判定平行四边形的五种方法

合集下载

平行四边形的判定知识点

平行四边形的判定知识点

平行四边形的判定知识点
平行四边形的判定知识点
读书使学生认识丰富多彩的世界,获取信息和知识,拓展视野。

接下来小编为大家精心准备了平行四边形的判定知识点,希望大家喜欢!
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
常见考法。

判定平行四边形的五种方法

判定平行四边形的五种方法

判定平行四边形的五种方法平行四边形的判定方法有:(1 )证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行 且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

下面以近几年的中考题为例说明如何证明四边 形是平行四边形。

一、 两组对边分别平行如图1,已知△ ABC 是等边三角形, D E 分别在边BG AC 上,且CD=CE 连结DE 并延长至点F ,使EF=AE 连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明; ⑵ 判断四边形ABDF 是怎样的四边形,并说明理由。

解:(1)选证△ BDE^A FEC证明:•••△ ABC 是等边三角形,••• BC=AC Z ACD=60•••CD=CEBD=AE A EDC 是等边三角形 • DE=EC Z CDE M DEC=60•••/ BDE M FEC=120又••• EF=AE • BD=FE ・」BDE^A FEC(2)四边形ABDF 是平行四边形理由:由(1)知,△ ABC △ EDC △ AEF 都是等边三角形•••/ CDE M ABC M EFA=60• AB// DF, BD// AF•••四边形ABDF 是平行四边形。

点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。

一组对边平行且相等例2 已知:如图2,在正方形 ABCD 中, G 是CD 上一点,延长 BC 到E ,使CE=CG 连结BG 并延长交 DE(1)求证:△ BCG^ DCE(2)将厶DCE 绕点D 顺时针旋转90°得到△ DAE ,判断四边形 E' BGD 是什么特殊四边形?并说明 理由。

分析:(2)由于ABCD 是正方形,所以有 AB// DC 又通过旋转 CE=AE 已知CE=CG 所以E' A=CGAD C这样就有BE' =GD可证E' BGD是平行四边形。

平行四边形五个判定方法

平行四边形五个判定方法

平行四边形五个判定方法
1、通过角度判定:如果四个内角相等就是平行四边形;
2、通过边长判定:如果有两条对角线长度相等,其余边长也都相等,就是平行四边形;
3、通过平分线判定:如果可以在四边形内部划出两条平分线,使得两条平分线交于两个对角线的中点,那么这个四边形就是平行四边形;
4、通过三角形判定:将一个平行四边形分成两个三角形,如果这两个三角形的外角和内角都相等,则说明四边形是平行四边形;
5、通过中心矩判定:如果四边形的中心矩是正方形,则这个四边形就是平行四边形。

判定平行四边形五种方法

判定平行四边形五种方法

判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD 中,E 、F 在对角线AC 上,且AE =CF ,试说明四边形DEBF 是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD .解:连接BD 交AC 于点O .因为四边形ABCD 是平行四边形,所以AO =CO ,BO =DO . 又AE =CF ,所以AO -AE =CO -CF ,即EO =FO .所以四边形DEBF 是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF =BC =1,AB =FC =1,所以四边形ABCF 是平行四边形.同样可知四边形FCDE 、四边形ACDF 都是平行四四边形.因为AE =DB =2,AB =DE =1,所以四边形ABDE 也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,DF =BE ,DF ∥BE ,试说明四边形ABCD 是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD 是平行四边形,但仔细观察可知,由已知条件可得△ADF ≌△CBE ,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF ∥BE ,所以∠AFD =∠CEB .因为AE =CF ,所以AE +EF =CF +EF ,即AF =CE .又DF =BE ,所以△ADF ≌△CBE ,所以AD =BC ,∠DAF =∠BCE ,所以AD ∥BC .所以四边形ABCD 是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判图1 图2 A B C D EF 图3别例4 如图4,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,则四边形AECF 是平行四边形吗?为什么?分析:由平行四边形的性质易得AF ∥EC ,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF 是平行四边形.理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD ,所以AF ∥EC .又因为∠1=21∠DAB ,∠2=21∠BCD , 所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3,所以∠1=∠3,所以AE ∥CF .所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

平行四边形的性质与判定方法

平行四边形的性质与判定方法

平行四边形的性质与判定方法平行四边形是几何学中重要的一类四边形,具有独特的性质和判定方法。

在本文中,我们将介绍平行四边形的性质和判定方法,并探讨其应用。

一、平行四边形的性质1. 对边相等性质:平行四边形的对边相等。

即平行四边形的对边AB与CD相等,对边AD与BC相等。

2. 对角线互相平分性质:平行四边形的对角线互相平分。

即对角线AC平分对角线BD,同时对角线BD平分对角线AC。

3. 内角和为180度:平行四边形的内角和为180度。

即∠A + ∠B + ∠C + ∠D = 180°。

4. 侧边对应角相等性质:平行四边形的侧边对应角相等。

即∠A = ∠C,∠B = ∠D。

5. 相邻内角互补性质:平行四边形的相邻内角互补。

即∠A + ∠B = 180°,∠B + ∠C = 180°。

6. 对角线长度关系:平行四边形的对角线长度关系。

即对角线AC 与对角线BD长度相等。

二、平行四边形的判定方法1. 对边相等法:若一个四边形的对边相等,则它是平行四边形。

例如,已知AB = CD,AD = BC,可以判定ABCD是平行四边形。

2. 一组对角线互相平分法:若一个四边形的对角线互相平分,则它是平行四边形。

例如,已知AC平分BD,BD平分AC,可以判定ABCD是平行四边形。

3. 内角和为180度法:若一个四边形的内角和为180度,则它是平行四边形。

例如,已知∠A + ∠B + ∠C + ∠D = 180°,可以判定ABCD是平行四边形。

4. 一组侧边对应角相等法:若一个四边形的侧边对应角相等,则它是平行四边形。

例如,已知∠A = ∠C,∠B = ∠D,可以判定ABCD 是平行四边形。

5. 一组相邻内角互补法:若一个四边形的相邻内角互补,则它是平行四边形。

例如,已知∠A + ∠B = 180°,∠B + ∠C = 180°,可以判定ABCD是平行四边形。

三、平行四边形的应用平行四边形的性质和判定方法在几何学中有广泛的应用。

平行四边形的判定方法 (五种)

平行四边形的判定方法  (五种)

在四边形ABCD中,对角线AC,BD相交于点O。

请从下列所给条件中,任意添加两个条件,使四边形ABCD 是平行四边形。

并说明理由。

(1)AB//CD (2) AD//BC (3) AB=CD (4)AD=BC (5) <A=<C (6) <B=<D (7) OA=OC (8)OB=OD先独立思考,然后小组合作,交流,共同探索,得出结论:(1)(2) , (1)(3) , (1)(5) , (1)(6) , (1)(7) , (1)(8) , (2)(4) , (2)(5) , (2)(6) ,(2)(7) , (2)(8) , (3)(4) ,(5)(6) , (7)(8).其中,(1)(2)是由平行四边形的定义得出的,这一个不用证明。

13如何证明呢?请画图,分析,已知,AB//CD,AB=CD,想证明它是一个平行四边形,只须证明另一组对边平行即可。

证明两条直线平行,就要找角的关系。

那么在这一个图形中有需要的角吗?可以如何构造角呢?这时候只要连接一条对角线即可。

如图所示:连结AC,若想得到AD//BC,只需<ACB=<DAC即可,这两个角相等,利用全等就可以得到,问题得解。

证明过程如下:证明:因为AB//CD 所以<BAC=<ACD,又AB=CD AC=AC所以三角形ABC全等于三角形CDA ,所以<ACB=<CAD所以AD//BC所以四边形ABCD是平行四边形。

那么,(2)(4)和(1)(3)的情况一样吗?由此我们知道了,只要满足这样的两个条件,就可以推出四边形是平行四边形。

谁能够用一句话把这一结论表述出来?有一组对边平行且相等的四边形是平行四边形。

我们证明了(1)(3),(2)(4)的情况,有同学说,满足(3)(4)两个条件的,也是平行四边形.我们来看一下,能否证明出来。

知道AB=CD,AD=BC,如何得到AB//CD,AD//BC呢?由上面证明得出经验,只要三角形ABC和三角形CDA全等,就会出现两组内错角相等,也就有两组对边平行了,问题得解。

第20章 平行四边形的判定

第20章 平行四边形的判定

第20章平行四边形的判定(1)平行四边形是中心对称图形,具有两组对边分别平行且相等、对角相等及邻角互补、两条对角线互相平分等特征.(2)平行四边形的判定方法有:有5种方法①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.(3)矩形、菱形、正方形都是特殊的平行四边形,它们除了具有平行四边形的所有特征外,还具有以下性质:矩形:四个角都是直角、对角线互相平分且相等.菱形:四条边都相等、对角线互相垂直平分且每一条对角线平分一组对角.正方形:四条边都相等、四个角都是直角、对角线互相垂直平分且相等,每一条对角线平分一组对角(具有矩形、菱形的所有特征).(4)矩形、菱形、正方形既是轴对称图形,又是中心对称图形;矩形、菱形都有两条对称轴,而正方形有四条对称轴,它们的对称中心都是对角线的交点.(5)矩形、菱形、正方形的判定方法有:分别有3 3 2 种方法①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③两条对角线相等的平行四边形是矩形;④有一组邻边相等的平行四边形是菱形;⑤有四条边相等的四边形是菱形;⑥两条对角线垂直的平行四边形是菱形;⑦有一组邻边相等的矩形是正方形;⑧有一个角是直角的菱形是正方形.(6)有且只有一组对边平行的四边形叫做梯形,这组平行的边叫做梯形的上底与下底,不平行的两边叫做梯形的腰,两腰相等的梯形叫做等腰梯形,有一个角是直角的梯形叫做直角梯形.(7)等腰梯形是轴对称图形,它的对称轴是过两底中点的直线,它有以下性质:①等腰梯形同一底上的两个内角相等;②等腰梯形的两条对角线相等.(8)等腰梯形的判定方法有:①两腰相等的梯形是等腰梯形②同一底上的两个角相等的梯形是等腰梯形;③两条对角线相等的梯形是等腰梯形..例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.例2(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC 上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例3(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.六、随堂练习1.已知:ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.1.(选择)下列条件中能判断四边形是平行四边形的是().(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等(D)对角线互相平分2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF五、例习题分析例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.证明:∵例2(补充)已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.分析:因为BE⊥AC于E,DF⊥AC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.证明:、.1.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.3.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.求证:四边形AFCE是平行四边形.七、课后练习1.判断题:(1)相邻的两个角都互补的四边形是平行四边形;()(2)两组对角分别相等的四边形是平行四边形;()(3)一组对边平行,另一组对边相等的四边形是平行四边形;()(4)一组对边平行且相等的四边形是平行四边形;()(5)对角线相等的四边形是平行四边形;()(6)对角线互相平分的四边形是平行四边形.()2.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.3.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有_______2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.七、课后练习1.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.。

平行四边形的判定定理五条

平行四边形的判定定理五条

平行四边形的判定定理五条平行四边形是构成很多重要几何图形的基础,其具有非常重要的意义,它的存在被用于解决许多几何问题。

众所周知,任何一个平行四边形都具备着某种形式的定理,其中有五条定理是平行四边形最为重要的定理。

本文将就这五条定理进行介绍,以供读者参考。

第一条定理:恒等边定理。

指出,如果一个四边形的四条边分别相等,那么它一定是平行四边形。

而且,由于所有四条边相等,因此这个平行四边形中所有四边和它四个顶点共线。

第二条定理:对边平行定理。

这条定理说明,如果一个四边形的两条对边是平行的,那么它就是一个平行四边形。

其中,对边的定义是,两条边的长度和角度一样,但是方向相反。

第三条定理:相邻边与对边平行定理。

这条定理指出,如果一个四方形的四个顶点连成四条边,使得相邻边之间是平行的,那么它就是一个平行四边形。

第四条定理:对角线垂直定理。

它显示,如果一个四边形的对角线垂直相交,那么它就是一个平行四边形。

第五条定理:面积定理。

这条定理指出,如果一个四边形的面积是平行四边形的面积,那么它就是一个平行四边形。

上述就是平行四边形的判定定理五条。

通过这五条定理,我们可以很容易地确定一个四边形是否是平行四边形,从而对几何图形的性质有更深入的了解。

判定定理不仅被用于几何,而且也被用于投资、经济学等学科中,它使平行四边形的判定变得更加简单和便捷。

四边形的判定定理五条,为我们在几何图形的研究提供了重要的依据。

平行四边形的判断虽然看似简单,但背后却有很多深奥的数学知识,帮助人们更好的把握几何图形的特征,更加深入的了解几何结构带来的美感和几何形状的布局能力。

总之,平行四边形的判定定理五条为我们几何研究提供了重要的依据,不仅可以用来研究几何图形,而且也有助于经济和投资领域的研究,以及对于布局特征的研究。

在未来,我们将继续深入研究平行四边形的判定定理,以充分发挥它们在几何及其他学科中的应用。

到此,本文就《平行四边形的判定定理五条》的介绍到这里,以期让读者对平行四边形有更深入的了解,从而更好的应用到解决几何问题中去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判定平行四边形的五种方法
平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

下面以近几年的中考题为例说明如何证明四边形是平行四边形。

一、 两组对边分别平行
如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF
(1)请在图中找出一对全等三角形,并加以证明;
(2)判断四边形ABDF 是怎样的四边形,并说明理由。

解:(1)选证△BDE≌△FEC
证明:∵△ABC 是等边三角形,
∴BC=AC,∠ACD=60°
∵CD=CE,∴BD=AE,△EDC 是等边三角形
∴DE=EC,∠CDE=∠DEC=60°
∴∠BDE=∠FEC=120°
又∵EF=AE,∴BD=FE,∴△BDE≌△FEC
(2)四边形ABDF 是平行四边形
理由:由(1)知,△ABC、△EDC、△AEF 都是等边三角形
∵∠CDE=∠ABC=∠EFA=60°
∴AB∥DF,BD∥AF
∵四边形ABDF 是平行四边形。

点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等
时,可证四边形的两组对边分别平行,从而四边形是平行四边形。

二、 一组对边平行且相等
例2 已知:如图2,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连结BG 并延长交DE
于F
(1)求证:△BCG≌△DCE;
(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形?并说明理由。

分析:(2)由于ABCD 是正方形,所以有AB∥DC,又通过旋转CE=AE′已知CE=CG ,所以E′A=CG,
A F
B D
C E 图1
这样就有BE′=GD,可证E′BGD是平行四边形。

解:(1)∵ABCD是正方形,
∴∠BCD=∠DCE=90°又∵CG=CE,△BCG≌△DCE
(2)∵△DCE绕D顺时针
旋转90°得到△DAE′,
∴CE=AE′,∵CE=CG,∴CG=AE′,
∵四边形ABCD是正方形
∴BE′∥DG,AB=CD
∴AB-AE′=CD-CG,即BE′=DG
∴四边形DE′BG是平行四边形
点评:当四边形一组对边平行时,再证这组对边相等,即可得这个四边形是平行四边形
三、两组对边分别相等
例3 如图3所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE,等边△BCF。

求证:四边形DAEF是平行四边形;
分析:利用证三角形全等可得四边形DAEF的两组对边分别相等,从而四边形DAEF是平行四边形。

解:∵△ABD和△FBC都是等边三角形
∴∠DBF+∠FBA=∠ABC+∠FBA=60°
∴∠DBF=∠ABC
又∵BD=BA,BF=BC ∴△ABC≌△DBF
∴AC=DF=AE同理△ABC≌△EFC
∴AB=EF=AD
∴四边形ADFE是平行四边形
点评:题设中存在较多线段相等关系时,可证四边形的两组对边分别相等,从而可证四边形是平行四边形。

四、对角线互相平分
例4已知:如图4,平行四边形ABCD的对角线AC和BD相交于O,AE⊥BD于E,BF⊥AC于F,CG⊥BD 于G,DH⊥AC于H,求证:四边形EFGH是平行四边形。

图4
分析:因为题设条件是从四个顶点向对角线引垂线,这些条件与四边形EFGH的对角线有关,若能证出OE=OG,OF=OH,则问题可获得解决。

证明:∵AE⊥BD,CG⊥BD,
∴∠AEO=∠CGO,
∵∠AOE=∠COG,OA=OC
∴△AOE≌△COG,∴OE=OG
同理△BOF≌△DOH
∴OF=OH
∴四边形EFGH是平行四边形
点评:当已知条件与四边形两对角线有关时,可证两对角线互相平分,从而证四边形是平行四边形。

五、两组对角相等
例5 将两块全等的含30°角的三角尺如图1摆放在一起
四边形ABCD是平行四边形吗?理由。

(1)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?
说出你的结论和理由:。

分析:因为题设与四边形内角有关,故考虑四边形的两组内角相等解决问题。

解:(1)四边形ABCD是平行四边形,理由如下:
∠ABC=∠ABD+∠DBC=30°+90°=120°,
∠ADC=∠ADB+∠CDB=90°+30°=120°
又∠A=60°,∠C=60°,
∴∠ABC=∠ADC,∠A=∠C
(2)四边形ABC1D1是平行四边形,理由如下:
将Rt△BCD 沿射线方向平移到Rt△B 1C 1D 1的位置时,有Rt△C 1BB 1≌Rt△ADD 1 ∴∠C 1BB 1=∠AD 1D ,∠BC 1B 1=∠DAD 1
∴有∠C 1BA=∠ABD+∠C 1BB 1=∠C 1D 1B 1+∠AD 1B=∠AD 1C 1,∠BC 1D 1=
∠BC 1B 1+∠B 1C 1D 1=∠D 1AD+∠DAB=∠D 1AB
所以四边形ABC 1D 1是平行四边形
点评:(2)也可这样证明:由(1)知ABCD 是平行四边形,∴AB∥CD,将 Rt△BCD 沿射线BD 方向平移到Rt△B 1C 1D 1的位置时,始终有AB∥C 1D 1,故ABC 1D 1是平行四边形。

= =。

相关文档
最新文档