等角的证法
等角代换法证-概述说明以及解释

等角代换法证-概述说明以及解释1.引言1.1 概述引言部分是文章的开端,用于引导读者进入主题。
在“概述”部分,我们可以简要介绍等角代换法的定义和背景,以激发读者的兴趣。
在本文中,等角代换法是一种数学方法,用来简化复杂的三角函数或反三角函数的积分运算。
它通过将三角函数或反三角函数转化为其他函数,从而使积分计算更加容易。
通过引入等角代换法,我们可以解决一些复杂的积分问题,提高计算效率并简化数学推导过程。
本文将对等角代换法进行详细探讨,探索其在数学领域中的重要性和应用前景。
1.2 文章结构本文将分为引言、正文和结论三个部分。
在引言部分,将会先概述等角代换法的概念和作用,介绍文章的整体结构,并说明文章的写作目的。
接下来的正文部分将详细讨论等角代换法的定义和原理,以及其在实际问题中的应用。
我们将探讨等角代换法的优势和特点,分析其在数学领域和工程领域中的重要性和实用性。
最后,在结论部分,我们将总结等角代换法的重要性和价值,展望其在未来的发展前景,以及提出本文的结论和观点。
通过对文章结构的明确规划,读者可以更好地理解本文的内容和逻辑结构,有助于深入理解等角代换法在数学和工程领域中的重要性。
1.3 目的:本文的主要目的是通过对等角代换法的详细介绍和分析,帮助读者更好地理解和掌握这种数学方法。
等角代换法在数学求解中起着重要作用,能够简化复杂的计算过程,提高问题求解的效率。
通过深入了解等角代换法的原理和应用,读者可以更加灵活地运用这种方法解决各种数学问题,提高数学推理和计算的能力。
同时,本文也旨在探讨等角代换法的优势和局限性,帮助读者全面了解这种方法的特点和适用范围。
通过对比分析等角代换法与其他数学方法的优缺点,读者可以更好地选择适合自己的解题方法,提高数学学习的效果。
总的来说,本文的目的是通过对等角代换法的深入研究和讨论,促进读者对数学方法的理解和运用能力的提升,进一步激发对数学学习的兴趣和热情。
希望读者通过阅读本文,能够对等角代换法有更清晰的认识,并在实际问题中灵活运用,进一步提高自身的数学素养和学习成绩。
全等三角形证明方法总结

❸由中点想到的辅助线 在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线加倍延长及其相关性质 (等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。
8
(1)中线把原三角形分成两个面积相等的小三角形 即如图 1,AD 是 ΔABC 的中线,则 SΔABD=SΔACD= SΔABC(因为 ΔABD 与 ΔACD 是等底同高的)。
成全等三角形
全等
造全等,则 P 是中点
三角形
图中有角平分线,可向两边 图中有角平分线,沿它对折 角平分线加垂线,“三线合 角平分线+平行线,等腰三
作垂线
关系现
一”试试看
角形必呈现
角平分线的常见倒角模型及相关结论 已知△ABC 中,BP,CP 分别为角平分线且交于点 P,探讨∠BPC 与∠A 的关系
角平 分线 倒角 模型
证法二:连接 AD,并延长交 BC 于 F
G
E
D
∵∠BDF 是△ABD 的外角 ∴∠BDF>∠BAD,同理,∠CDF>∠CAD ∴∠BDF+∠CDF>∠BAD+∠CAD
B
F
C
图2 1
即:∠BDC>∠BAC。
注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内 角位置上,再利用不等式性质证明。
分析:因为∠BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠
BDC 处于在外角的位置,∠BAC 处于在内角的位置;
证法一:延长 BD 交 AC 于点 E,这时∠BDC 是△EDC 的外角,
A
∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC
相似三角形的证明方法总结

相似三角形的证明方法总结相似三角形是指具有相同形状但可能不等长的三角形。
在几何学中,经常需要证明两个三角形是否相似。
下面将总结几种常用的相似三角形的证明方法。
一、AA相似判定法AA相似判定法是基于两个三角形的两个角分别相等的原理,即如果两个三角形的两个角分别相等,则这两个三角形相似。
证明方法如下:假设有两个三角形∆ABC和∆DEF,已知∠A = ∠D和∠B = ∠E,我们要证明∆ABC ∼∆DEF。
步骤如下:1. 连接AC和DF。
2. 根据已知条件,得到∆ABC和∆DEF中相等的角。
3. 根据等角的定义,∠A = ∠D和∠B = ∠E可以得出∠C = ∠F。
4. 由于三角形内角和为180度,∠A + ∠B + ∠C = 180度和∠D +∠E + ∠F = 180度,代入∠A = ∠D,∠B = ∠E和∠C = ∠F,可以得到∠A + ∠B + ∠C = ∠D + ∠E + ∠F。
由此可知,两个三角形的内角和相等。
5. 根据三角形的内角和相等性质,可以得到∆ABC ∼∆DEF。
二、AAA相似判定法AAA相似判定法是基于两个三角形的对应角分别相等的原理,即如果两个三角形的对应角相等,则这两个三角形相似。
证明方法如下:假设有两个三角形∆ABC和∆DEF,已知∠A = ∠D,∠B = ∠E和∠C = ∠F,我们要证明∆ABC ∼∆DEF。
步骤如下:1. 连接AC和DF。
2. 根据已知条件,得到∆ABC和∆DEF中对应相等的角。
3. 根据等角的定义,∠A = ∠D,∠B = ∠E和∠C = ∠F可以得出两个三角形的对应角相等。
4. 根据AAA相似判定法,可以得到∆ABC ∼∆DEF。
三、SAS相似判定法SAS相似判定法是基于两个三角形的其中一对边的比例相等且夹角相等的原理,即如果两个三角形的两边的比例相等且夹角相等,则这两个三角形相似。
证明方法如下:假设有两个三角形∆ABC和∆DEF,已知AB/DE = AC/DF和∠BAC = ∠EDF,我们要证明∆ABC ∼∆DEF。
第4章三角形证明 题型解读11 全等典型模型:“一线三等角”模型-2020-2021学年北师大版七下

《三角形证明》题型解读11 全等典型模型:“一线三等角”模型【知识梳理】(一)“一线三等角模型”题型特征:图形的某条线段上出现三个相等的角,如图中∠B=∠2=∠C解题方法:只要题目再出现一组等边(BE=AC 或EF=AE 或BF=EC ),必证△BEF ≌△CAE (AAS 或ASA )证明过程:∵∠1=180°-∠2-∠3,∠4=180°-∠C-∠3,∵∠2=∠C ,∴∠1=∠4,∵∠B=∠C ,若BE=AC 或EF=AE 或BF=EC ,则△BEF ≌△CAE (AAS 或ASA )(二)“三垂直模型”(“一线三直角模型”)1.基本图形题型特征:图形的某条线段上出现三个直角,如图中∠B=∠AED=∠C=90°解题方法:只要题目再出现一组等边(AB=EC 或BE=DC 或AE=DE ),必证△ABE ≌△ECD (AAS 或ASA )证明过程:∵∠B=∠AED=90°,∴∠1+∠2=90°,∠2+∠A=90°,∴∠1=∠A ,∵∠B=∠C=90°,若AB=EC 或BE=DC 或AE=DE ,则△ABE ≌△ECD (AAS 或ASA )2.两种变化图形(1)“交叉型”三垂直模型(2)“L 型”三垂直模型证∠1+∠2=°,∠2+∠A=°,∴∠1=∠A 又∠B=∠C ,若AB ≅FC 若AB ~FC 21A B F E D C 证∠1+∠2=°,∠2+∠A=°,∴∠1=∠A 又∠B=∠C ,若AB ≅EC若AB ~EC 21A B CE D 证明:∵∠1+∠2=90°,∠2+∠A=90°,∴∠1=∠A 又∵∠B=∠C ,若其中有一组边相等,则证ABE ≅FCD;若没有边相等,则证ABE ~FCD;C (1(2E D C B A(1)若有等边,则△ABE≌△BDC(AAS )(2)若无等边,则△ABE∽△BDC(AA )D C【典型例题】例1.如图,在△ABC 中,AB=AC=2,∠B=40º,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE=40º,DE 交线段AC 于点E .(1)当∠BDA=115°时,∠EDC=________,∠AED=___________;(2)线段DC 的长度为何值时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,求∠BDA 的度数;若不可以,请说明理 由.【解析】(1)∠EDC=25°,∠AED=65°;(2)当DC=2时,△ABD ≌△DCE ,理由如下:∵∠ADE=40º,∴∠ADB+∠CDE=140°,∵∠B=40º,∴∠ADB+∠BAD=140°,∴∠BAD=∠CDE,∵AB=AC ,∴∠B=∠C,在△ABD 与△DCE 中,∵∠B=∠C,∠BAD=∠CDE,AB=CD=2,∴△ABD ≌△DCE ;(3)由于题目未明确等腰△ADE 的腰与底,故需要分类讨论,再利用等腰三角形性质及三角形内角和公式、外角定理即可求解。
证明全等三角形找边相等的方法

证明三角形全等找边相等的方法法一:利用等角对等边(注意:必须在同一个三角形中才能考虑)1.如图,已知∠1=∠2,∠3=∠4,求证:AB=CD法二:利用公共边相等(若果要证明的两个全等三角形有两个相同的对应点,那么可么马上得出它们具有公共边)2.AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CF3.已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。
4.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.法三:利用等量代换(即AB+公共边=DE+公共边,那么AB=DE)5.如图:AB=CD ,AE=DF ,CE=FB 。
求证:AF=DE 。
F D C B A FEBA D BCA FE 654321E DC BA .3421DC B A6.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE∥DF,BE =DF .求证:△ABE≌△CDF.7.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .法四:利用三角形中线定理,或者等边三角形(三角形一条中线将三角形一边平分为相等的两条想段)8.如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
求证:MB=MC9.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
求证:(1)EC=BF ;(2)EC ⊥BF法五:利用三角形角平分线定理(三角形角平分线上的点到角两边的距离相等注意1、必须是角平分线上的点 2、必须是点到直线的距离,垂直距离)10.如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,DE 垂直AB,DC 垂直AC,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
求证全等三角形的几种方法

求证全等三角形的几种方法求证全等三角形的几种方法课程解读全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。
判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。
一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。
典型例题全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。
求证:BD=2CE。
解答过程:证明:延长BA,CE交于点F,在ΔBEF 和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。
又∠1+∠F=∠3+∠F=90°,故∠1=∠3。
在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。
(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
中考数学常见几何模型一线三等角(K型图)模型(从全等到相似)

专题05 一线三等角(K 型图)模型(从全等到相似) 全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(全等模型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角条件:A CED B ∠=∠=∠+ CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅异侧型一线三等角:锐角一线三等角 直角一线三等角 钝角一线三等角条件:FAC ABD CED ∠=∠=∠+ 任意一边相等证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅1.(2022·湖南湘潭·中考真题)在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .(1)特例体验:如图①,若直线l BC ∥,AB AC ==分别求出线段BD 、CE 和DE 的长;(2)规律探究:①如图②,若直线l 从图①状态开始绕点A 旋转()045αα<<︒,请探究线段BD 、CE 和DE 的数量关系并说明理由;②如图③,若直线l 从图①状态开始绕点A 顺时针旋转()4590αα︒<<︒,与线段BC 相交于点H ,请再探线段BD 、CE 和DE 的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD 交线段AC 于点F ,若3CE =,1DE =,求BFC S △.【答案】(1)BD =1;CE =1;DE =2(2)①DE =CE +BD ;理由见解析;②BD =CE +DE ;理由见解析 (3)258BFC S ∆=【分析】(1)先根据得出90452ABC ACB ︒∠=∠==︒,根据l BC ∥,得出45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,再根据90BDA CEA ∠=∠=︒,求出45ABD ∠=︒,45ACE ∠=︒, 即可得出45DAB ABD EAC ACE ∠=∠=∠=∠=︒,最后根据三角函数得出1AD BD ==,1AE CE ==,即可求出2DE AD AE =+=;(2)①DE =CE +BD “AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;②BD =CE +DE ;根据题意,利用“AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;(3)在Rt△AEC 中,根据勾股定理求出5AC =,根据DF CE ∥,得出AD AF AE CF =,代入数据求出AF ,根据AC =5,算出CF ,即可求出三角形的面积.(1)解:△90BAC ∠=︒,AB AC =,△90452ABC ACB ︒∠=∠==︒, △l BC ∥,△45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△904545ABD ∠=︒-︒=︒,904545ACE ∠=-=︒︒︒,△45DAB ABD EAC ACE ∠=∠=∠=∠=︒,△sin 1AD BD AB DAB ==⨯∠==,sin 1AE CE AC EAC ==⨯∠==,△2DE AD AE =+=. (2)①DE =CE +BD ;理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△DE =AD +AE =CE +BD ,即DE =CE +BD ;②BD =CE +DE ,理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△BD =AE =AD +DE =CE +DE ,即BD =CE +DE .(3)根据解析(2)可知,AD =CE=3,△314AE AD DE =+=+=,在Rt△AEC 中,根据勾股定理可得:5AC =,△BD △AE ,CE △AE ,△DF CE ∥,△AD AF AE CF =,即345AF =,解得:154=AF , △155544CF AC AF =-=-=,△AB =AC =5,△1152552248BFC S CF AB ∆=⨯=⨯⨯=. 【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明ABD CAE ∆∆≌,是解题的关键.2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m , CE △直线m ,垂足分别为点D 、E .证明△DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为△BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若△BDA =△AEC =△BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF 为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB△△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB△△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD;(3)由△ADB△△CEA得BD=AE,△DBA =△CAE,由△ABF和△ACF均等边三角形,得△ABF=△CAF=60°,FB=F A,所以△DBA+△ABF=△CAE+△CAF,即△DBF=△F AE,所以△DBF△△EAF,所以FD=FE,△BFD=△AFE,再根据△DFE=△DF A+△AFE=△DF A+△BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:△BD△直线m,CE△直线m,△△BDA=△CEA=90°.△△BAC=90°,△△BAD+△CAE=90°.△△BAD+△ABD=90°,△△CAE=△ABD.又AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(2)成立.证明如下:△△BDA =△BAC=α,△△DBA+△BAD=△BAD +△CAE=180°-α.△△DBA=△CAE.△△BDA=△AEC=α,AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB△△CEA,BD=AE,△DBA =△CAE,△△ABF和△ACF均为等边三角形,△△ABF=△CAF=60°.△△DBA+△ABF=△CAE+△CAF.△△DBF=△F AE.△BF=AF,△△DBF△△EAF(SAS).△DF=EF,△BFD=△AFE.△△DFE=△DF A+△AFE=△DF A+△BFD=60°.△△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.3.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ∠=︒,AE =BD ,则AED ≌_______; ②如图2,ABC 为正三角形,,60BD CF EDF =∠=︒,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l ⊥于E ,CF l ⊥于F .若1AE =,2CF =,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为(,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥于E ,AD △CE 于D ,4cm DE =,6cm AD =,求BE 的长.△四边形OABC是正方形△△AOC=90゜,AO=OC模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论; (2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ β∠=.当β在许可范围内变化时,α取何值总有△ABP △△PCQ ?当α在许可范围内变化时,β取何值总有△ABP △△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.【答案】(1)DE AE AD BD CE =+=+;证明见解析;(2)30α=︒;75β=︒;(3)可能;30α=︒,30β=︒或52.5α=︒,75β=︒.【分析】(1)证明△ADB △△CEA (AAS ),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=△2或△1=△CQP ,即△2=30°+β-α=β,解得α=30°,即可求解;由β=△1或△2=△CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则△2=△B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.【详解】解:(1)如图1,△BDA BAC α∠=∠=,△180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,△DBA CAE ∠=∠,在△ADB 和△CEA 中,DBA EAC BDA AEC BA AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADB △△CEA (AAS ),△AE BD =,AD CE =, △DE AE AD BD CE =+=+;(2)在△ABP 中,2230APC B αβ∠=∠+∠=+∠=︒+,△1150β∠=︒-,同理可得:230βα∠=︒+-;由2β=∠或1CQP ∠=∠,即230βαβ∠=︒+-=,解得30α=︒,则△ABP △△PCQ ;△当β在许可范围内变化时,30α=︒时,总有△ABP △△PCQ ;由1β=∠或2CQP ∠=∠,同理可得:75β=︒.△当α在许可范围内变化时,75β=︒总有△ABP △△QCP ;(3)可能.①当30α=︒,30β=︒时,则230B α∠=∠==︒,则△ABP △△PCQ △△BCA ; ②当75β=︒,52.5α=︒时,同理可得:115075ββ∠=︒-=︒=,23052.5βαα∠=︒+-=︒=,△△ABP △△CQP △△BCA .【点睛】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.2.(2022·河南新乡·二模)如图,△ABC 和△ADE 是有公共顶点A 的两个等腰直角三角形,△DAE =△BAC =90°,AD =AE ,AB =AC =6,D 在线段BC 上,从B 到C 运动,点M 和点N 分别是边BC ,DE 的中点.(1)【问题发现】若点D 是BC 边的中点时,BD MN= ,直线BD 与MN 相交所成的锐角的度数为 (请直接写出结果)(2)【解决问题]若点D 是BC 边上任意一点时,上述结论是否成立,请说明理由.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.当点D 是BC 的中点时,△AB =AC ,△AD △BC ,AD 平分△BAC ,如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B ∠=∠=∠=︒时,求证:AD BC AP BP ⋅=⋅.(2)探究:若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用:如图3,在ABC 中,AB =45B ∠=︒,以点A 为直角顶点作等腰Rt ADE △.点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若CE =CD 的长.)结论仍然成立,理由如下,BPD ∠=又BPD ∠=DPC BPC +∠DPC ∠=∠α,BPC ∴∠ADP ∴∽△△,△AD ⋅BC)∠ABD DFE ∴∽,AB DF ∴ADE 是等腰直角三角形,,2AB =,4DF ∴=,45EFD ∠=135DEC =︒,EFC DEC ∴∽,FC EC ∴5EC =,()45FC CD FC FC ⋅=⋅+=,1FC ∴= 【点睛】本题考查相似三角形的综合题,三角形的相似;能够通过构造45°角将问题转化为一线三角是解题的关键.模型3.一线三直角模型(相似模型)【模型解读与图示】“一线三直角”模型的图形,实则是“一线三等角”型的图形的特例,因为这种图形在正方形和矩形中出现的比较多,对它做一专门研究,这样的图形,因为有三个角是直角,就有两个角相等,再根据“等角的余角相等”可以得到另外一对角相等,从而判定两个三角形相似.1.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB =,6BC =.点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM +的最小值;②当AG GM +取最小值时,求线段DE 的长.【答案】(1)见解析(2)①5;②3DE =3DE =【分析】(1)证明出DCE AEF ∠=∠即可求解;(2)①连接AM .先证明132BM CM GM BC ====.确定出点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM 中利用勾股定理即可求出AM ,则问题得解.②先求出AF ,求AF 的第一种方法:过点M 作∥MN AB 交FC 于点N ,即有CMN CBF ∽△△,进而有12MN CM BF CB ==.设AF x =,则4BF x =-,()142MN x =-.再根据∥MN AB ,得到AFG MNG ∽△△,得到AF AG MN GM =,则有()21342xx =-,解方程即可求出AF ;求AF 的第二种方法:过点G 作GH AB ∥交BC于点H .即有MHG MBA ∽△△.则有GM GH MH AM AB MB ==,根据5AM =,可得3543GH MH ==,进而求出125GH =,95MH =.由GH AB ∥得CHG CBF ∽△△,即可求出AF .求出AF 之后,由(1)的结论可得AF AE DE DC.设DE y =,则6AE y =-,即有164y y -=,解得解方程即可求出DE .(1)证明:如图1,△四边形ABCD 是矩形,△90A D ∠=∠=︒,△90CED DCE ∠+∠=︒.△EF CE ⊥,△90CED AEF ∠+∠=︒,△DCE AEF ∠=∠,△AEF DCE ∽;(2)①解:如图2-1,连接AM .△BG CF ⊥,△BGC 是直角二角形.△132BM CM GM BC ====. △点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点不共线时,由三角形两边之和大于箒三边得:AG GM AM +>, 当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM中,5AM ==.△AG GM+的最小值为5.②(求AF 的方法一)如图2-2,过点M 作∥MN AB 交FC 于点N ,△CMN CBF ∽△△.△12MN CM BF CB ==. 设AF x =,则4BF x =-,△()11422MN BF x ==-. △∥MN AB ,△AFG MNG ∽△△,△AF AG MN GM =, 由①知AG GM +的最小值为5、即5AM =,又△3GM =,△2AG =.△()21342xx =-,解得1x =,即1AF =.(求AF 的方法二)如图2-3,过点G 作GH AB ∥交BC 于点H .△MHG MBA ∽△△.△GM GH MH AM AB MB==, 由①知AG GM +的最小值为5,即5=,又△3GM =,△3543GH MH ==.△125GH =,95MH =. 由GH AB ∥得CHG CBF ∽△△,△GH CH FB CB =,即1293556FB +=,解得3FB =. △1AF AB FB =-=.由(1)的结论可得AF AE DE DC . 设DE y =,则6AE y =-,△164y y -=,解得3y =3△036<,036<<,△3DE =+或3DE =【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.2.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P , Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ ∠相等的角是_____(2)问题探究直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作正方形ACEF 和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE =,CD kCH =,试探究TE 与TH 之间的数量关系,并证明你的结论.【答案】(1)PR ,PMR ∠,(2)EK LH =,证明见解析;(3)ET HT=,证明见解析.【分析】(1)根据等腰直角三角形的性质得到,=MR RN ,90MRN ∠=︒,根据余角性质得到PMR NRQ ∠=∠,再证明MPR NRQ ≌△△,即可得到QN PR =,NRQ PMR ∠=∠;(2)证明ABC CEK ≌△△,得到EK BC =,再证明DCB CHL ≌△△,得到BC HL =,可得到EK LH =;(3)证明ACB ECM ∽△△,得到BC kEM =,证明BCD NHC ∽△△,得到BC kHN =,得到EM HN =,证明NHT EMT ≌△△即可得到ET HT =. (1)解:△MRN △是等腰直角三角形,△=MR RN ,90MRN ∠=︒,△MP PQ ⊥,NQ PQ ⊥,△90MPR NQR ∠=∠=︒,△90PMR MRP MRP NRQ ∠+∠=∠+∠=︒,△PMR NRQ ∠=∠,在MPR △和NRQ △中,PMR NRQ MPR NRQ MR NR ∠=∠⎧⎪∠=∠⎨⎪=⎩△MPR NRQ ≌△△,△QN PR =,NRQ PMR ∠=∠,故答案为:PR ,PMR ∠;(2)解:△四边形ACEF 是正方形,△AC CE =,90ACE ∠=︒,△EK BK ⊥△90B EKC ∠=∠=︒,△90BAC ACB ACB ECK ∠+∠=∠+∠=︒,△BAC ECK ∠=∠,在ABC 和CEK △中,BAC KCE B EKCAC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩△ABC CEK ≌△△,△EK BC =, △四边形CDGH 是正方形,△CD CH =,90DCH ∠=︒在DCB和△3)解:过△四边形ACEF是矩形,△90ACE∠=︒,△90BAC ACB ACB ECM∠+∠=∠+∠=︒,顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,△ACB =90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC△△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC△△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=12x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=32,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=4,BC=5,点E为BC边上一个动点,连接AE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.由(1)可得:△NFO△△OEM,△NF OF NO==,△点M(2,1),△OE=2,ME=1,OE ME MONF OF33ON33课后专项训练:1.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:CD BE =. (2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为()4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x =-+与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45︒后,所得的直线交x 轴于点R .求点R 的坐标.20由已知得OM=ON,且△OMN=90°,△由(1)得△OFM△△MGN,=35x+4.【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,汕头市潮阳区教师发展中心教学研究室一模)直角三角形ABC中,△ACB=90°,CB=CA,直线ED经过点C,过A作AD△ED于D,过B作BE△ED于E.求证:△BEC△△CDA;(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin△ABO=35,OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x-5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.和CDA中⎧⎪⎨⎪⎩①如图,过点中sin△ABO ,AB=5m,)可证得CDB∆当D在AB的下方时,过D作DE△y轴于E,交BC于F,,在ABC中,MN经过点C,且AD MN⊥于D,BE MN⊥于E.(1)由图1,证明:DE AD BE=+;(2)当直线MN绕点C旋转到图2的位置时,请猜想出DE,AD,BE的等量关系并说明理由;(3)当直线MN绕点C旋转到图3的位置时,试问DE,AD,BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE AD BE =-,证明过程见解析;(3)DE BE AD =-,证明过程见解析【分析】(1)先证明△ADC △△CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明△ADC △△CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明△ADC △△CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC 中,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒,△AD MN ⊥,△90ACD CAD ∠+∠=︒,△BCE =∠∠CAD ,又△AC BC =,90ADC CEB ∠=∠=,△()≌ADC CEB AAS ,△AD CE =,DC BE =, △直线MN 经过点C ,△DE CE DC AD BE =+=+;(2)DE ,AD ,BE 的等量关系为:DE AD BE =-,理由如下:△AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△△CE AD =,CD BE =,△DE CE CD AD BE =-=-;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD =-,理由如下:△AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△△CE AD =,CD BE =,△DE CD CE BE AD =-=-.【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.4.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =, 1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图③,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB △△ADC ,根据全等三角形的性质解答即可; (2)由条件可得△BEA =△AFC ,△4=△ABE ,根据AAS 可证明△ABE △△CAF ;(3)先证明△ABE △△CAF ,得到ACF ∆与BDE ∆的面积之和为△ABD 的面积,再根据2CD BD =故可求解.【详解】解:(1)△BE △CE ,AD △CE ,△△E =△ADC =90°,△△EBC +△BCE =90°.△△BCE +△ACD =90°,△△EBC =△DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CEB △△ADC (AAS ),△BE =DC ,CE =AD =2.5cm .△DC =CE −DE ,DE =1.7cm ,△DC =2.5−1.7=0.8cm ,△BE =0.8cm 故答案为:0.8cm ; (2)证明:△△1=△2,△△BEA =△AFC .△△1=△ABE +△3,△3+△4=△BAC ,△1=△BAC ,△△BAC =△ABE +△3,△△4=△ABE .△△AEB =△AFC ,△ABE =△4,AB =AC ,△△ABE △△CAF (AAS ).(3)△BED CFD BAC ∠=∠=∠△△ABE +△BAE =△F AC +△BAE =△F AC +△ACF△△ABE =△CAF ,△BAE =△ACF又AB AC =△△ABE △△CAF ,△ABE CAF S S =△ACF ∆与BDE ∆的面积之和等于ABE ∆与BDE ∆的面积之和,即为△ABD 的面积,△2CD BD =,△ABD 与△ACD 的高相同则13ABD ABC S S =△△=5 故ACF ∆与BDE ∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2022·无锡市九年级月考)(1)如图1,直线m 经过等腰直角△ABC 的直角顶点A ,过点B 、C 分别作BD ⊥m ,CE ⊥m D 、E .求证:BD +CE =DE ;(2)如图2,直线m 经过△ABC 的顶点A ,AB =AC ,在直线m 上取两点 D 、E ,使∠ADB =∠AEC =α,补充∠BAC = (用α表示),线段BD 、CE 与DE 之间满足BD +CE =DE ,补充条件后并证明;(3)在(2)的条件中,将直线m 绕着点A 逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC = (用α表示).通过观察或测量,猜想线段BD 、CE 与DE 之间满足的数量关系,并予以证明.【答案】(1)证明见详解,(2)∠BAC=α,证法见详解,(3)180º-α,DE=EC-BD,证明见详解.【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;(3)180º-α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.6.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,△BAC=90°,ABAC=k,直线l经过点A,BD△直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,ABAC=k,D、A、E三点都在直线l上,并且有△BDA=△AEC=△BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI 之间的数量关系:.【答案】(1)见解析(2)结论还成立,证明见解析(3)①见解析②BC=AI【分析】(1)由条件可证明△ABD△△CAE,可得BDAE=ABAC=k;(2)由条件可知△BAD+△CAE=180°−α,且△DBA+△BAD=180°−α,可得△DBA=△CAE,结合条件可证明△ABD△△CAE,同(1)可得出结论;(3)①过点G作GM∥AE交AI的延长线于点M,连接EM,证明△ABC△△GMA,再得到四边形AGME是平行四边形,故可求解;②由①得到BC=12AM,再根据四边形AGME是平行四边形得到BC=AI,故可求解.【详解】(1)如图1,△BD△直线l,CE△直线l,△△BDA=△CEA=90°,△△BAC=90°,△△BAD+△CAE=90°△△BAD+△ABD=90°,△△CAE=△ABD△△ABD=△CAE,△BDA=△CEA,△△ADB△△CEA,△BDAE =ABAC=k;(2)成立,证明如下:如图2,△△BDA=△BAC=α,△△DBA+△BAD=△BAD+△CAE=180°−α,△△DBA=△CAE,△△ABD=△CAE,△BDA=△CEA△△ADB△△CEA,△BDAE =ABAC=k;(3)①过点G作GM∥AE交AI的延长线于点M,连接EM △四边形AGFC是矩形,△△GAC=90°又AH△BC△△AHC=90° △△5+△CAH=△4+△CAH=90°△△5=△4△△BDE=△AHB=90°△△2+△BAH=△1+△BAH=90°△△2=△1又GM∥AE△△3=△2△△3=△1△△ABC△△GMA【点睛】此题主要考查相似三角形的判断与性质综合,解题的关键是根据题意找到相似三角,ABC 是等腰直角三角形,直线l 过点C ,AM l ⊥,BN l ⊥,垂足分别为M ,N .求证:AMC CNB △≌△;[尝试应用](2)如图2,AC BC =,90ACB ∠=︒,N ,B ,E 三点共线,CN NE ⊥,45E ∠=︒,1CN =,2BN =.求AE 的长;[拓展创新](3)如图3,在DCE 中,45CDE ∠=︒,点A ,B 分别在DE ,CE 上,AC BC =,90ACB ∠=︒,若1tan 2DCA ∠=,直接写出AE AD 的值为 .在AMC和△△()AMC CNB AAS≌2)如图2AM NH⊥于M,由(1)可知:BCN CAM△≌△,△2CM BN==,1CN AM==,)可知:AMC BNC≌,45DAM DFN=∠=∠=a,△32AF a=,BCN BFH∽△,等腰直角三角形的性质等知识,添加恰当辅助线构造全等三角形或相似三角形是本题的关键.8.(2022·黑龙江齐齐哈尔·三模)数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB BD ⊥于点B ,CD BD ⊥于点D ,P 是BD 上一点,AP PC =,AP PC ⊥,则ABP △≌△________,请你说明理由.(2)利用结论,直接应用:①如图2,四边形ABCD 、EFGH 、NHMC 都是正方形,边长分别为a 、b 、c ,A 、B 、N 、E ,F 五点在同一条直线上,则CBN △≌△________,c =________(用含a 、b 的式子表示).②如图3,四边形ABCD 中,AB DC ,AB BC ⊥,2AB =,4CD =,以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,则圆心O 到弦AD 的距离为________.(3)弱化条件,变化引申:如图4,M 为线段AB 的中点,AE 与BD 交于点C ,45DME A B ∠=∠=∠=︒,且DM 交AC 于点F ,ME 交BC 于点G ,连接FG ,则AMF 与BGM 的关系为:________,若AB =3AF =,则FG =________.5即可证明∽AMF BGM ,即可求出△AB DC ∥,AB BC ⊥△90B C ∠=∠=︒ △90AOD ∠=︒△90AOB DOC +=︒∠∠在AOB 和△Rt AOB 中,Rt AOD △中,12AD OE ⨯⨯=10=△圆心解:AMF 与BGM 的关系为:相似,45︒△AMD AFM +∠∠△∽AMF BGM △AM BG 45︒△90ACB ∠=︒△AC 84433=-=△FG FC =本题考查了全等三角形的判定和性质、x 轴上,C 、D 、E 分别是AB 、OB 、OA 上的动点,且满足BD =2AC ,DE ∥AB ,连接CD 、CE ,当点E 坐标为 时,△CDE 与△ACE 相似.【分析】因为DE ∥AB 得到∠DEC =∠ACE ,所以△CDE 与△ACE 相似分两种情况分类讨论.【解答】解:∵DE ∥AB ,∴∠DEC ACE ,△ODE ∽△OBA ,∴△ODE 也是等边三角形,则OD =OE =DE ,设E (a ,0),则OE =OD =DE =a ,BD =AE =4﹣a .∵△CDE 与△ACE 相似,分两种情况讨论:①当△CDE ∽△EAC 时,则∠DCE =∠CEA ,∴CD ∥AE ,∴四边形AEDC 是平行四边形,∴AC =a ,,∵BD =2AC ,∴4﹣a =2a ,∴a =.∴E ;②当△CDE ∽△AEC 时,∠DCE =∠EAC =60°=∠B ,∴∠BCD +∠ECA =180°﹣60°=120°,又∵∠BDC +∠BCD =180°﹣∠B =120°,∴∠BCD +∠ECA =∠BDC +∠BCD , ∴∠ECA =∠BDC ,∴△BDC ∽△ACE ,∴,∴BC =2AE =2(4﹣a )=8﹣2a , ∴8﹣2a +2=4,∴a =.∴.综上所述,点E 的坐标为或.【点评】本题主要考查相似三角形,考虑分类讨论是本题的关键.10.(2022•广东中考模拟)(1)模型探究:如图1,D 、E 、F 分别为ABC ∆三边BC 、AB 、AC 上的点,且B C EDF α∠=∠=∠=,BDE ∆与CFD ∆相似吗?请说明理由.(2)模型应用:ABC ∆为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF ∆沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD =.①如图2,当点D 在线段BC 上时,求AE AF的值; ②如图3,当点D 落在线段CB 的延长线上时,求BDE ∆与CFD ∆的周长之比.【答案】(1)~∆∆BDE CFD ,见解析;(2)①57AE AF =;②BDE ∆与CFD ∆的周长之比为13. 【分析】(1)根据三角形的内角和得到BED CDF ∠=∠,即可证明;(2)①设AE x =,AF y =,根据等边三角形的性质与折叠可知DE AE x ==,DF AF y ==,60EDF A ∠=∠=,根据三角形的内角和定理得BED CDF ∠=∠,即可证明~∆∆BDE CFD ,故BD BE DE CF CD FD ==,再根据比例关系求出AE AF的值; ②同理可证~∆∆BDE CFD ,得BD BE DE CF CD FD ==,得28810x x y y -==-,再得到13x y =,再根据相似三角形的性质即可求解.【详解】解(1)~∆∆BDE CFD ,理由:B C EDF α∠=∠=∠=,在BDE ∆中,180B BDE BED ∠+∠+∠=,180180BDE BED B α∴∠+∠=-∠=-,180BDE EDF CDF ∠+∠+∠=,180180BDE CDF EDF α∴∠+∠=-∠=-,BED CDF ∴∠=∠,B C ∠=∠,~BDE CFD ∴∆∆;(2)①设AE x =,AF y =,ABC ∆是等边三角形,60A B C ∴∠=∠=∠=,8AB BC AC ===,由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=,在BDE ∆中,180B BDE BED ∠+∠+∠=,180120BDE BED B ∴∠+∠=-∠=, 180120BDE BED B ∠+∠=-∠=,180BDE EDF CDF ∠+∠+∠=,180120BDE CDF EDF ∴∠+∠=-∠=,BED CDF ∴∠=∠,60B C ∠=∠=,~BDE CFD ∴∆∆,BD BE DE CF CD FD∴==, 8BE AB AE x =-=-,8CF AC AF y =-=-,6CD BC BD =-=2886x x y y -∴==-,()()2868y x y x y x ⎧=-⎪∴⎨=-⎪⎩,105147x y ∴==,57AE AF ∴=; ②设AE x =,AF y =,ABC ∆是等边三角形, 60A ABC ACB ∴∠=∠=∠=,8AB BC AC ===,由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=,在BDE ∆中,180ABC BDE BED ∠+∠+∠=,180120BDE BED ABC ∴∠+∠=-∠=, 180BDE EDF CDF ∠+∠+∠=,180120BDE CDF EDF ∴∠+∠=-∠=,BED CDF ∴∠=∠,60ABC ACB ∠=∠=,120DBE DCF ∴∠=∠=,~BDE CFD ∴∆∆,BD BE DE CF CD FD ∴== 8BE AB AE x =-=-,8CF AF AC y =-=-,10CD BC BD =+=,28810x x y y -∴==-,2(8)10(8y x y x y x =-⎧∴⎨=-⎩,13x y ∴=. ~BDE CFD ∆∆.BDE ∴∆与CFD ∆的周长之比为13DE x DF y ==. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知等边三角形的性质及相似三角形的判定与性质.11.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC 中,90ACB ∠=︒,AC BC =,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:ADC CEB △≌△.(1)探究问题:如果AC BC ≠,其他条件不变,如图②,可得到结论;ADC CEB △∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x =与直线CD 交于点()2,1M ,且两直线夹角为α,且3tan 2α=,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD中,3AB=,5BC=,点E为BC边上—个动点,连接AE,将线段AE绕点E顺时针旋转90︒,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若DPC△为直角三角形时,请你探究并直接写出BE的长.415NF OF NO△△ADC=90°,△△ADC+△PDC=180°,△A 、D 、P 共线,90△△ABE△△EFP12.(2022·山东青岛·九年级期中)【模型引入】我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.【模型探究】如图,正方形ABCD中,E是对角线BD上一点,连接AE,过点E作EF△AE,交直线CB于点F.(1)如图1,若点F在线段BC上,写出EA与EF的数量关系并加以证明;(2)如图2,若点F在线段CB的延长线上,请直接写出线段BC,BE和BF的数量关系.【模型应用】(3)如图3,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH△AE于F,过H作HG△BD于G.则下列结论:①AF=FH;②△HAE=45°;③BD=2FG;④△CEH的周长为8.正确的结论有个.(4)如图4,点E是正方形ABCD对角线BD上一点,连接AE,过点E作EF△AE,交线段BC于点F,交线段AC于点M,连接AF交线段BD于点H.给出下列四个结论,①AE=EF;=CF;③S△AEM=S△MCF;④BE=DE;正确的结论有个.【模型变式】(5)如图5,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN△DM,垂足为M,交△CBE的平分线与点N,求证:MD=MN(6)如图6,在上一问的条件下,连接DN交BC于点F,连接FM,则△FMN和△NMB之间有怎样的数量关系?请给出证明.【拓展延伸】(7)已知△MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,且满足OB>OA.点C在线段OA的延长线上,且AC=OB.如图7,在线段BO 上截取BE,使BE=OA,连接CE.若△OBA+△OCE=β,当点B在射线OM上运动时,β的大小是否会发生变化?如果不变,请求出这个定值;如果变化,请说明理由.(8)如图8,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF△ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF 于点N,若点F是AB边的中点,则△EDM的面积是.。
类比法证明“等边对等角”和“等角对等边”

类比法证明“等边对等角”和“等角对等边”作者:张开玲来源:《新课程·下旬》2019年第01期摘要:研究数学教学实践中用类比法证明“等边对等角”“等角对等边”及“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”,主要目的是在数学实际教学中通过类比法得到“等边对等角”的多种证明方法,再由这多种证明方法类比出“等角对等边”及“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”的多种证明方法,通过类比法贯穿教科书整小节的基本内容,充分展示类比法在数学教学中不可代替的重要地位及作用.关键词:类比;数学教学;等边对等角;等角对等边新的教学理念要以学生为本,采取自主讨论、自主研究、合作学习等新的模式教学.而类比法就是数学实际教学中促成这一模式的一种有效的方法,在数学教学实践中,引导学生应用这一方法可达到事半功倍的效果.一、证明“等边对等角”实际教学中,在证明“等边对等角”时,教科书给出的证明方法是通过作等腰三角形底边上的中线,具体如下:已知:如图1,△ABC中,AB=AC.求证:∠B=∠C.证明:取BC的重点D,连接AD.在△ABD和△ACD中,∵AB=AC,(已知)AD=AD,(公共边)∴△ABD≌△ACD.(SSS)BD=CD,(已作)∴∠B=∠C.(全等三角形的对应角相等)在得到“等边对等角”之后,我并没有急于得出进一步的结论“三线合一”,而是直接提问:你们还有别的证明方法吗?并提示:三角形中有中线还有高、角平分线,引导学生作中线可以证明“等边对等角”.那作其他辅助线是否也可以呢?要求学生2分钟的独立思考,然后2分钟的交流时间,接着将每一种证明方法派一名代表进行全班展示.学生1分析:通过作底边的高.证明1:过点A作AD⊥BC,垂足为点D,证明:略.学生2分析:通过作顶角的平分线.证明2:作AD平分∠BAC交BC于点D.证明:略.在得出这三种证明方法之后,再来探究“三线合一”,教师会顺其自然的得出“三线合一”.当然证明“等边对等角”的方法还有很多,这里不再详细介绍,只作简单说明.通过对这3种证明方法的展示、讨论,学生对这三种证明方法,印象还是很深刻的,也充分展示了类比法在数学教学中的重要作用.二、证明“等角对等边”一天之后,在证明“等角对等边”时,在讲解完教科书上给出的证明方法(如图2,通过作底边上的高)之后,我依然直接提问:你们还有别的证明方法吗?依然要求他们2分钟的独立思考时间,2分钟的交流时间,并将其他证明方法派代表进行全班展示.在这一过程中,我发现起初认为还有两种证明方法的学生还是有很多的,不过在仔细深入思考之后,部分学生有了不同的见解.通过讨论,一致认为其中有一种方法是失败的.到这里,我发现证明“等边对等角”的方法、思路被学生运用到了证明“等角对等边”,进一步展示了类比法的不可替代的作用.学生1分析:通过作∠BAC的平分线.证明:略.之所以起初学生认为还有两种证明方法是因为类比“等边对等角”的证明方法得出的,这种类比的方法是一种非常重要的思考问题的思维习惯,应给予肯定.这里不妨让学生分析另一方法失败的原因.学生2分析:取BC的中点D.则△ABD和△ACD满足条件:AD=AD,BD=CD,∠B=∠C,满足的条件是SSA,是不能作为三角形全等的判定依据的,所以这种方法是失败的.三、这3种证明方法的延伸应用在得到“等边对等角”和“等角对等边”之后,紧接着会学习定理“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”.讲解完教科书给出的具体证明方法之后,师进一步提问:“那通过我们之前刚刚学过的“等边对等角”及“等角对等边”的证明方法,你还能想出其他证明方法吗?”依然要求他们2分钟的独立思考时间,2分钟的交流时间,并将其他证明方法派代表进行全班展示.学生1分析:通过做辅助线使AC成为三角形的角平分线.学生2分析:用折叠的方法.将△ABC沿AC折叠即可证明.这里学生通过类比“等边对等角”及“等角对等边”的证明方法,添加不同的辅助线使得AC 的角色不断变换(中线、角平分线、对称轴等),从而类比出多种证明方法.参考文献:[1]卢玉琪.关于类比思想在初中数学教学中的实践与探索[J].科技创新,2012.[2]张立新.数学教学中运用类比法对学生素质的培养[J].鞍山师范学院学报,2001.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等角的证法
(一)知识点归纳 证明两角相等,主要有下面的途径:
1.全等三角形的利用;
2.等腰三角形的利用;
3.平行线和平行四边形的利用;
4.证明两角是等角(同角)的补角、余角,或证这两角等于同一角,或分别等于两个相等角,抑或证两角是等角的和、差、二倍或一半;
5.应用定理“两三角形若有两角相等,则第三角亦等”,或应用“三角形一角的外角等于另外两内角之和”;
6.关于圆心角、圆周角、弦切角等的度量的应用;
7.相似形的应用;等等。
(二)例题讲解
例一.设AD 、BE 、CF 是ABC 的高线,则DEF 称为ABC 的垂足三角形
112.
13.
ABC H ABC H D C E FCE B C E F FCE FBH B D H F ∠=∠=∠∠=∠=∠=∠∠∠∠∠ 。
证: 设是锐角三角形(如图)
为的垂心,则、、、四点共圆,从而又、、、四点共圆,故最后从、、、四点共圆得1=FBH= 4.即AD 平分EDF.仿此证明另两条高线也平分垂足三角形的另两角
.
2,ABC AD AE AF DEF 。
。
设为钝角三角形(如图).H 为垂心,容易看出,点A 是锐角三角形HBC 的垂心,而DEF 是HBC 的垂足三角形.所以根据1的证明结果、、是的内角平分线,
从而ABC 的三条高线依次内分、外分垂足DEF 的角.2.,..
O P PC PD CD M AB
PO APB ∠例从圆外一点引切线和通过弦的中点任作一弦求证平分22
Rt OCP PO PM PC PC PB PE PO PM PB PE M O B E ===∠∠∠∠∠≡∠ 证1:从
看出,又,则有
,故四点、、、共圆.于是有1=2=3=4= 5.最后得到EMO AMO,从而EM=AM.最后,从三角形MAP 和三角形MEP 合同,知道PO 平分APE.
∠∠∠∠∠∠∠∠∠∠∠∠ 证:作公切线PD(如图),则BPC=BPD+DPC.但BPD=PAC, DPC=DCP=ACP.
故 BPC=PAC+ACP=EPC.即PC 是APB 的外角平分线.4.()(O L OM 例蝴蝶定理从圆心向已知直线作垂线如图,L 与圆相交,当L 与圆相切或不相遇时,命题也成立),通过垂足M 任作两直线AB 及CD,交圆于A 、B 、C 、D.
求证:AD 、BC 交L 之点P 、Q 与M 等距.
'''''
'12 3.()3 4.1 4..
5 5.
.,.DD L OM BCDD M Q B D MD Q MBQ ABC ADC MD MD MD Q MDP MQ MP ∠=∠=∠∠=∠∠=∠∠=∠=∠=∠=∠=∠∠∠=≡= ' '
证: 作点D 关于直径OM 的对称点D ,和同垂直于,
因而平行,于是有后一等式应用了对称性由圆内接四边形有故从而,,,四点共圆于是 又由对称性 1=1,故有证毕.
3.∠例二圆外切于P,一圆在其上一点C 的切线交另一圆于A 、B ,求证:PC 是APB 的外角平分线.22:().
.,
Rt OCP OM MP MC MA MB DM MC MC MO MP MA MB P A O B ====∴ 证2如图从得另外又有故有可见四点、
、、共圆,从而命题得证.(四点P 、A 、O 、B 共圆,
圆周角OPA 和OPB 对等弦即对等弧)
(三)综合训练:
2.设四边形有一双对边相等,证明这两边(所在直线)跟另两边中点的连线的交角相等。
3.四边形ABCD 中,设AD=BC 。
且M ,N 是对角线AC ,BD 的中点,证明直线AD ,BC 与MN 成等角。
:
,,M ACBD L M OM L AD BC P Q OPQ 本题另一种叙述设是圆内接四边形的对角线的交点是过与直径垂直的直线交、于、,则是等腰三角形.
1.A B AC AD ∠∠两圆相交于两点、,在每一圆中各作一弦、使切于另一圆,求证:ABC=ABD.
..180()().
DAB C CAB D C CAB D DAB ABC CAB C DAB D ABC ABD ∠=∠∠=∠∴∠+∠=∠+∠∠=-∠+∠∠-∠+∠∴∠=∠ 0证明:, 又 ABD=180
':,,,,.:.()
ABCD AD BC E F AB CD EM D CMF =∠=∠已知在四边形中是的中点求证如图
':,,,.12,3 4.11,,,,2 3.
22
14,.
BD G EG FG EG AD FG BC AD BC EG FG EM D CMF ∠=∠∠=∠===∴=∴∠=∠∠=∠∠=∠证明连接取中点连结则又即即
∴∠∠证:取AB,CD 的中点E,F,连结NE,NF,ME,MF.由条件可知,四边形EMFN 为菱形,故对角线EF,MN 垂直平分,1= 2.
D
D
F
04.90ABC A AB AC D AC AE BD E ∠==⊥∠∠ 如图,在中,,,为的
中点,于点,延长AE 交BC 于点F 。
求证:ADB=
CDF.
0000:,45.
,,45.90...
,,45,..
,.
BAC BD BAG DAG ABG CAF AB AC BAG C ABG BAE DAE ABG CAF AG CF DCF DAG AD DC C DAG AG CF DCF DAG ADG CDF ADB CDF ∠∠∴∠=∠==∠=∠=∴∠=-∠=∠∴≡∴==∠=∠==∴≡∴∠=∠∠=∠ 0证明作的平分线交于点G,BAC=90在和中在和中
即
5.,,,.,.:.
PA PB O A B OP AB C EF C APE BPE ∠=∠ 如图分别切于交于弦过求证:,,,..,,
.,,,,,,
,.,,,,,14,2 3.,12,3 4...
OE OF OA OB PA O A PB O B PA OA PB
OB A P B O OC CP AC CB AC CB EC CF OC CP EC CF E O F P OE OF APO BPO APE BPF ⊥⊥===∠=∠∠=∠=∠=∠∴∠=∠∠=∠∠=∠ 证明连结因切圆于切圆于故所以四点共圆有所以所以四点共圆得又因所以
P
P
'''6.,,,,.,.
:.O O A B BA P O PCD O C D O PEF O E F DCF DEF ∠=∠已知圆与圆交于在延长线上取一点圆的割线交圆于圆的割线交圆于求证0:,,
.,..::.
,..
180..
PCD PAB O PC PD PA PB PE PF PA PB PC PD PE PF PC PE PF PD DPF DEP FCP DEP FCP DEF DEP DCF FCP DCF DEF ∴==∴==∠∴∴∠=∠∠+∠=∠+∠=∴∠=∠ 证为圆的割线同理即又公用
又
1117,,,,,,.
.:.
O P BE O C PB O D PC A AB CD PE BPA EPA ∠=∠ 222和O 内切于点O 的弦与相切于交于的延长线交O 于连结求证1:,.//,.,.,.
P MN MPB PCD A CD AB ABC BCD BC O BCD BPA ABC EPA BPA EPA ∠=∠=∠∴∴∠=∠∴∠=∠∠=∠∴∠=∠ 证过点作两圆公切线则是圆的切线。