湍流的研究进展论文

合集下载

湍流模拟与控制技术的研究

湍流模拟与控制技术的研究

湍流模拟与控制技术的研究湍流是自然界中相当普遍的现象,它可能出现在各种情况下:例如在高速公路上汽车相互之间产生的气流,飞行器在飞行中对空气的影响等等。

因此,湍流具有非常重要的研究意义。

然而,湍流的复杂性使得其难以被准确描述和预测,这对于湍流控制问题的解决带来了巨大的挑战。

本文将探讨湍流模拟与控制技术的研究进展。

I. 湍流模拟技术湍流模拟是研究湍流现象的主要手段之一。

基于不同的数值模拟方法,湍流模拟可以分为直接数值模拟(DNS)、大涡模拟(LES)、雷诺平均(方法)模拟(RANS)等不同的技术。

这些技术的精度和应用范围各不相同。

DNS是湍流模拟中最精确的一种方法,在DNS中,所有湍流涡旋都会被模拟出来。

但是它的计算量也是最大的,因为需要模拟所有长度尺度的湍流涡旋,因此只适合处理小尺度的湍流问题。

LES则只模拟大尺度的湍流涡旋,相对于DNS,它的计算量较小,也更适合研究较大尺度的湍流问题。

RANS方法则适用于大规模湍流问题,并且能够比较好地处理湍流边界层问题。

近年来,由于计算机性能的不断提高,湍流模拟技术的精度和应用范围也在不断扩大。

同时,基于人工智能的技术也开始被应用到湍流模拟中,这种将深度学习应用于流体力学研究的方法被称为深度湍流学习。

II. 湍流控制技术湍流控制是研究如何在湍流流场中控制湍流涡旋的行为,进而优化流场的控制技术。

湍流控制技术的主要应用领域包括航空航天、汽车、化工等领域。

湍流控制技术可以分为被动控制和主动控制两种。

被动控制主要采用各种措施对流体采取某种限制手段,通过改变流体的流动状态以抑制湍流,例如在翼型的表面上设置阻力体、过渡区、减阻区等等。

主动控制则是通过外部的力或控制装置控制流体的动态性质,以改善流场的运动状态和控制湍流涡旋。

目前,主动控制技术主要包括周期性摆动、脉冲激励、人工湍流激发、流体注入等。

通过使用以上控制方法,湍流控制技术可以达到优化湍流流场的目的,减少湍流带来的不利影响。

湍流的研究进展论文

湍流的研究进展论文

湍流的研究进展丁立新(青岛科技大学)摘要本文重点就湍流的理论研究进展作一阐述,从湍流的相干结构、表征及发展由来,到上世纪末湍流研究进展的雷诺方程,本世纪湍流的统计理论和半经验理论发展,湍流的模式理论,湍流的高级数值模拟分别论述,并为主要的工程应用做简要的介绍。

关键词湍流理论研究工程应用Research process of turbulenceDinglixinQingdao University of Science & technologyAbstract This article focuses on the turbulence of research process as elaborated. From coherent structure of turbulence, characterization and development of turbulence to Reynolds equation about research process of turbulence on the end of the century,the development of semi—empirical theory and statistical theory of turbulence of this century,mode theory of turbulence, advanced numerical simulation of turbulence. Finally,brief description of turbulence industrial applications is suggested.Keywords Turbulence, Theoretical research of turbulence, Engineering applications湍流是自然界和工程中最常出现的流动形态,湍流的出现将使动量、质量、能量的输送速率极大地加快,一方面造成能量消耗加快,污染物加快扩散等严重消极后果,另一方面也起到加快化学反应速度,提高热交换速率等积极作用,因此湍流的研究发展和突破将会在国防和经济方面起到重要的作用.湍流主要研究两个方面的内容,一是揭示湍流产生的原因,二是研究已经形成的湍流运动的规律,以便解决工程实际问题。

湍流的研究进展

湍流的研究进展

湍流的研究进展***1(1.****大学,** ** ******)摘要:本文对湍流研究的进展上的一些突出实践做了简要介绍,对于解决湍流的理论依据上的发展,湍流的试验方法,以及近几年来,随着计算机技术的高速发展,湍流的数据处理上更是高速发展。

关键词:湍流;研究;理论依据;试验方法;计算机Research progress of turbulence******(1.** university of **,** **,******)Abstract:The turbulence research progress on some of the prominent practice is briefly introduced in this article. For solving turbulent theory basis of development. The test method of turbulence. And in recent years, with the rapid development of computer technology,turbulent data processing is more rapid development。

Keywords:turbulence;Research;theory evidence;experimental method;Computer1 引言包括已故诺贝尔奖获得者Feynman在内的好几位物理学家认为,湍流是经典物理学中尚未得到解决的一个大难题,对于湍流的研究进展,可以导致许多实际工程及科学应用的进步。

例如,可以减少飞机飞行师气流湍动的影响,提高飞机的机动性,提高发动机的燃料效率(参见Moin and Kim,1997)[1]。

半个多世纪前,Kolmogorov(1941)[2]提出了现在著名的表镀铝和假设它们代表了我们了解湍流性质的重要的里程碑。

湍流的研究进展作业论文

湍流的研究进展作业论文

湍流的研究进展xxx(xxxxxxxxxxxxxxx,xx,000000)摘要:本文对近几十年有关湍流的研究进展做了简单总结,介绍了有关湍流的各种理论,展示了多位科学家对于湍流的研究成果。

并对湍流的研究和发展提出相关建议。

关键词:流体力学,湍流,湍流模式,湍流方程,湍流结构The research progress of turbulencexxxxxxxx(Qingdao University of Science and Technology Institute of Chemical,QingDao,266000) Abstract:In this paper, in recent decades the turbulence research progress made simple summary. This paper introduces all kinds of the turbulence theory, and shows many scientists for turbulence research results.At the same time, it give some related suggestions for the research and development of the turbulance.Keywords:Fluid mechanics, turbulence, turbulence model, turbulence equation, turbulent structure前言:湍流是流体的一种流动状态。

当流速很小时,流体分层流动,互不混合,称为层流;逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。

湍流研究的现状和进展

湍流研究的现状和进展

湍流研究的现状和进展湍流(Turbulence)在自然界中是一种普遍存在的现象,比如水、空气、尤其是太阳系中天体运动活动等,湍流发挥着重要作用。

由于湍流具有复杂的运动性质和多变的影响因素,因此,人们对湍流的研究也不断进行,在这些研究中,湍流已经成为当今物理学领域研究最深入和最规模最大的一个问题。

湍流研究历史悠久,可以追溯至18世纪,早在1783年,英国著名科学家韦伯(Leonard Euler)就提出了湍流流体运动的基本方程,这是开启湍流研究的一大突破,在19世纪末期,爱因斯坦(Albert Einstein)又提出了湍流方程,许多人因此而贡献出宝贵的研究成果。

20世纪初期,由于科学技术的进步,许多湍流理论的发展也得到了一定的突破。

比如在1920年,湍流特性的研究者林奈(L.F. Richardson)提出了一种新的理论,他指出湍流流体的混合过程可以用一个叫做“级数混合”的方法来模拟,而这一理论在过去的90多年里一直是湍流研究的重要参照物。

20世纪40年代,湍流研究又迎来了一次重要突破,即近似动态子网格技术(Dynamic Subgrid Model),它允许人们用计算机来模拟湍流使其变得更易于理解和操作。

此外,由于空间和时间分辨率不断提高,磁摆式技术(Magnetic Momentum Method)也发展出来,它结合了积分方程和分流技术,从而可以模拟更加复杂的湍流。

《孤立圆柱的湍流结构与稳定性》是20世纪50年代湍流研究的一次重要发展。

有关研究者发现,当流体以一定的速度流过一个垂直的圆柱时,湍流的漩涡结构会呈现出特定的稳定态,并且周围的空气流动会影响其稳定性,从而揭示了湍流及其稳定性的本质特性。

20世纪80年代以来,随着大计算机技术的发展,湍流研究进入了一个新的阶段,开展了大规模的实验测量和计算机模拟研究,用实验和计算机模拟研究的结果来检验理论模型。

在近30年的研究中,许多新的湍流理论也得到了发展,比如湍流与风洞、燃烧和内部流动机理等,都有了进一步深入的研究。

湍流研究的现状和进展

湍流研究的现状和进展

湍流研究的现状和进展近几年来,随着生物,计算和流体力学等多学科技术的发展,湍流的研究受到了高度关注。

湍流研究的重要性在于,它不仅可以帮助我们理解气象现象和宇宙中的环境系统,还可以提高航空航天技术和车辆设计的质量。

因此,湍流研究已经成为制定科学政策以及解决大规模复杂问题的重要工具。

随着计算技术和仿真技术的进步,湍流领域的技术也在发展。

例如,利用高精度的计算机模拟技术,将流体操作模式转换为数字模型,从而实现了对湍流的精确研究。

同时,研究人员也开发了用于湍流数据分析的新方法,以更好地理解流体动力学。

研究还发现,湍流的结构比原来想象的更复杂,而小尺度的湍流动力学研究也发现了一些新的有趣特性。

此外,在湍流流体力学研究中,重要的发现之一是,湍流是一种非线性系统。

这表明,尽管它们的基本特征可以有效地利用线性理论描述,但它们之间的复杂相互作用却无法用线性模型表示。

因此,更多的研究工作聚焦于开发新的非线性研究方法,以更好地理解湍流,以及更精确地模拟它们。

有了这些新技术和研究方法,科学家们也正在尝试控制湍流。

例如,研究人员发现,湍流中的激波可以通过控制流体运动或应用内部结构(例如涡轮)来改善。

此外,在航空升力技术研究中,离散吸收和涡激波发生等技术也得到了广泛的应用。

这些技术的实际应用可以显著改善飞行性能和运行稳定性。

除了控制湍流外,研究人员还致力于开发新的流体力学模型,以准确地模拟湍流的特性。

例如,提出的Lattice Boltzmann模型及其改进版本可以进一步提高湍流建模的精确性,特别是在计算机辅助设计方面,该模型具有更高的精度和更多的实用价值。

总之,湍流在现代科学研究中发挥着重要作用。

随着计算技术和仿真技术的发展,湍流研究取得了一定的进展,其重要性也得到了越来越多的认可,而这些改进也开辟了可以更准确地模拟和控制湍流的新方向。

流体流动中的湍流动力学研究

流体流动中的湍流动力学研究

流体流动中的湍流动力学研究摘要湍流是流体流动中常见的一种流动状态,它具有复杂的动力学特性和不可预测性。

湍流动力学是研究湍流的产生、演化和控制规律的学科,对于理解流体力学中的复杂现象和优化流体运动至关重要。

本文综述了流体流动中湍流动力学研究的主要内容和研究方法,包括湍流产生机制、湍流表征方法、湍流模拟和湍流控制等方面。

通过对湍流动力学的深入研究,有望揭示湍流的本质规律,并为湍流控制和流体工程应用提供理论和方法支持。

1. 引言流体流动是自然界和人工系统中广泛存在的一种现象,而湍流则是流体流动中常见的一种流动状态。

与稳定流动相比,湍流具有更为复杂的动力学特性和不可预测性,给流体力学研究和工程应用带来了很大挑战。

湍流动力学是研究湍流的产生、演化和控制规律的学科,对于理解流体力学中的复杂现象和优化流体运动至关重要。

2. 湍流产生机制湍流的产生涉及到流体流动中的各种力学过程,包括非线性扰动的产生和扩大、能量的级联转移、湍流尺度的形成和衰减等等。

目前,湍流产生机制的研究主要基于Navier-Stokes方程的数学分析和实验观测,以及计算流体力学中的数值模拟方法。

研究认为,湍流产生机制是一个复杂的非线性过程,受到多个因素的相互作用影响,包括流体的性质、流动的几何形状和边界条件等。

3. 湍流表征方法湍流的复杂性和不可预测性使得湍流的表征成为湍流动力学研究的核心问题之一。

湍流的表征方法通常包括统计平均方法、相关函数和功率谱密度等。

统计平均方法通过对湍流中各个物理量的时间平均或空间平均,来描述湍流的平均特性。

相关函数用于描述湍流中不同位置的物理量之间的相关性。

功率谱密度则用于分析湍流中各个湍流尺度对能量的贡献。

4. 湍流模拟湍流模拟是湍流动力学研究中的一种重要方法,通过数值计算模拟来揭示湍流的演化和流动规律。

常用的湍流模拟方法包括直接数值模拟(Direct Numerical Simulation, DNS)、大涡模拟(Large Eddy Simulation, LES)和雷诺平均Navier-Stokes 方程(RANS)等。

关于湍流理论研究进展精品资料

关于湍流理论研究进展精品资料

关于湍流理论研究进展摘要本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对具有代表性的理论假设的思想方法,进行了扼要阐述,指出了相应的实用价值和局限性。

关键词湍流湍流统计理论混沌理论湍流拟序结构湍流剪切流动1 无处不在的湍流现象湍流是自然界中流体的一种最普遍的运动现象,它广泛的存在于我们生活周围。

在大风吹过地面障碍物的旁边,在湍急的河水流过桥墩的后面,在烟囱中冒出的浓烟随风渐渐扩散等地方,都能观察到湍流运动现象。

简单地说,湍流运动就是流体的一种看起来很不规则的运动。

由于湍流现象广泛存在于自然界和工程技术的各个领域,因此湍流基础理论研究取得的进展就可能为经济建设和国防建设的广泛领域带来巨大的效益。

例如,提高各种运输工具的速度以大量节约能源,提高各种流体机械的效益;改善大气和水体的环境质量,降低流体动力噪声,防止流体相互作用引发的结构振动乃至破坏;加强反应器内部物质的热交换与化学反应的速度等等。

然而像湍流这样,虽经包括许多著名科学家在内长达一个世纪多的顽强努力,正确反映客观规律的系统的湍流理论至今还没有建立,在整个科学研究史上也是不多见的。

因此,可以说湍流是力学中没有解决的最困难的难题之一。

因此,世界上许多国家一直坚持把湍流研究列为需要最优先发展的若干重大基础研究课题之一。

2 湍流理论的发展历史湍流理论从它的思路来说大体可分为两类[1]。

一类是先把流体动力学方程组平均以后,然后再设法使方程组封闭,求解后再和实验结果比较,看封闭办法是否正确。

湍流中绝大部分理论是属于这一类型。

另一类是先求解,取特殊模型,再引进平均,得到要求的物理量,和相应的实验结果进行比较。

2.1 Reynolds方程和混合长度理论十九世纪70年代是Maxwell-Boltzmann分子运动理论取得辉煌成果的时代。

它成功地解释了气体状态方程、气体粘性、气体热传导和气体扩散等一系列现象。

湍流理论开始发展的时候,就受着这种思想支配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湍流的研究进展丁立新(青岛科技大学)摘要本文重点就湍流的理论研究进展作一阐述,从湍流的相干结构、表征及发展由来,到上世纪末湍流研究进展的雷诺方程,本世纪湍流的统计理论和半经验理论发展,湍流的模式理论,湍流的高级数值模拟分别论述,并为主要的工程应用做简要的介绍。

关键词湍流理论研究工程应用Research process of turbulenceDinglixinQingdao University of Science & technologyAbstract This article focuses on the turbulence of research process as elaborated. From coherent structure of turbulence, characterization and development of turbulence to Reynolds equation about research process of turbulence on the end of the century, the development of semi-empirical theory and statistical theory of turbulence of this century, mode theory of turbulence, advanced numerical simulation of turbulence. Finally, brief description of turbulence industrial applications is suggested.Keywords Turbulence, Theoretical research of turbulence, Engineering applications湍流是自然界和工程中最常出现的流动形态,湍流的出现将使动量、质量、能量的输送速率极大地加快,一方面造成能量消耗加快,污染物加快扩散等严重消极后果,另一方面也起到加快化学反应速度,提高热交换速率等积极作用,因此湍流的研究发展和突破将会在国防和经济方面起到重要的作用。

湍流主要研究两个方面的内容,一是揭示湍流产生的原因,二是研究已经形成的湍流运动的规律,以便解决工程实际问题。

但自英国物理学家雷诺提出湍流这一基本流动形态以来,已有一百多年的历史,因其运动的复杂性,其基本机理和规律至今还没有完全弄清楚。

因此回顾一下湍流研究取得的进展对于进一步揭示这一十分复杂的流动现象是有益的。

1湍流的相干结构、原因及表征⑴湍流是局部速度、压力等力学量在时间和空间中发生不规则脉动的流体流动。

其基本特征是不规则性或随机性,不可预测,用随机方法;扩散性,有比分子运动强的多的扩散能力;大雷诺数;涡旋,以高频扰动涡为特征的有旋的三维运动;耗散性,因分子的黏性作用而耗散能量,需外部提供能量维持湍流。

流体做湍流流动时,由于质点的运动是随机的,在流体内部将产生各种尺度的旋涡(或称微团)。

这些旋涡在各个方向上做高频脉动。

因此,流体由层流转变为湍流,需具备两个条件①旋涡的形成;②旋涡形成后脱离原来的流层或流速。

旋涡的形成主要取决于两点因素,其一是流体的黏性,由于黏性的作用具有不同流速的相邻流体层之间将产生剪切力。

其二是流层的波动,流层凸起的地方将因微小流速截面的减小而使流速增大;反之,在凹入的地方,将因微小流速截面的增大而使流速减小。

依伯努利方程,流速的增大将引起压力的减小,而流速的减小将引起压力的增大,最终在横向压力和剪应力的综合作用下,促成旋涡的形成。

进一步分析旋涡形成以后脱离原流层的问题,由于旋涡的存在,旋涡附近各流层的速度分布将有所改变。

若将旋涡类似于旋转柱体,则必有Zhoukowski升力施加于旋涡推动它进入相邻的流层,这时流动的内部结构就会完全改观,根据流体流动的连续性,各流层之间必然会产生旋涡的交换,这种旋涡的不断交换,就行成了通常所说的湍流。

需⑵表征㈠雷诺自1895年首先提出湍流瞬时运动可分解为时均和脉动两部分,即其中是相应力学量的时间平均量,是脉动值。

㈡湍流强度是湍流强度涨落标准差和平均速度的比值,是衡量湍流强度的相对指标。

大气和水体中污染物湍流的扩散参数和湍流强度呈一定的正比例关系。

也是描述风速随时间和空间变化的程度,反映脉动风速的相对强度,是描述大气湍流运动特征的最重要的特征量。

㈢湍动标度。

2雷诺运动方程雷诺曾以时均量和脉动量之和来代替不可压缩流体的连续性方程和Navier-Stokes方程中的瞬时量,然后对各方程取时间平均,最终导出可应用于不可压缩流体湍流运动的特定方程组。

但是方程组并不封闭,多出六个未知的湍应力分量。

为使方程组封闭,必须在湍应力和平均流动元素之间建立补充关系式。

半个多世纪以来,人们从统计理论和各种半经验理论出发作了很多尝试。

3湍流统计理论和半经验理论30-40 年代是湍流统计理论发展的时期,建立了均匀各项同性湍流的Karman-Howarch方程和Kolmogorov局部各向同性理论。

均匀各项同性湍流的涡旋结构理论,从Navier-Stokes方程出发,引进了准相似性条件,认为均匀各向同性湍流流场在衰变过程中具有相似性,相似性尺度由表征湍流强弱的湍流脉动速度均方差q以及与特征涡旋尺度具有密切关系的湍流广义Taylor微尺度所决定。

在对均匀各项同性湍流场计算中,假定湍流脉动在空间呈周期性。

王晓宏,黄永念,周培源.不可压缩均匀各向同性湍流的统计理论【J】.中国科学(A辑)1993,23:939-947.湍流的半经验理论是通过对湍流的某些机理做出假设并结合实验结果建立应力和时均速度之间的关系。

从而建立起描述湍流运动的的封闭方程组,即方程组的变量个数等于方程数。

着重介绍普朗混合长理论。

普朗特三点假设为:①在湍流运动中,流体微团的脉动和分子的随机运动相似,即在一定距离内脉动的流体微团将不和其他流体微团相碰,因而可以保持自己的动量不变。

只是在走了L的距离后才和那里的流体团掺混,改变了自身的动量。

L称为普朗特混合长。

②假设,③假设。

最终得出实验证实L基本上与流速无关,又因为L有着长度的量纲,因此,在某些情况下,假定L主要随流道位置变化是合理的,混合长比涡流运动粘度易于估计。

徐插入课本4 湍流的模式理论40-60年代里以解决工程问题的各类模式理论为主体。

一些著名的计算流体力学专家R mac cormack,W.C.Reynolds等(1983)插入预测,从计算机的能力来说,进行复杂湍模式的数值计算是可能的,但是需要合理准确的模式,因此湍流模式理论仍是当前湍流研究的主要方向之一。

模式理论把流体微团的瞬态量看作时间平均值和脉动值的叠加,从而把瞬时的N-S方程变换为反应流场平均运动尺度的雷诺方程,再引入一系列模型假设,建立一组描写湍流平均量的封闭方程组。

对时均后的雷诺方程中出现得雷诺应力进行的模拟中,形成了众多湍流模型。

湍流模式理论的目标是准确预测实际湍流的平均运动。

近代模式理论是建立在统计流体力学基础上。

20世纪40年代,Kolmogorov和Prantl通过求解微分方程确定湍流黏性系数,以此来弥补混合长假设的局限性,这样产生了单方程的湍流模型,但是单方程模型中要确定长度比尺,是不易解决的问题,且局限用于剪力层流动计算。

1974年,Spalding和Lannder归纳了不同学者提出的反应湍流尺度的参数,通过微分方程建立了双方程模型来求解湍动能和耗散率的输运方程,并建立了它们与湍流黏性之间的关系。

目前可以成功的应用于二维及三维回流流动,但对于低雷诺数的流动,预测效果不理想。

为此,1986年,Yakhot V和Prszag S依据模糊数学理论,修正了方程,建立了RNK模型,,提高了模型在旋流和大曲率情况下的计算精度。

另外,Shih T等人在1995年采用新的模化方法获得耗散率的输运方程,建立了Realizable模型,应用于较高主流切率和较大曲率的流动,得到较好的结果。

后来,Rodi等人提出了代数应力模型,将雷诺应力输运的微分方程简化为代数方程,在与k方程和方程连立求解,这样大大减少了计算时间,但类似于模型,在RSM模型中同样存在模式化,特别是对耗散率和压力-应变项的模化的准确度决定着RSM模型的精度。

插入张志伟,刘建军.各种湍流模型在Fluent 中的应用【J】.实用技术(河北水利),2008,26.5湍流数值模拟由于湍流瞬时运动服从N-S方程,而N-S方程本身就是封闭的,所以很容易产生直接用电子计算机数值求解完整的N-S方程,对湍流的瞬时运动进行直接的数值模拟。

但是目前国际上正在做的湍流数值模拟还只限于很低的雷诺数和几何边界条件很简单的问题。

而实际的湍流运动通常都发生在高雷诺数下,边界的情况也较复杂,估计现在世界上最大最快的的计算机用直接数值模拟来解决工程中复杂湍流问题的要求,还差三个数量级,因此我们只能部分放弃直接求解N-S方程的企图,而争取用现有的计算机来做湍流的高级数值模拟。

插入王振东.湍流研究的进展【J】.物理通报1992,12:1-4.这主要是大涡模拟、雷诺平均数值模拟和直接数值模拟,他们都是近二十多年才发展起来的。

5.1直接数值模拟(DNS)DNS依据非稳态的N-S方程对湍流进行直接模拟,计算包括脉动在内的湍流所有瞬时运动量在三维空间中的演变。

用非稳态的N-S方程对湍流进行直接计算,控制方程以张量形式给出:直接数值模拟的方法为谱方法或伪谱方法,粗略的说就是讲各种未知函数对空间变量展开;差分法,其基本思想是利用离散点上函数值的线型组合来逼近离散点上的导数值。

它的优点是:㈠有精确数值模拟湍流的方法,因而可以获得湍流场的全部信息,而实验测量则不可能完全实现,㈡由于直接对N-S方程模拟,故不存在封闭性问题,原则上可以求解所有湍流问题。

㈢据Kim,Moin & Moser 研究插入是勋刚.湍流【M】.天津:天津大学出版社,2004.即使模拟雷诺数仅为3300的槽流,所用的网点数N就约达到2000000,在向量计算机上进行了250小时,所以,在现有的计算机能力限制下,只能模拟计算机中低雷诺数和简单几何边界湍流运动。

应用领域只要是湍流的探索性基础研究。

5.2雷诺平均模拟(RANS)RANS是应用湍流统计理论,将非稳态的N-S方程对时间做平均,求解工程中需要的时均量。

该法是工程中常用的复杂湍流数值模拟方法。

徐插入崔桂香,徐春晓,张兆顺.湍流大涡数值模拟进展【J】.空气动力学学报,2004,22(2):121-129. 雷诺平均模拟原理是先将湍流中物理量分成扰动量和平均量,在对控制方程作时间平均,同时采用湍流模型仿真湍流的效应,此法降低了计算量但结果受湍流模型的影响很大。

相关文档
最新文档