湍流研究的现状和进展

合集下载

1.湍流研究最新进展

1.湍流研究最新进展

湍流研究最新进展序言中国科学技术协会主办的“青年科学家论坛” 第41次活动于1999 年6月14~15日在中国科协会堂举行,来自全国各科研院所、大专院校的近20名青年学者参加了这次活动。

中国科协学会部部长、“论坛”组委会主任马阳,中国科协学会部副部长、“论坛”秘书处秘书长周济,国家自然科学基金委员会数理学部孟庆国博士出席了论坛活动,马阳主任作了重要讲话。

本次论坛由清华大学符松教授、中国空气动力研究与发展中心邓小刚研究员、北京航空航天大学王晋军教授担任执行主席、论坛以“湍流数值模拟”、“湍流基本结构及控制”、“湍流稳定性与边界层转捩”、“湍流对流与传热传质”四个单元主题进行了交流;分别由桂业伟研究员、佘振苏教授、罗纪生教授、刘宇陆教授、吴锤结教授、夏克青教授、王立秋教授、吴子牛教授担任单元主题的主持人。

“论坛”活动期间,大家踊跃发言,对湍流研究的现状和我国未来湍流研究的发展提出了许多意见和建议。

通过“论坛”的交流加强了青年学者之间的了解和沟通,也就一些重要问题达成一定的共识。

1. 湍流是非线性复杂系统研究的基础学科世纪之交科学的发展,已越来越明显地表明,人类对非线性系统和复杂性的认识上正经历着巨大的飞跃,但在研究方法上还需要有更大的突破。

许多与国民经济发展密切相关的重大科学问题(如航空航天工业中的控制问题,灾害性气象气候的预报问题等)都涉及到多尺度多层次的复杂系统。

对湍流这一世纪性难题的研究,曾经直接引发了非线性科学与混沌学的诞生和发展。

20世纪90年代,我国旅美学者佘振苏教授(现担任北京大学湍流研究国家重点实验室主任)提出的湍流层次结构理论,在概念上和方法上对多尺度多层次的湍流系统提出了崭新的见解。

佘振苏教授介绍了这几年湍流层次结构理论在国际湍流界引起广泛关注及获得大量实验验证的情况,引起与会的广大青年学者的浓厚兴趣。

大家一致认为,湍流研究正在不断涌现新思想、新思路,湍流研究的开拓必将带动非线性科学的进一步发展。

湍流原理的应用前景

湍流原理的应用前景

湍流原理的应用前景1. 湍流原理简介湍流是一种流体运动的状态,它的特点是无规则的、混乱的和不可预测的。

湍流的形成与流体的速度、粘性和几何形状等因素有关。

在自然界和工程领域中,湍流现象广泛存在,并且湍流具有很高的能量耗散和传递效率。

湍流的研究对于许多领域的发展具有重要的意义。

2. 湍流原理的应用领域湍流原理已经在许多领域得到了应用和发展。

以下是一些常见的应用领域:2.1. 工程领域•湍流模拟和预测:湍流模拟是工程领域中的重要研究方向。

通过模拟湍流过程,可以更好地理解流体运动规律,并对工程中的湍流现象进行预测和优化。

•湍流控制:湍流对于许多工程领域来说是有害的,可以导致能量损失和材料破坏。

因此,湍流控制是一项重要的研究方向,目的是减少湍流的能量损耗,并提高系统的性能。

•湍流能量利用:湍流的能量耗散效率很高,因此可以利用湍流动能来驱动某些设备,例如风力发电机和水力发电机等。

2.2. 航空航天领域•湍流模拟和预测:在航空航天领域中,湍流对于飞行器的气动性能和结构强度有着重要影响。

因此,湍流模拟和预测在航空航天领域中是非常重要的工作。

•湍流控制:湍流控制可以改变飞行器表面的流场结构,减少湍流产生的阻力和噪声,提高飞行器的性能和安全性。

2.3. 石油工业•湍流传输:石油、天然气等流体的输送通常发生在长距离和大管径的管道中,这种情况下会产生湍流现象。

对于管道中的湍流现象进行研究和控制,可以提高石油工业的输送效率和安全性。

2.4. 生物医学领域•血流湍流:湍流在心血管系统中是普遍存在的,它对血流的输送和循环具有重要影响。

对于血流湍流的研究可以帮助理解和预防一些心血管疾病的发生。

3. 湍流原理的未来发展湍流原理作为一项重要的研究领域,未来有着广阔的发展前景。

以下是一些可能的发展方向:3.1. 湍流模拟和控制技术的改进随着计算机技术的不断进步,湍流模拟和控制的精度和效率将得到极大的提高。

新的算法和方法将被开发出来,用于更准确地模拟和预测湍流过程,并控制湍流现象。

湍流研究的现状和进展

湍流研究的现状和进展

湍流研究的现状和进展湍流(Turbulence)在自然界中是一种普遍存在的现象,比如水、空气、尤其是太阳系中天体运动活动等,湍流发挥着重要作用。

由于湍流具有复杂的运动性质和多变的影响因素,因此,人们对湍流的研究也不断进行,在这些研究中,湍流已经成为当今物理学领域研究最深入和最规模最大的一个问题。

湍流研究历史悠久,可以追溯至18世纪,早在1783年,英国著名科学家韦伯(Leonard Euler)就提出了湍流流体运动的基本方程,这是开启湍流研究的一大突破,在19世纪末期,爱因斯坦(Albert Einstein)又提出了湍流方程,许多人因此而贡献出宝贵的研究成果。

20世纪初期,由于科学技术的进步,许多湍流理论的发展也得到了一定的突破。

比如在1920年,湍流特性的研究者林奈(L.F. Richardson)提出了一种新的理论,他指出湍流流体的混合过程可以用一个叫做“级数混合”的方法来模拟,而这一理论在过去的90多年里一直是湍流研究的重要参照物。

20世纪40年代,湍流研究又迎来了一次重要突破,即近似动态子网格技术(Dynamic Subgrid Model),它允许人们用计算机来模拟湍流使其变得更易于理解和操作。

此外,由于空间和时间分辨率不断提高,磁摆式技术(Magnetic Momentum Method)也发展出来,它结合了积分方程和分流技术,从而可以模拟更加复杂的湍流。

《孤立圆柱的湍流结构与稳定性》是20世纪50年代湍流研究的一次重要发展。

有关研究者发现,当流体以一定的速度流过一个垂直的圆柱时,湍流的漩涡结构会呈现出特定的稳定态,并且周围的空气流动会影响其稳定性,从而揭示了湍流及其稳定性的本质特性。

20世纪80年代以来,随着大计算机技术的发展,湍流研究进入了一个新的阶段,开展了大规模的实验测量和计算机模拟研究,用实验和计算机模拟研究的结果来检验理论模型。

在近30年的研究中,许多新的湍流理论也得到了发展,比如湍流与风洞、燃烧和内部流动机理等,都有了进一步深入的研究。

湍流研究的现状和进展

湍流研究的现状和进展

湍流研究的现状和进展近几年来,随着生物,计算和流体力学等多学科技术的发展,湍流的研究受到了高度关注。

湍流研究的重要性在于,它不仅可以帮助我们理解气象现象和宇宙中的环境系统,还可以提高航空航天技术和车辆设计的质量。

因此,湍流研究已经成为制定科学政策以及解决大规模复杂问题的重要工具。

随着计算技术和仿真技术的进步,湍流领域的技术也在发展。

例如,利用高精度的计算机模拟技术,将流体操作模式转换为数字模型,从而实现了对湍流的精确研究。

同时,研究人员也开发了用于湍流数据分析的新方法,以更好地理解流体动力学。

研究还发现,湍流的结构比原来想象的更复杂,而小尺度的湍流动力学研究也发现了一些新的有趣特性。

此外,在湍流流体力学研究中,重要的发现之一是,湍流是一种非线性系统。

这表明,尽管它们的基本特征可以有效地利用线性理论描述,但它们之间的复杂相互作用却无法用线性模型表示。

因此,更多的研究工作聚焦于开发新的非线性研究方法,以更好地理解湍流,以及更精确地模拟它们。

有了这些新技术和研究方法,科学家们也正在尝试控制湍流。

例如,研究人员发现,湍流中的激波可以通过控制流体运动或应用内部结构(例如涡轮)来改善。

此外,在航空升力技术研究中,离散吸收和涡激波发生等技术也得到了广泛的应用。

这些技术的实际应用可以显著改善飞行性能和运行稳定性。

除了控制湍流外,研究人员还致力于开发新的流体力学模型,以准确地模拟湍流的特性。

例如,提出的Lattice Boltzmann模型及其改进版本可以进一步提高湍流建模的精确性,特别是在计算机辅助设计方面,该模型具有更高的精度和更多的实用价值。

总之,湍流在现代科学研究中发挥着重要作用。

随着计算技术和仿真技术的发展,湍流研究取得了一定的进展,其重要性也得到了越来越多的认可,而这些改进也开辟了可以更准确地模拟和控制湍流的新方向。

湍流的研究进展论文

湍流的研究进展论文

湍流的研究进展丁立新(青岛科技大学)摘要本文重点就湍流的理论研究进展作一阐述,从湍流的相干结构、表征及发展由来,到上世纪末湍流研究进展的雷诺方程,本世纪湍流的统计理论和半经验理论发展,湍流的模式理论,湍流的高级数值模拟分别论述,并为主要的工程应用做简要的介绍。

关键词湍流理论研究工程应用Research process of turbulenceDinglixinQingdao University of Science & technologyAbstract This article focuses on the turbulence of research process as elaborated. From coherent structure of turbulence, characterization and development of turbulence to Reynolds equation about research process of turbulence on the end of the century, the development of semi-empirical theory and statistical theory of turbulence of this century, mode theory of turbulence, advanced numerical simulation of turbulence. Finally, brief description of turbulence industrial applications is suggested.Keywords Turbulence, Theoretical research of turbulence, Engineering applications湍流是自然界和工程中最常出现的流动形态,湍流的出现将使动量、质量、能量的输送速率极大地加快,一方面造成能量消耗加快,污染物加快扩散等严重消极后果,另一方面也起到加快化学反应速度,提高热交换速率等积极作用,因此湍流的研究发展和突破将会在国防和经济方面起到重要的作用。

流体流动中的湍流动态行为研究

流体流动中的湍流动态行为研究

流体流动中的湍流动态行为研究引言湍流是流体力学中的一个重要研究课题,广泛应用于工程、气象、地质等领域。

湍流流动具有复杂的动态行为,其特征包括涡旋结构、乱流能量耗散和湍流尺度等。

理解和控制湍流的动态行为对于提高流动系统的效率、降低能量损耗具有重要意义。

本文将介绍湍流的基本概念、湍流动态行为的研究方法以及最新的研究进展。

湍流的基本概念湍流是流体流动中的一种不规则流动形式,其速度、压力等参量在时间和空间上存在剧烈的波动和涨落。

湍流的发生是由于流体流动速度超过一定的临界速度,引起流动层的不稳定性而产生的。

湍流的形成过程可以分为湍流发展阶段和湍流稳定阶段。

湍流的基本特征包括: - 涡旋结构:湍流中存在着一系列的涡旋,其大小和形态各异,相互之间的交互作用引起了湍流的混沌行为。

- 乱流能量耗散:湍流流动中存在着能量的不断转换和耗散过程,这种能量的转换从而维持了湍流的持续存在。

- 湍流尺度:湍流具有多个尺度,从小尺度到大尺度,相应地存在着不同的湍流结构和运动规律。

湍流动态行为的研究方法湍流动态行为的研究方法主要包括实验观测、数值模拟和理论分析。

实验观测实验观测是研究湍流动态行为的直接方法,可以通过流场的测量和数据处理获得湍流的相关信息。

常用的实验观测方法包括: - 激光多普勒测速技术:通过测量流体中散射的激光来确定流体的速度和速度梯度等信息,得到湍流的速度场和相关统计量。

- 热线方法:利用热线感应的电阻变化来测量流体的速度,可以得到湍流的速度场和能量谱等信息。

- 高速摄影技术:通过高速摄影记录湍流流动的图像序列,可以研究湍流的结构演化和动态行为。

数值模拟数值模拟是研究湍流动态行为的常用方法,通过数值方法求解湍流流动的方程组来模拟湍流的发展和演化。

常用的数值模拟方法包括:- 直接数值模拟(DNS):通过求解流体动力学方程来模拟湍流流动的每个尺度和涡旋结构,适用于小尺度湍流的研究。

- 大涡模拟(LES):通过分解流动的涡旋结构,只模拟大尺度的涡旋,通过子网模型来参数化小尺度湍流的作用。

湍流的理论与实验研究

湍流的理论与实验研究

湍流的理论与实验研究湍流的理论与实验研究湍流是流体力学界公认的难题,被认为是经典物理学中最后一个未被解决的问题。

自然界和工程领域的绝大多数流动都是湍流,因此湍流研究具有重大意义。

近年来,随着实验测量技术和数值模拟能力的不断增强,学术界对高雷诺数和高马赫数湍流有了许多新的认识。

我国科学界也结合国家重大战略需求和学科发展前沿,分析国际上湍流研究的特点、现状和发展趋势,希望对湍流产生机制和流动本质进行深入研讨,加强与航空、航天、航海等相关单位和部门间的沟通与联系,推动湍流研究的发展。

针对国内学科发展现状,尤其是实验研究相对薄弱的特点,国家自然科学基金委员会数理科学部、工程与材料科学部和政策局,于2014年3月20-21日在北京联合举办了第110期双清论坛,论坛主题为“湍流的理论与实验研究”。

来自全国15个单位的近50位流体力学与工程领域的专家学者应邀出席。

与会专家通过充分而深入的研讨,凝练了该领域的重大关键科学问题,探讨了前沿研究方向和科学基金资助战略。

本期特刊登此次论坛学术综述。

一、湍流研究的重要意义自1883年雷诺(Reynolds)发现湍流以来,湍流问题的研究一直困扰着众多学者。

著名物理学家费曼曾说,湍流是经典物理学中最后一个未被解决的难题;2005年《科学》杂志在其创刊125周年公布的125个最具挑战性的科学问题中,其中至少两个问题与湍流相关。

在我们日常生活中,湍流无处不在。

自然界和工程应用中遇到的流动,绝大部分是复杂的湍流问题。

在自然界,从宇宙星系的时空演化,到星球内部的翻滚流动,从大气环流的全球运动,到江河湖泊的区域流动,都有湍流的身影。

在工程领域,从陆地、海洋、空天等交通运载工具,到原子弹、氢弹、导弹、战斗机、舰船等国防武器的设计;从全球气象气候的预报,到地区水利工程的设计;从传统行业如叶轮机械、房桥建筑、油气管道,到新兴行业如能源化工、医疗器械、纳米器件的设计,都需要了解和利用湍流。

因此,湍流流动的研究不仅仅是一个学科发展的问题,更具有重要的工程应用价值。

湍流研究的现状和进展

湍流研究的现状和进展

湍流研究的现状和进展湍流是一种影响有机物运动的流速,能提供有效的能量,使物体能够得到合理的分布。

湍流的研究一直以来都受到了广泛的关注,从物理学的角度将其分成概率性湍流、压力性湍流,等等,并被广泛用于各种应用领域,如水动力学、热流体动力学、气动力学、结构力学、流体力学和边界层流体力学。

早在古代,里斯克就首先对湍流进行了研究,估计了湍流的经典方程,称为里斯克方程”。

由于里斯克方程是非线性的,这使得它非常难以求解,因此长期以来,里斯克方程一直是湍流研究的难题。

近几年,随着新一代概率求解和数值模拟技术的发展,里斯克方程问题得到有效解决,湍流研究取得了长足的进展。

伴随着里斯克方程的求解,微观湍流研究涉及到一系列流体力学和相关物理过程,如能量消耗、能量输送、热传输和结构变形等。

本文总结了湍流研究的相关物理过程和理论模型,并通过实验和数值计算研究了它们的运动及能量转换的机制以及其对流体和物体的影响。

微观湍流研究的结果表明,湍流存在着多种复杂的运动机制,包括湍流边界层、涡量、螺旋涡等,它们能够有效地转换能量,并对流体和物体产生重要的影响。

除了对湍流的机理进行研究之外,湍流的应用也在不断发展。

在包括航空航天、海洋工程、过程工程在内的现代工程领域中,湍流研究有着重要的意义。

目前,研究人员正在努力研究和改进湍流模型,更好地揭示其运动机制和影响范围,并贡献出更多的技术用于湍流应用。

通过实验和数值模拟,湍流理论发展得很快,在某些领域取得了显著的进展。

目前,研究者正在努力研究复杂湍流现象,探讨其运动机制,以及长期观测和模拟分析的结果。

大多数研究者认为,以复杂的湍流现象引发的突破性研究,有望在不远的将来改变湍流理论的风貌。

湍流的研究和应用一直存在着重要的前景,它的研究会对现代工程领域有重大的意义。

因此,很多国家和科研机构一直在努力开发和改善湍流模型,以更好地提高湍流数值计算和实验测试的准确性,从而更有效地应用于各种领域。

至此,本文对湍流研究的现状和进展作了综合讨论,湍流研究将持续发展,并不断推动现代工程应用的进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湍流研究的现状和进展
湍流研究是一个广泛的领域,其中有许多不同的话题,需要不同的测量、数值建模和理论研究。

近年来,由于现代计算技术的进步,以及先进的测量设备的出现,湍流研究的发展取得了巨大的进展。

首先,科学家们开发出更为精细的流场数据,提高了对于湍流流场中流动结构的认识,例如,现在可以观测到湍流中的微小力矩和能量分布,并通过数值模拟得出更为详细的解释。

其次,科学家提出了一系列新的数值模型,更深入地探讨湍流的细节,以更合理地描述湍流的结构和性质。

结合传统的经验方法,这些数值模型使得对湍流的模拟更加准确,并且可以用于多种应用领域,例如自由混沌运动模拟、叶片流动计算、空气动力学分析、重力和磁场力分析等。

此外,近年来,学者们开发出了一系列新的控制策略,以改善湍流的流动性能。

这些策略的准备方法涉及精细的数值模拟,基于大量的实验测量数据,有效地改进湍流流场的特性,从而提高流体动力学的效率。

总的来说,近年来,湍流研究的发展取得了巨大的进展。

精细的数据和模型,以及新的控制策略,有助于更好地认识和控制湍流流场,进一步提高流体动力学性能。

相关文档
最新文档