AD ,∠D=90°,BD=6∴OC ⊥BD∴BE=12BD=3 ∵O 是AB 的中点∴AD=2EO -∵BC ⊥AB ,OC ⊥BD∴△CEB ∽△BEO ,∴2BE CE OE =∙∵CE=4, ∴94OE =∴AD=9220.直线AB 与⊙O 的位置关系是相离.理由见解析.21.(1)证明见解析;(2)⊙O 的半径为7.5.22.(1)证明见试题解析;(2)2π.。
人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)

E ,满足 AEC 65 ,连接 AD ,则 BAD
度.
答案: 一、选择题
1.(2020•青岛)如图,BD 是⊙O 的直径,点 A,C 在⊙O 上, = ,AC 交 BD 于点 G.若∠COD=126°,则 ∠AGB 的度数为( )
A.99°
B.108°
解:∵BD 是⊙O 的直径,
∴∠BAD=90°,
度数是( )
A.130°
B.140°
C.150°
解:由题意得到 OA=OB=OC=OD,作出圆 O,如图所示,
∴四边形 ABCD 为圆 O 的内接四边形,
∴∠ABC+∠ADC=180°,
∵∠ABC=40°,
∴∠ADC=140°,
故选:B.
D.160°
6.(2020•眉山)如图,四边形 ABCD 的外接圆为 O , BC CD , DAC 35 , ACD 45 ,则 ADB 的度数 为( )
∴∠OEC=∠OCE=40°+ x,
∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,
∴∠OED<20°+ x,
∴∠CED=∠OEC﹣∠OED>(40°+ x)﹣(20°+ x)=20°,
∵∠CED<∠ABC=40°, ∴20°<∠CED<40° 故选:C. 二、填空题
16.(2020•襄阳)在 O 中,若弦 BC 垂直平分半径 OA ,则弦 BC 所对的圆周角等于 60 或 120 . 解:如图,
上任意一点.则
A.10°
B.20°
C.30°
D.40°
解:连接 OD、OE, ∵OC=OA, ∴△OAC 是等腰三角形, ∵点 D 为弦 AC 的中点, ∴∠DOC=40°,∠BOC=100°, 设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°, ∵OC=OE,∠COE=100°﹣x,
人教版九年级数学上册 24.1 与圆有关的性质 同步提高训练(含答案)

12. 如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,若∠BCD=28°,则∠ABD =________°.
13. 如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 E,若 AB=8,CD=6,则 BE= ________.
15. 【答案】
【思维教练】(1)证明 AC 是∠DAO 的角平分线即证明∠DAC=∠OAC,由圆的 性质知 OA=OC,得∠OCA=∠OAC,由切线性质得 OC⊥CD,即 OC∥AD, 得∠OCA=∠CAD,即可得证;(2)①△OCE 内角和为 180°,∠E 已知,由 (1)OC∥AD 得∠COE=∠DAO,即可求解;②EF=GE-FG,由∠OCE=45°,
5. 【答案】A [解析]∵∠A=22.5°, ∴∠COE=45°, ∵☉O 的直径 AB 垂直于弦 CD, ∴∠CEO=90°,CE=DE. ∵∠COE=45°, ∴CE=OE=√22OC=3√2, ∴CD=2CE=6√2,故选 A. 6. 【答案】A 【解析】∵ON⊥AB,AB=24,∴AN=A2B=12,∴在 Rt△AON 中,ON= OA2-AN2= 132-122=5. 7. 【答案】B 【解析】∵四边形 ABCD 是圆内接四边形,∠ABC=105°,∴∠ ADC=75°,∵ = ,∴∠BAC=∠DCF=25°,∴∠E=∠ADC-∠DCF =50°. 8. 【答案】B 【解析】∵∠D 与∠AOC 同对弧 AC,∴∠AOC=2∠D=2×32°=
三、解答题 14. 如图,MP 切⊙O 于点 M,直线 PO 交⊙O 于点 A、B,弦 AC∥MP,求证: MO∥BC.
3/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根 15. 如图,已知:AB 是⊙O 的直径,点 C 在⊙O 上,CD 是⊙O 的切线,AD⊥CD 于点 D.E 是 AB 延长线上一点,CE 交⊙O 于点 F,连接 OC,AC. (1)求证:AC 平分∠DAO. (2)若∠DAO=105°,∠E=30°. ①求∠OCE 的度数. ②若⊙O 的半径为 2 2,求线段 EF 的长.
人教版九年级数学上册24.1 圆的基本性质同步练习带答案【优】

24.1 圆(第二课时 )------ 垂径定理知识点1、垂径定理:垂直于弦的直径,并且平分弦所对的 。
2、推论:平分弦(不是直径)的直径 ,并且平分弦所对的 。
【特别注意:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用;2、圆中常作的辅助线是过圆心作弦的垂线;3、垂径定理常用作计算,在半径r 、弦a 、弦心d 、和拱高h 中已知两个可求另外两个】 一、选择题1.如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是( )A .B .C .D .2.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ). A.2 B.3 C.4 D.53.在半径为5cm 的圆中,弦AB ∥CD ,AB =6cm ,CD =8cm ,则AB 和CD 的距离是( ). A.7cm B.1cm C.7cm 或4cm D.7cm 或1cm4.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ).B (A )22 (B )32 (C )5 (D )53 BOA5.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )A .CM=DMB . »»CBDB C .∠ACD=∠ADC D .OM=MD6.如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8,则OP 的长为( )·AO MBA .3B .4C .32 D .427.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD=12,BE=2,则⊙O 的直径为( ) A .8 B .10 C .16 D .208、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为( )A .3cmB .4cmC .5cmD .6cm 二、填空题1.如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC ,垂足为D ,已知OD =5,则弦AC = .2、如图AB 是⊙O 的直径,∠BAC=42°,点D 是弦AC 的中点,则∠DOC 的度数是 度.3、如图,M 是CD 的中点,EM ⊥CD ,若CD=4,EM=8,则所在圆的半径为 .4、如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D ,若⊙O 的半径为2,则弦AB 的长为 .A· C OD5、如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.6.如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,CD ⊥AB ,垂足为E ,已知CD=6,AE=1,则⊙0的半径为 .7.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=23,0C=1,则半径OB 的长为 .8.如图,⊙O 的半径为5,P 为圆内一点,P 到圆心O 的距离为4,则过P 点的弦长的最小值是 .OP9.如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB ︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是 m.D10.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .BACEDOFBOEDCA三、解答题1.如图,AB和CD是⊙O的弦,且AB=CD, E、F分别为弦AB、CD的中点,证明:OE=OF。
人教数学九年级上册同步练习第24章《圆》基础练习(7套)

时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.以已知点O为圆心作圆,可以作()A.1个B.2个C.3个D.无数个2.如图J24-1-1,在⊙O中,弦的条数是()A.2 B.3 C.4 D.以上均不正确图J24-1-1 图J24-1-2 图J24-1-33.如图J24-1-2,在半径为2 cm的⊙O内有长为2 3 cm的弦AB,则∠AOB为()A.60°B.90°C.120°D.150°二、填空题(每小题4分,共8分)4.过圆内的一点(非圆心)有________条弦,有________条直径.5.如图J24-1-3,OE,OF分别为⊙O的弦AB,CD的弦心距,如果OE=OF,那么______(只需写一个正确的结论).三、解答题(共8分)6.如图J24-1-4,已知AB是⊙O的直径,AC为弦,OD∥BC,交AC于点D,OD=5 cm,求BC的长.图J24-1-4时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J24-1-5,AB是⊙O的直径,BD=CD,∠BOD=60°,则∠AOC=()A.30°B.45°C.60°D.以上都不正确2.如图J24-1-6,AB,CD是⊙O的直径,AE=BD,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°图J24-1-5 图J24-1-6 图J24-1-7 图J24-1-8二、填空题(每小题4分,共8分)3.如图J24-1-7,CD⊥AB于点E,若∠B=60°,则∠A=________.4.如图J24-1-8,D,E分别是⊙O的半径OA,OB上的点,CD⊥OA,CE⊥OB,CD=CE,则AC与CB的弧长的大小关系是______________.三、解答题(共11分)5.如图J24-1-9,已知AB=AC,∠APC=60°.(1)求证:△ABC是等边三角形;(2)求∠APB的度数.图J24-1-9时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.已知圆的半径为3,一点到圆心的距离是5,则这点在()A.圆内B.圆上C.圆外D.都有可能答案2.在△ABC中,∠C=90°,AC=BC=4 cm,点D是AB边的中点,以点C为圆心,4 cm长为半径作圆,则点A,B,C,D四点中在圆内的有()A.1个B.2个C.3个D.4个3.⊙O的半径r=5 cm,圆心到直线l的距离OM=4 cm,在直线l上有一点P,且PM=3 cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内二、填空题(每小题4分,共8分)4.锐角三角形的外心在________;直角三角形的外心在________;钝角三角形的外心在________.5.在Rt△ABC中,∠C=90°,AC=5 cm,BC=12 cm,则Rt△ABC 其外接圆半径为________cm.三、解答题(共8分)6.通过文明城市的评选,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图J24-2-1所示,A,B,C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.图J24-2-1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J24-2-2,P A切⊙O于点A,PO交⊙O于点B,若P A=6,OP=8,则⊙O的半径是()A.4 B.2 7 C.5 D.102.如图J24-2-3,P A,PB是⊙O的两条切线,切点是A,B.如果OP=4,OA=2,那么∠AOB=()A.90°B.100°C.110°D.120°图J24-2-2 图J24-2-3 图J24-2-4 图J24-2-5二、填空题(每小题4分,共12分)3.已知⊙O的直径为10 cm,圆心O到直线l的距离分别是:①3 cm;②5 cm;③7 cm.那么直线l和⊙O的位置关系是:①________;②________;③________.4.如图J24-2-4,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=________.5.如图J24-2-5,⊙O是△ABC的内切圆,与AB,BC,CA分别切于点D,E,F,∠DOE=120°,∠EOF=110°,则∠A=______,∠B =______,∠C=______.三、解答题(共7分)6.如图J24-2-6所示,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,求∠A的度数.图J24-2-6时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.一正多边形外角为90°,则它的边心距与半径之比为()A.1∶2 B.1∶ 2C.1∶ 3 D.1∶32.如图J24-3-1,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()图J24-3-1A.60°B.45°C.30°D.22.5°二、填空题(每小题4分,共12分)3.正12边形的每个中心角等于________.4.正六边形的边长为10 cm,它的边心距等于________cm.5.从一个半径为10 cm的圆形纸片上裁出一个最大的正方形,则此正方形的边长为________ cm.三、解答题(共7分)6.如图J24-3-2,要把一个边长为a的正三角形剪成一个最大的正六边形,要剪去怎样的三个三角形?剪成的正六边形的边长是多少?它的面积与原来三角形面积的比是多少?图J24-3-2时间:10分钟 满分:25分一、选择题(每小题3分,共9分)1.在半径为12的⊙O 中,150°的圆心角所对的弧长等于( )A .24π cmB .12π cmC .10π cmD .5π cm2.已知一条弧的半径为9,弧长为8π,那么这条弧所对的圆心角是为( )A .200°B .160°C .120°D .80°3.已知扇形的圆心角为60°,半径为5,则扇形的周长为( ) A.53π B.53π+10 C.56π D.56π+10 二、填空题(每小题4分,共8分)4.如图J24-4-1,已知正方形ABCD 的边长为12 cm ,E 为CD 边上一点,DE =5 cm.以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路径长为________cm.图J24-4-1 图J24-4-25.如图J24-4-2,在两个同心圆中,两圆半径分别为2,1,∠AOB =120°,则阴影部分面积是____________.三、解答题(共8分)6.如图J24-4-3,在正方形ABCD 中,CD 边的长为1,点E 为AD 的中点,以E 为圆心、1为半径作圆,分别交AB ,CD 于M ,N 两点,与BC 切于点P ,求图中阴影部分的面积.图J24-4-3时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.已知一个扇形的半径为60 cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()A.12.5 cm B.25 cm C.50 cm D.75 cm2.如图J24-4-4小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,则该扇形薄纸板的圆心角为() A.150°B.180°C.216°D.270°图J24-4-4 图J24-4-5 图J24-4-6二、填空题(每小题4分,共12分)3.如图J24-4-5,小刚制作了一个高12 cm,底面直径为10 cm的圆锥,这个圆锥的侧面积是________cm2.4.如图J24-4-6,Rt△ABC分别绕直角边AB,BC旋转一周,旋转后得到的两个圆锥的母线长分别为____________.5.圆锥母线为8 cm,底面半径为5 cm,则其侧面展开图的圆心角大小为______.三、解答题(共7分)6.一个圆锥的高为3 3 cm,侧面展开图为半圆,求:(1)圆锥的母线与底面半径之比;(2)圆锥的全面积.。
精品 九年级数学上册 圆的基本性质讲义+同步练习题

圆的基本性质知识点圆的定义几何定义:线段OA,绕O点旋转一周得到的图形,叫做圆。
其中,O为圆心,OA为半径。
集合定义:到定点等于定长的所有点的集合。
其中,定点为圆心,定长为半径。
圆的书写格式:圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
与圆有关的线段半径:圆上一点与圆心的连线段。
确定一个圆的要素是圆心和半径。
弦:连结圆上任意两点的线段叫做弦。
直径:经过圆心的弦叫做直径。
弦心距:圆心到弦的垂线段的长。
弧:圆上任意两点间的部分叫做圆弧,简称弧。
劣弧:小于半圆周的圆弧叫做劣弧。
表示方法:优弧:大于半圆周的圆弧叫做优弧。
表示方法:在同圆或等圆中,能够互相重合的弧叫做等弧。
注意:同弧或等弧对应的弦相等。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
注意: 定理中的“垂直于弦的直径”可以是直径,也可以是半径,深圳可以是过圆心的直线或线段;该定理也可以理解为:若一条直线具有两条性质:①过圆心;②垂直于一条弦,则此直线具有另外三条性质:①平分此弦;②平分此弦所对的优弧;③平分此弦所对的劣弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
在下列五个条件中:①CD是直径;②CD⊥AB;③AM=BM;④AC=BC;⑤AD=BD.只要具备其中两个条件,就可推出其余三个结论.注意:(1)在圆中,与已知弦(非直径)相等的弦共有条;共端点且相等的弦共有条。
(2)在圆中,与已知弦(非直径)平行的弦共有条;平行且相等的弦共有条。
例1.如图:OA、OB为⊙O的半径,C、D分别为OA、OB的中点,求证:AD=BC.例2.如图,已知AB是⊙O的直径,弦CD⊥AB,垂足是E,如果AB=10cm,CD=8cm,求AE的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1 圆(第四课时)
--------圆周角
知识点
1、圆周角定义:顶点在,并且两边都和圆的角叫圆周角。
2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的。
推论1、在同圆或等圆中,如果两个圆周角,那么它们所对的弧。
推论2、半圆(或直径)所对的圆周角是;900的圆周角所对的弦是。
3、圆内接四边形:
定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。
性质:圆内接四边形的对角
一、选择题
1.如图,在⊙O中,若C是BD的中点,则图中与∠BAC相等的角有()
A.1个
B.2 个
C.3个
D.4个
2.如图,△ABC内接于⊙O,∠A=40°,则∠BOC的度数为()
A. 20°
B.40°
C.60°
D.80°
3.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40 º,则∠B的度数为()
A.80 ºB.60 ºC.50 ºD.40 ºC
·
B
O
A
C
B
O
4.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°
5.如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()
A.40°
B.50°
C.60°
D.70°
6.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠BMO=120°,则⊙C的半径为()
A.6 B.5 C.3 D.32
7、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=23,则⊙O的半径为()
A.43B.63C.8 D.12
8、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()
B.A F=BF C.O F=CF D.∠DBC=90°
A.AD BD
二、填空题
1.如图,点A、B、C在⊙O上,∠AOC=60°,则∠ABC的度数是.
2.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.
3.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE=.
4.如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=..
5、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=.
6、如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC=cm.
A
B
C
7、如图所示⊙O 中,已知∠BAC=∠CDA=20°,则∠ABO 的度数为 .
8、如图,△ABC 内接于⊙O ,∠BAC=120°,AB=AC ,BD 为⊙O 的直径,AD=6,则DC= .
9、如图,圆心角∠AOB=30°,弦CA ∥OB ,延长CO 与圆交于点D ,则∠BOD= .
10、如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒,点E 在量角器上对应的读数是 度.
三、解答题
1、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.
2. 如图,AB 是⊙O 的直径,C 是BD 的中点,
CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF ﹦BF ;
(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .
3、如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°, (1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD .
4、如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD
(1)求证:BD 平分∠ABC ; (2)当∠ODB=30°时,求证:BC=OD .
C
B
D
E
F O
5、如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O 的另一个交点为E,连接AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的长.
24.1 圆(第四课时 )
--------圆周角 知识点
1.圆上 相交
2.相等 一半 相等 一定相等 直角 直径
3.圆内接多边形 这个多边形的外接圆 互补 一、选择题
1.C
2.D
3.C
4.C
5. C
6.C 7、A 8、C 二、填空题 1.150° 2.25° 3.60° 4. 40° . 5、20° 6、5 7、50° 8.23 9、30° 10、144° 三、解答题 1、
A
B
C
O
九年级数学
2222
222
BC AB AC1068cm
CD ACB
ACD BCD45
AD BD
AD BD
BD AB100
100
AD BD52cm
2
∴∠∠︒
∴=-=-=
∠
∴∠=∠=︒
∴=
∴=
+==
∴===
解:AB是O的直径
ACB=ADB=90
在Rt ABC中,AB=10cm,AC=6cm,
平分
在Rt ADC中,AB=10cm
AD
2.
解:(1) 证明:∵AB是⊙O的直径,∴∠ACB﹦90°
又∵CE⊥AB,∴∠CEB﹦90°
∴∠2﹦90°-∠A﹦∠1
又∵C是弧BD的中点,∴∠1﹦∠A
∴∠1﹦∠2,
∴CF﹦BF﹒
(2) ⊙O的半径为5,CE的长是
5
24
﹒3、
C
B
D
E
F
O
1
2
九年级数学
解:(1)在△ABC中,
∵∠BAC=∠APC=60°,
又∵∠APC=∠ABC,
∴∠ABC=60°,
∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°,
∴△ABC是等边三角形;
(2)∵△ABC为等边三角形,⊙O为其外接圆,
∴O为△ABC的外心,
∴BO平分∠ABC,
∴∠OBD=30°,
∴OD=8×1
2
=4.
4、
证明:(1)∵OD⊥AC OD为半径,
∴CD AD
=,
∴∠CBD=∠ABD,
∴BD平分∠ABC;
(2)∵OB=OD,
∴∠OBD=∠0DB=30°,
∴∠AOD=∠OBD+∠ODB=30°+30°=60°,
又∵OD⊥AC于E,
∴∠OEA=90°,
∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°,又∵AB为⊙O的直径,
∴∠ACB=90°,
在Rt△ACB中,BC=1
2 AB,
∵OD=CD AD
=AB,∴BC=OD.
5、
九年级数学
(1)证明:∵AB为⊙O的直径,
∴∠ACB=90°,
∴AC⊥BC,
∵DC=CB,
∴AD=AB,
∴∠B=∠D;
(2)解:设BC=x,则AC=x﹣2,
在Rt△ABC中,AC2+BC2=AB2,
∴(x﹣2)2+x2=42,
解得:x1=1+,x2=1﹣(舍去),
∵∠B=∠E,∠B=∠D,
∴∠D=∠E,
∴CD=CE,
∵CD=CB,
∴CE=CB=1+.。