开关电源中各种元器件类型及主要功能

合集下载

开关电源主要元器件选用

开关电源主要元器件选用

开关功率MOS管
03
04
MOS管主要工作特性(优点)
MOS管主要工作特性(缺点)
A
导通电阻(Rds(on))较大,具有正温度系数,用在大电流开关状态时,导通损耗较大; 开启门限驱动电压较高(一般2~4V); P沟道MOS管耐压还不是很高,很难找到与N沟道配对的“图腾柱”输出。
B
MOS管的符号
NMOS/PMOS的符号为:
TL431在开关电源中的作用1
如图

TL431在开关电源中应用
PC817光耦应用框图
PC817光耦详解
二极管正向电流IF生成一个光源,使光敏三极管产生一集电极电流IC供给负载电阻RL; 光敏二极管共有三个重要参数: 1)二极管正向电流IF; 2)二极管正向压降VF; 3)输入电压Vin; 限流电阻R=(Vin-VF)IF,一般生产厂家给出VF和IF,可以计算出R的值。 光敏输出有一个重要参数: 输出IC=η ×IF 这里的,η:耦合系数(传输率),一般厂家会给出;
L=1/((2×3.14×f)2×C)
共模电感:
L=(1/2)×(1/(2×3.14×f)2×C) 这里的 f:设计要求的截止频率; C:接入的X电容或Y电容; 课后作业:试列出在开关电源中常用的MOS管,并列出其重要参数。
差模电感:
滤波电感
01
02
稳压管TL431
TL431工作原理
TL431的基本电路如下图
01
具体数据请看:TL431.PDF
由上图可知,它相当于一只可调的稳压管,输出电压由R1和R2来设定,
VO=VKA=(1+R1/R2)*VREF
R3是限流电阻, VREF是常态下的基准电压(2.5V)。

开关电源设计的各种元器件介绍及作用

开关电源设计的各种元器件介绍及作用

开关电源设计的各种元器件介绍及作用设计并不是如想象中那么简单,特别是对刚接触开关电源研发的人来说,它的外围就很复杂,其中使用的元器件种类繁多,性能各异。

要想设计出性能高的开关电源就必须弄懂弄通开关电源中各元器件的类型及主要功能。

本文将总结出这部分知识。

开关电源外围电路中使用的元器件种类繁多,性能各异,大致可分为通用元器件、特种元器件两大类。

开关电源中通用元器件的类型及主要功能如下:一、电阻器1. 取样电阻—构成输出电压的取样电路,将取样电压送至反馈电路。

2. 均压电阻—在开关电源的对称直流输入电路中起到均压作用,亦称平衡电阻。

3. 分压电阻—构成电阻分压器。

4. 泄放电阻—断电时可将电磁干扰(EMI)滤波器中电容器存储的电荷泄放掉。

5. 限流电阻—起限流保护作用,如用作稳压管、光耦合器及输入滤波电容的限流电阻。

6. 电流检测电阻—与过电流保护电路配套使用,用于限制开关电源的输出电流极限。

7. 分流电阻—给电流提供旁路。

8. 负载电阻—开关电源的负载电阻(含等效负载电阻)。

9. 最小负载电阻—为维持开关电源正常工作所需要的最小负载电阻,可避免因负载开路而导致输出电压过高。

10. 假负载—在测试开关电源性能指标时临时接的负载(如电阻丝、水泥电阻)。

11. 滤波电阻—用作LC型滤波器、RC型滤波器、π型滤波器中的滤波电阻。

12. 偏置电阻—给开关电源的控制端提供偏压,或用来稳定晶体管的工作点。

13. 保护电阻—常用于RC型吸收回路或VD、R、C型钳位保护电路中。

14. 频率补偿电阻—例如构成误差放大器的RC型频率补偿网络。

15. 阻尼电阻—防止电路中出现谐振。

二、电容器1. 滤波电容—构成输入滤波器、输出滤波器等。

2. 耦合电容—亦称隔直电容,其作用时隔断直流信号,只让交流信号通过。

3. 退藕电容—例如电源退藕电容,可防止产生自激振荡。

4. 软启动电容—构成软启动电路,在软启动过程中使输出电压和输出电流缓慢地建立起来。

开关电源中常用肖特基二极管

开关电源中常用肖特基二极管

开关电源中常用肖特基二极管一、引言开关电源是现代电子设备中广泛应用的电源类型之一,其主要特点是高效率、小体积、轻重量等。

在开关电源中,肖特基二极管作为一种重要的元器件,被广泛应用于整流、反向保护等方面。

本文将从肖特基二极管的原理入手,介绍其在开关电源中的应用。

二、肖特基二极管原理肖特基二极管(Schottky Diode)是一种具有快速开关速度和低压降的半导体器件。

与普通PN结二极管相比,它的正向压降更低,反向漏电流更小。

肖特基二极管由金属与半导体P型区域形成,因此也被称为金属半导体接触器件(Metal-Semiconductor Contact Device)。

图1 肖特基二极管示意图当肖特基二极管正向偏置时,金属与P型区域形成一个势垒,在势垒处产生了一个空穴井和一个电子井。

空穴井和电子井之间形成了一个势垒高度ΦB,这个高度比PN结势垒高度低得多。

因此,肖特基二极管的正向压降比PN结二极管低得多。

当肖特基二极管反向偏置时,金属与P型区域之间的势垒加深,形成一个反向势垒。

由于金属与P型区域之间没有N型区域,因此不存在PN结中的扩散电流。

同时,由于金属与P型区域之间的势垒高度较低,使得反向漏电流比PN结二极管小得多。

三、肖特基二极管在开关电源中的应用1.整流开关电源中需要将交流输入转换为直流输出。

传统的整流电路使用PN 结二极管进行整流,但由于其正向压降较高,在高频应用中会产生较大的功耗和热量。

而肖特基二极管具有快速开关速度和低压降等优点,在高频应用中更为适合。

图2 肖特基二极管整流电路如图2所示,将肖特基二极管作为整流器使用时,其正向压降比PN结二极管低得多,可以减少功耗和热量,并且具有快速响应速度和较小的反向漏电流。

2.反向保护在开关电源中,由于电感元件的存在,当开关管关闭时,电感元件会产生反向高压脉冲。

如果这个脉冲超过了开关管和其他器件的耐受范围,就会对系统造成损害。

因此,在开关电源中需要使用反向保护电路来限制这种脉冲。

电工元器件符号大全及作用

电工元器件符号大全及作用

电工元器件符号大全及作用电工元器件符号是电气工程中用于图纸、电路图和电气设备上标示电工元器件的符号,它们有着特定的形状和图案,用来代表不同种类的元器件,方便电气工程师和电气技术人员识别和理解。

在电路图中,电工元器件符号可以分为被动元器件和主动元器件两大类。

被动元器件常见的有电阻、电感、电容等,主动元器件则包括二极管、晶体管、集成电路等。

下面将对一些常见的电工元器件符号及其作用进行详细的介绍。

1.电阻电阻是电学元件中最基本的被动元件之一,它的作用是限制电流的流动,并且能够将电能转化为热能。

电路图中电阻的符号一般是一个波浪线,代表着电阻器的形状。

有时也可以用一个长方形代表电阻。

2.电感电感是另一种被动元件,它的作用是存储磁场能量,抵抗电流的变化。

电路图中电感的符号通常是一个卷绕的线圈。

3.电容电容是电气元件中的另一种被动元件,它能够存储电能,并且可以对电路中的电压进行平滑。

电路图中电容的符号一般是两条平行的线段。

4.二极管二极管是主动元件中的一种,它可以把交变电压变成直流电压。

二极管的符号通常是一个三角形,表示晶体管的外形。

5.晶体管晶体管也是一种主动元件,主要用于放大和开关电路。

在电路图中晶体管的符号常常是一个由箭头和线组成的结构,代表着晶体管的结构。

6.电源电源是电气设备中最重要的组成部分之一,它的作用是将外部的电能转化为设备所需的电能。

在电路图中电源的符号通常是一个圆圈,代表电源的正负极。

7.电感线圈电感线圈是一种用电流产生磁场的元件,在电路图中通常表示为一个由多个圈组成的图案,代表线圈的形状。

8.开关开关是电路中用来控制电流通断的元件,电路图中常用一个直角形代表开关。

9.传感器传感器是一种用来感测和探测物理量的元件,在电路图中通常用一个表示感测过程的符号,如一个带箭头的圆圈。

10.定时器定时器是一种能够进行时间控制和计时的元器件,它在电路图中常用一个方块代表。

11.航向器航向器是一种用来定位和导航的设备,电路图中其符号一般是一组特定的标记符号。

常用电子元器件资料

常用电子元器件资料
普通电阻精度分为±5%、±10%、±20% 三种,在电阻标称值后面标明Ⅰ(或J)、Ⅱ(或 K)、Ⅲ(或M)符号,精密电阻的精度用不 同符号标明,精度等级有G(±2%)、F (±1%)、D(±0.5%)、C(±0.2%)等。
TandaSecurity
Service you by heart and soul
电阻的色环标注法
五环色标电阻:表示标称阻值(三 位有效数字)及精度,其中第一、 二、三色环表示有效数字,第四色 环表示应乘倍率,第五色环表示精 度等级。
1234
5
TandaSecurity
Service you by heart and soul
颜色
色码识别法
有效数字
倍率(乘数)
允许偏差

0
TandaSecurity
Service you by heart and soul
热敏电阻器
这个名字是结合热的和电阻两个词而 命名的,热敏电阻器的阻值随温度变 化而变化。
我们生产的LA1400,LA1400A就是 利用热敏电阻的这个特性。温度升高 热敏电阻的阻值降低。
TandaSecurity
TandaSecurity
Service you by heart and soul
贴片电容器
贴片电容体积比较小,除贴片电解电容外其他贴片 电容无法在本体上标识,只能从铭牌上读取信息。
TandaSecurity
Service you by heart and soul
变压器
变压器的电路符号是:T。 变压器常用“QTK”标在元件体上加以识别。 变压器是有极性的,它的第一个管脚通常用
TandaSecurity
Service you by heart and soul

开关电源元器件选型

开关电源元器件选型

开关电源元器件选型A:反激式变换器:1.MOS管:Id=2Po/Vin; Vdss=1.5Vin(max)2.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=8Vout3.缺点:就是输出纹波较大,故不能做大功率(一般≦150W),所以输出电容的容量要大.4.优点:输入电压范围较宽(一般可做到全电压范围90Vac-264Vac),电路简单.5.最佳控制方法:应选择电流型IC幷采用电流型控制.B:正激式变换器:6.MOS管:Id=1.5Po/Vin; Vdss=2Vin(max)7.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=3Vout8.缺点:成本上升,如要全电压得加PFC,电路稍比反激复杂.9.优点:纹丝小,功率可做到0~200W.10.最佳控制方法:应选择电流型IC幷采用电流型控制.C:推挽式变换器:11.MOS管: Id=1.2Po/Vin; Vdss=2Vin(max)12.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout13.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.不太合适离线式.14.优点: 功率可做到100W~1000W.DC-DC用此电路很好!15.最佳控制方法:应选择电流型IC幷采用电流型控制.D:半桥式变换器:16.MOS管: Id=1.5Po/Vin; Vdss=Vin(max)17.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout18.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.19.优点: 功率可做到100W~500W.20.最佳控制方法:应选择电流型IC幷采用电流型控制.E:全桥式变换器:21.MOS管: Id=1.2Po/Vin; Vdss=Vin(max)22.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout23.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.24.优点: 功率可做到400W~2000W以上.25.最佳控制方法:应选择电流型IC幷采用电流型控制.拟定:胡成才2005-1-13。

开关电源原理图各元件功能详解

开关电源原理图各元件功能详解

电源原理图--每个元器件的功能详解!▽FS1:由变压器计算得到Iin值以此Iin值(0.42A)可知使用公司共享料2A/250V , 设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。

TR1(热敏电网):电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用5。

-10。

热敏,若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。

VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。

CY1 , CY2(Y-Cap):Y-Cap 一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有〃回〃符号或注明Y1),此电路蛭蟹G所以使用Y2-Cap , Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。

CXl(X-Cap)、RX1:X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为:FCC Part 15J Class B 、CISPR 22(EN55022) Class B两种,FCC测试频率在450K〜30MHz , CISPR 22测试频率在150K〜30MHz , Conduction可在厂内以频谱分析仪验证,Radiation则必须到实验室验证,X-Cap 一般对低频段(150K〜数M之间)的EMI防制有效,一般而言X-C叩愈大,EMI防制效果愈好(但价格愈高),若X-C叩在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MQ 1/4W)。

开关电源原理图各元件功能详解

开关电源原理图各元件功能详解

电源原理图--每个元器件的功能详解!FS1:由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。

TR1(热敏电阻):电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用5Ω-10Ω热敏,若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。

VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。

CY1,CY2(Y-Cap):Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G 所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。

CX1(X-Cap)、RX1:X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ1/4W)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳市森树强电子科技告诉你开关电源中各种元器件类型及主要功能
开关电源中各种元器件类型及主要功能开关电源中通用元器件的类型及主要功能如下:
一、电阻器:
1. 取样电阻—构成输出电压的取样电路,将取样电压送至反响电路。

2. 均压电阻—在开关电源的对称直流输入电路中起到均压作用,亦称平衡电阻。

3. 分压电阻—构成电阻分压器。

4. 泄放电阻—断电时可将电磁干扰(EMI)滤波器中电容器存储的电荷泄放掉。

5. 限流电阻—起限流保护作用,如用作稳压管、光耦合器及输入滤波电容的限
流电阻。

6. 电流检测电阻—与过电流保护电路配套使用,用于限制开关电源的输出电流
极限。

7. 分流电阻—给电流提供旁路。

8. 负载电阻—开关电源的负载电阻(含等效负载电阻)。

9. 最小负载电阻—为维持开关电源正常工作所需要的最小负载电阻,可防止因
负载开路而导致输出电压过高。

10. 假负载—在测试开关电源性能指标时临时接的负
载(如电阻丝、水泥电阻)。

11. 滤波电阻—用作LC型滤波器、RC型滤波器、π型滤波器中的滤波电阻。

12. 偏置电阻—给开关电源的控制端提供偏压,或用来稳定晶体管的工作点。

13. 保护电阻—常用于RC型吸收回路或VD、R、C型钳位保护电路中。

14. 频率补偿电阻—例如构成误差放大器的RC型频率补偿网络。

15. 阻尼电阻—防止电路中出现谐振。

二、电容器:
1. 滤波电容—构成输入滤波器、输出滤波器等。

2. 耦合电容—亦称隔直电容,其作用时隔断直流信号,只让交流信号通过。

3. 退藕电容—例如电源退藕电容,可防止产生自激振荡。

4. 软启动电容—构成软启动电路,在软启动过程中使输出电压和输出电流缓慢地建立起来。

5. 补偿电容—构成RC型频率补偿网络。

6. 加速电容—用于进步晶体管的开关速度。

7. 振荡电容—可构成RC型、LC型振荡器。

8. 微分电容—构成微分电路,获得尖脉冲。

9. 自举电容—用于提升输入级的电源电压,亦可构成电压前馈电路。

10. 延时电容—与电阻构成RC型延时电路。

11. 储能电容—例如极性反转式DC/DC变换器中的泵电容。

12. 移相电容—构成移相电路。

13. 倍压电容—与二极管构成倍压整流电路。

14. 消噪电容—用于滤除电路中的噪声干扰。

15. 中和电容—消除放大器的自激振荡。

16. 抑制干扰的电容器—在EMI滤波器中,可分别滤除串模和共模干扰。

17. 平安电容—含X电容和Y电容。

18. X电容—能滤除由一次绕组、二次绕组耦合电容器产生的共模干扰,可为从一次侧耦合到二次侧的干扰电流提供回流途径,防止该电流通过二次侧耦合到大地。

19. Y电容—能滤除电网之间串模干扰,常用于EMI滤波器中。

三、电感器:
1. 滤波电感—构成LC型滤波器。

2. 储能电感—常用于降压式或升压式DC/DC变换器电路中。

3. 振荡电感—构成LC型振荡器。

4. 共模电感—亦称共模扼流圈,常用于EMI滤波器中,对共模干扰起到抑制作用。

5. 串模电感—亦称串模扼流圈,它采用单绕组构造,一般串联在开关电源的输入电路中。

6. 频率补偿电感—构成LC型、LCR型频率补偿网络。

四、变压器:
1. 工频变压器—对交流电源进展变压与隔离,再经过整流滤波后给DC/DC变换器(即开关稳压器)供电。

2. 高频变压器—对高频电源进展储能、变压和隔离,适用于无工频变压器的开关电源中。

五、二极管:
1. 整流二极管—低频整流、高频整流。

2. 续流二极管—常用于降压式DC/DC变换器中;假设在继电器、电机等的绕组两端并联续流二极管,即可为反电动势提供泄放回路,防止损坏驱动管。

3. 钳位二极管—构成VD、R、C型钳位电路,吸收尖峰电压,对MOSFET功率场效应管起保护作用。

4. 阻塞二极管—钳位保护电路中的二极管,亦称为阻尼二极管。

5. 保护二极管—用于半波整流电路中,在负半周时给交流电提供回路。

6. 隔离二极管—可实现信号隔离。

7. 抗饱和二极管—将二极管串联在功率开关管的基极上,可降低功率开关管的饱和深度,进步关断速度。

六、整流桥—将交流电压变为脉动直流电压,送至滤波器。

整流桥可由四只整流二极管构成,亦可采用成品整流桥。

七、稳压管—构成简易稳压电路;接在开关电源的输出端,用来稳定空载时的输出电压;由稳压管、快恢复二极管和阻容元件构成一次侧钳位保护电路;构成过电压保护电路。

八、晶体管—用作PWM调制器的功率开关管;构成恒压/恒流输出式开关电源的电压控制和电流控制环路;构成截刘输出型开关电源的截流控制环;构成开关稳压器的通/断控制、欠电压、过电压保护、过电流保护等电路。

九、场效应晶体管—MOSFET用作PWM调制器或开关稳压控制器的功率开关管。

十、运算放大器—构成外部误差放大器、电压控制环和电流控制环等。

相关文档
最新文档