直线方程单元测试试卷
直线和圆的方程单元测试

17.
(1)
(2) , 或
【分析】
(1)根据两条直线垂直的条件列方程,化简求得 .
(2)根据两条直线平行以及距离列方程,化简求得 .
(1)
由于 ,所以 .
(2)
依题意 ,则 ,
此时 ,即 ,故 .
由于两条直线的距离为 ,
所以 或 .
18.
(1) ;
(2) .
【分析】
(1)设出圆的标准方程,根据其过的点的坐标满足圆方程,列出等量关系,求解即可;
【详解】
解:由题知 , ,半径分别为 ,
根据两圆相交,可得圆心距大于两圆的半径之差而小于半径之和,
即 .
又 ,所以有 ,
,
再根据 ,
求得 ,
故选:B.
4.A
【分析】
设出直线的截距式方程,根据题意求出待定系数,可得结论.
【详解】
解:设直线 的方程为 ,则 的面积为 ①.
因为直线 过点 ,所以 ②.
联立①②,解得 , ,
(2)根据过 的圆的切线的斜率是否存在进行分类讨论,结合点到直线的距离公式求得切线方程.
(1)
由题意,设圆 的标准方程为: ,
圆 关于直线 对称,
圆 与 轴相切: …①
点 到 的距离为: ,
圆 被直线 截得的弦长为 , ,
结合①有: , ,
又 , , ,
圆 的标准方程为: .
(2)
当直线 的斜率不存在时, 满足题意
所以切线 的方程为 .
19.
(1)
(2) 或
【分析】
(1)将圆的一般方程化为标准方程,求出圆心,代入直线方程即可求解.
(2)设直线 的方程为: ,利用圆心到直线的距离即可求解.
直线与方程单元测试基础试题

直线与方程单元测试姓名 成绩注意:考试时间120分钟一、选择题.(50分)1.若直线过点(1,2),(4,2),则此直线的倾斜角是( )(A )30° (B )45° (C )60° (D ) 0°2直线2y x =-的倾斜角大小为( )(A ) 45 (B )135 (C )120 (D )903.点P (-1,2)到直线x=1的距离为( )(A )2 (B )21 (C )1 (D )27 4.已知过点A (-2,m )和点B (m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )(A )m =-8 (B )m =0 (C )m =2 (D )m =105.以A(1,3),B(-5,1)为端点的终点坐标是( )(A )(-4,4) (B )(-2,2) (C )(6,2) (D )(-6,-2)6.直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )(A )(-2,1) (B )(2,1) (C )(1,-2) (D )(1,2)7.直线0202=++=++n y x m y x 和的位置关系是( )(A )平行 (B )垂直(C )相交但不垂直 (D )不能确定8.如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( )(A ) k 1<k 3<k 2 (B ) k 3<k 1<k 2(C ) k 1<k 2<k 3 (D ) k 3<k 2<k 19.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=010.如果直线L 经过两直线2x-3y+1=0和3x-y-2=0的交点,且与直线y=x 垂直,则原点到直线L 的距离为() (A )2 (B )1 (C )2 (D )22二、填空题.(25分)11.过点(3,4)A -且斜率为-1的直线方程为 .12.点(2,1)A -到直线3410x y --=距离为 .13.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为14.过点P(1,2)且在x 轴,y 轴上截距相等的直线方程是 .15.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .三、解答题.16.(Ⅰ)求过点(1,2)A -且平行于直线3x+4y-12=0直线的方程.(Ⅱ)求垂直于直线x+3y-5=0,且过点P(-1,0)的直线的方程.17.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0,没有公共点,求实数m 的值.18.求过直线x-2y+1=0和x+3y-1=0的交点且与直线x=y 3垂直的直线方程.19.已知A (7,8),B (10,4),C (2,-4)三点,求ABC ∆的面积.20.直线5x+4y=2a+1与直线2x+3y=a的交点位于第四象限,求实数a的取值范围.21.直线L与直线x-3y+10=0及2x-y+8=0分别交于M、N两点,如果 MN的中点坐标是(0,1),求直线L的方程.。
直线方程 单元测试题

直线方程 周测试题一、选择题1. 平行与x 轴,且过点)2,3(的直线方程为( )3.A =x 2.B =yx y 23.C = x y 32.D = 2. 直线0105=+-y x 在x 轴、y 轴上的截距分别为( )210.A 和- 102.B -和51.C -和 15.D 和-3. 直线053=+-y x 的倾斜角是( )︒30.A ︒60.B ︒150.C ︒120.D4. 倾斜角为︒60,在y 轴上的截距是1-的直线方程是( )133.A -=x y 133.B +=x y 13.C +=x y 13.D -=x y5. 过点)2()6(-,,,a B a A 的直线的斜率是3,则a 的值为( ) 1.A - 1.B 2.C 4.D6. 过点)2,1(A 斜率为3的直线方程为( )0123.A =--y x0123.B =++y x013.C =--y x013.D ++-y x7. 没有斜率的直线一定是( )过原点的直线.A轴的直线.B垂直于x垂直于y.C轴的直线.D垂直于坐标轴的直线8.直线0x的倾斜角为()+y-32=.B锐角.A钝角.D直角.C零度角9.直线方程为0=Ax,当0By++CA,,时,此直线必经过()B>0>>C.A第一、二、三象限.B第二、三、四象限.C第一、二、四象限.D第一、三、四象限10.直线l的倾斜角α的取值范围是()≤0.Aα︒180︒≤α︒≤︒α≠≤0.B︒90()1800.Cα︒360︒≤≤︒180≤0.Dα≤︒二、填空题1.已知直线的倾斜角︒M,则直线的方程为60,且直线过点)1,2(_________.2.经过点)62A,且平行于x轴的直线方程是__________.-(,3.经过点)11(A的直线斜率等于3,则m的值是________.,Bm)2(-,,4.直线过点)3,0(A-,,则直线AB在y轴上的截距是________.2(B),15.过点)5,3(且与y轴平行的直线方程为__________.6. 直线042=+-y x 与坐标轴围成的三角形的面积为_________.7. 直线经过点)0,0()50sin 50(cos ,,︒︒,则直线的倾斜角为_________.8. 直线过点)3,3(P 且在x 轴和y 轴上的截距相等,则直线的方程为___________.9. 直线经过原点和点)23(,,则直线的斜率为_________.10. 若00<>b k ,,则直线b kx y +=必不通过第______象限.三、解答题1. 如果直线0623=+-y x 分别交x 轴,y 轴于B A 、两点,求AB 的长度.2.三角形的三个顶点)2,3(,CBA--,求中线AD所在的直线-,,,)4(1(,5)6方程.4的直线的方程.3.求过点)30(-,,倾斜角的余弦为5。
苏教版高中数学选择性必修第一册第1章 直线与方程 单元测试卷(含答案)

苏教版高中数学选择性必修第一册第1章直线与方程单元测试卷(满分150分,时间120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两平行线x +y -1=0与2x +2y -7=0之间的距离是()A .32B .322C .542D .62.已知直线l 经过点P (2,1),且与直线2x +3y +1=0垂直,则直线l 的方程是()A .2x +3y -7=0B .3x +2y -8=0C .2x -3y -1=0D .3x -2y -4=03.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a 的值是()A .1B .-1C .-2或-1D .-2或14.直线x cos α+3y +2=0的倾斜角的取值范围是()A .π6,,5π6B .0,π6∪5π6,C .0,5π6D .π6,5π65.若直线x +ny +3=0与直线nx +9y +9=0平行,则实数n 的值为()A .3B .-3C .1或3D .3或-36.若直线y =kx +2k +1与直线y =-12x +2的交点在第一象限,则实数k 的取值范围是()A -12,B -16,C D -12,+∞7.已知直线l :x -y -1=0,直线l 1:2x -y -2=0.若直线l 2与直线l 1关于直线l 对称,则直线l 2的方程是()A .x -2y +1=0B .x -2y -1=0C.x+y-1=0D.x+2y-1=08.数学家欧拉在其所著的《三角形几何学》一书中提出:“任意三角形的外心、重心、垂心在同一条直线上.”后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则顶点C的坐标是()A.(-4,0)B.(0,-4)C.(4,0)D.(4,0)或(-4,0)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中正确的有()A.截距相等的直线都可以用方程xa+ya=1表示B.方程x+my-2=0(m∈R)能表示与y轴平行的直线C.经过点P(1,1)且倾斜角为θ的直线方程为y-1=tanθ(x-1)D.经过点P1(x1,y1),P2(x2,y2)的直线方程为(y2-y1)(x-x1)-(x2-x1)(y-y1)=010.若直线l1:ax+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y-2=0互相垂直,则实数a的值是() A.-3B.1C.-1D.311.光线自点(2,4)射入,经倾斜角为135°的直线l:y=kx+1反射后经过点(5,0),则反射光线还经过()A B.点(14,1)C.点(13,2)D.点(13,1)12.下列m的值中,不能使三条直线4x-y=4,mx-y=0和2x+3my=4构成三角形的有()A.4B.-6C.-1D.23三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分、第二个空3分.13.若直线l的倾斜角α满足4sinα=3cosα,且它在x轴上的截距为3,则直线l的方程是________________.14.无论实数k取何值,直线(k+2)x+(k-3)y+k-3=0都恒过定点,则该定点的坐标为________.15.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和直线l 2:x -3y +10=0截得的线段的中点恰好为P ,则直线l 的方程为________,此时被截得的线段长为________.16.已知动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且点Q (4,0)到动直线l 0的最大距离为3,则12a +2c的最小值为________.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)有下列3个条件:①l ′与l 平行且过点(-1,3);②l ′与l 垂直,且l ′与两坐标轴围成的三角形的面积为4;③l ′是l 绕原点旋转180°而得到的直线.从中任选1个,补充到下面的问题中并解答.问题:已知直线l 的方程为3x +4y -12=0,且________,求直线l ′的方程.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知△ABC 的顶点A (-1,5),B (-1,-1),C (3,7).(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AM 所在直线的方程;(3)求△ABC 的面积.19.(12分)设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 不经过第二象限,求实数a 的取值范围;(2)若直线l 与x 轴、y 轴分别交于点M ,N ,求△MON (O 为坐标原点)面积的最小值及此时直线l 的方程.20.(12分)已知点A (0,3),B (-1,0),C (3,0),求点D 的坐标,使四边形ABCD 是直角梯形(点A ,B ,C ,D 按逆时针方向排列).21.(12分)在平面直角坐标系中,点A (2,3),B (1,1),直线l :x +y +1=0.(1)在直线l 上找一点C 使得AC +BC 最小,并求这个最小值和点C 的坐标;(2)在直线l 上找一点D 使得|AD -BD |最大,并求这个最大值和点D 的坐标.22.(12分)已知直线l 1:2x -y +a =0(a >0),直线l 2:-4x +2y +1=0,直线l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求实数a 的值.(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5?若能,求点P 的坐标,若不能,请说明理由.参考答案与解析综合测试第1章直线与方程1.C 提示方程x +y -1=0可化为2x +2y -2=0,所以两平行线之间的距离为|-2-(-7)|22+22=5422.D 提示由题意知k l =-1-23=32,故直线l 的方程为y -1=32(x -2),即3x -2y -4=0 3.D 提示由题意知a ≠0.当x =0时,y =a +2;当y =0时,x =a +2a .因此a +2a=a +2,解得a =-2或a =14.B 提示直线的斜率k =-33cos α∈-33,33.设直线的倾斜角为θ,则-33≤tan θ≤33,所以0≤θ≤π6或5π6≤θ<π5.B 提示由题意知1n =n9,解得n =±3.当n =3时,3x +9y +9=0,即x +3y +3=0,两直线重合(舍去)6.B 提示=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.因为直线y =kx +2k +1与直线y=-12x +20,0,解得-16<k <127.B 提示因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知点(0,-2)在l 1上,设其关于l的对称点为(x ,y )-y -22-1=0,1,=-1,=-1,所以点(1,0),(-1,-1)在l 2上,从而可得l 2的方程为x -2y -1=08.A提示设C (m ,n ).由重心坐标公式得△ABC线的方程得2+m 3-4+n3+2=0,整理得m -n +4=0①.易得边AB 的中点为(1,2),k AB =4-00-2=-2,所以边AB 的垂直平分线的方程为y -2=12(x -1),即x -2y +3=0.-2y +3=0,-y +2=0,=-1,=1,所以△ABC 的外心为(-1,1),则(m +1)2+(n -1)2=32+12=10,整理得m 2+n 2+2m -2n =8②.联立①②解得m =-4,n=0或m =0,n =4.当m =0,n =4时,点B ,C 重合,应舍去,所以顶点C 的坐标是(-4,0)9.BD 提示对于A ,若直线过原点,横、纵截距都为0,则不能用方程x a +ya =1表示,所以A 不正确;对于B ,当m =0时,与y 轴平行的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,不能用y -1=tan θ(x -1)表示,所以C 不正确;对于D ,设P (x ,y )是经过点P 1(x 1,y 1),P 2(x 2,y 2)的直线上的任意一点,根据P 1P 2∥P 1P 可得(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0,所以D 正确.故选BD 10.AB 提示若两直线垂直,则a (a -1)+(1-a )(2a +3)=0,即a 2+2a -3=0,解得a =-3或a =1.故选AB 11.AD提示由题意得k =tan135°=-1.设点(2,4)关于直线l :y =-x +1的对称点为(m ,n ),则1,=-m +22+1,=-3,=-1,所以反射光线所在直线的方程为y =0-(-1)5-(-3)·(x -5)=18(x -5).当x =13时,y =1;当x =14时,y =98.故反射光线过点(13,1)12.ACD 提示①当l 1:4x -y =4平行于l 2:mx -y =0时,m =4;②当l 1:4x -y =4平行于l 3:2x +3my =4时,m =-16;③当l 2:mx -y =0平行于l 3:2x +3my =4时,3m 2+2=0,无解;④当三条直线经过同一个点时,把直线l 1与l 22x +3my =4中得84-m +12m 24-m -4=0,解得m =-1或23.综上,满足条件的m 为4或-16或-1或2313.3x -4y-9=0提示因为4sin α=3cos α,所以tan α=34,从而直线l 的方程为y =34(x -3),即3x -4y -9=014.(0,-1)提示方程(k +2)x +(k -3)y +k -3=0可化为k (x +y +1)+2x -3y-3=0x -3y -3=0,+y +1=0,解得=0,=-115.x +4y -4=0217提示设l 1与l 的交点为A (a,8-2a ),则由题意知点A 关于点P 的对称点B (-a,2a -6)在l 2上,把点B 的坐标代入l 2的方程中得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.易求得两交点分别为(-4,2),(4,0),所以截得的线段长为21716.94提示因为动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0.又点Q (4,0)到动直线l 0的最大距离为3,所以(4-1)2+(0+m )2=3,解得m =0,所以a +c =2.又a >0,c >0,所以12a +2c =12(a +c+c 2a +=94,当且仅当c =2a =43,即c =43,a =23时等号成立17.选择条件①:因为直线l :3x +4y -12=0,所以k l =-34.因为l ′∥l ,所以k l ′=k l =-34,从而直线l ′:y =-34(x +1)+3,即3x +4y -9=0选择条件②:因为l ′⊥l ,所以k l ′=43.设l ′在x 轴上的截距为b ,则l ′在y 轴上的截距为-43b .由题意可知S =12|b |·|-43b |=4,解得b =±6,所以直线l ′:y =43(x +6)或y =43(x -6)选择条件③:因为l ′是l 绕原点旋转180°而得到的直线,所以l ′与l 关于原点对称.任取点(x 0,y 0)在l 上,设其在l ′上的对称点为(x ,y ),所以x =-x 0,y =-y 0,从而-3x -4y -12=0,因此直线l ′:3x +4y +12=018.(1)因为k BC =7-(-1)3-(-1)=2,所以k AD =-12,从而边BC 上的高AD 所在直线的方程为y -5=-12(x +1),即x +2y -9=0(2)因为M 是BC 的中点,所以M (1,3),从而边BC 上的中线AM 所在直线的方程为y -35-3=x -1-1-1,即y =-x +4(3)由题意知边BC 所在直线的方程为y -(-1)7-(-1)=x -(-1)3-(-1),即2x -y +1=0,BC =(3+1)2+(7+1)2=45,所以点A 到直线BC 的距离h =|2×(-1)-5+1|22+1=655,从而△ABC 的面积=12BC ·h =1219.(1)直线l 的方程可化为y =-(a +1)x +a +2.因为l 不过第二象限,所以(a +1)≥0,+2≤0,解得a ≤-2,从而a 的取值范围为(-∞,-2](2)直线l 的方程可化为y =-(a +1)x +a +2,所以OM =|a +2a +1|,ON =|a +2|,从而S △MON =12OM ·ON =12(a +2)2|a +1|=|a +1|+2,当且仅当|a +1|=1|a+1|,即a =0时等号成立,因此△MON 面积的最小值为2,此时直线l 的方程为x +y -2=0(第20题)20.设所求点D 的坐标为(x ,y ).如图,由于k AB =3,k BC =0,所以k AB ·k BC =0≠-1,即AB 与BC 不垂直.①若BC ⊥CD ,AD ⊥CD .因为k BC =0,所以直线CD 的斜率不存在,从而有x =3.又k AD =k BC ,所以y -3x =0,即y =3,此时AB 与CD 不平行,故所求点D 的坐标为(3,3).②若AD ⊥AB ,AD ⊥CD .因为k AD =y -3x,k CD =y x -3,又AD ⊥AB ,所以y -3x ·3=-1.又AB∥CD ,所以yx -3=3.=185,=95,此时AD与BC 不平行,故所求点D综上可知,使四边形ABCD 为直角梯形的点D 的坐标可以为(3,3)21.(1)设点A 关于直线l 的对称点为A ′(x ,y )1,+y+32+1=0,=-4,=-3,即A ′(-4,-3),所以直线A ′B 的方程为y +31+3=x +41+44x -5y +1=0.当C 为直线4x -5y +1=0与直线x +y +1=0的交点时,AC +BCx -5y +1=0,+y +1=0,=-23=-13所以-23,-AC +BC 的最小值为A ′B =(1+4)2+(1+3)2=41(2)由题意知直线AB 的方程为y -31-3=x -21-2,即2x -y -1=0.当D 为直线2x -y -1=0与直线x +y +1=0的交点时,|AD -BD |x -y -1=0,+y +1=0,=0,=-1,所以D (0,-1),从而|AD -BD |的最大值为AB =(2-1)2+(3-1)2=522.(1)直线l 2的方程可化为2x -y -12=0,所以两条平行线l 1与l 2间的距离d =7510,即|a +12|5=7510,亦即|a +12|=72.又a >0,解得a =3(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·|c +12|5,解得c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0.若点P 满足条件③,由点到直线的距离公式有|2x 0-y 0+3|5=25·|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y0+4=0或3x 0+2=0.由于点P 在第一象限,所以3x 0+2=0x 0-y 0+132=0,0-2y 0+4=0,0=-3,0=12(舍去);联立x 0-y 0+116=0,0-2y 0+4=0,0=19,0=3718.所以存在点P。
直线与方程单元基础卷PDF版带答案

解得 xB =
7. k+2
因为 P (0, 1) 是 AB 的中点,则
7 3k − 1
+
7 k+2
=
0,解得
k
=
−
1 4
.
故所求直线 l 的方程为 y = − 1 x + 1,即 x + 4y − 4 = 0.
4
22.
(1) (2)
2(−√11,3−.2).
(3) 2x + y + 4 = 0.
所以 m = 6,
所以两条平行线的距离为 √|5 + 6| = 11 . 62 + 82 10
11. 令 P 可得
(P3P, 4′)的,中设点对称( 点3 +Pa′
,的4坐+标b 为) 在(a直, b线),x
−
y
+
6
=
0
上,
2
2
故可得 3 + a − 4 + b + 6 = 0. · · · · · · ①
2 2a c
4
13. 4
14. 15.
x√+ 5
6y − 16 =√0 解析: x2
+ y2
表示直线
2x
+
y
+
5
=
0
上的点与原点的距离,其最小值就是原点到直线
2x + y + 5 = 0 的距离 |0√+ 0 + 5| = √5. 4+1
16.
−
2 3
解析:由题意,可设直线 l 的方程为 y = k (x − 1) − 1(易知直线 l 的斜率存在),
解析几何的直线方程单元测试

解析几何的直线方程单元测试几何的直线方程是几何学中的重要知识点之一,通过单元测试可以检验学生对该知识点的掌握程度。
本文将通过对几何的直线方程单元测试进行解析,帮助读者更好地理解该知识点。
第一部分:选择题1. 下列哪个不是直线的方程?A. y = 2x + 3B. x - y = 5C. 3x + 4y = 12D. x = y^2答案:D。
选项A、B、C都是直线的方程,而D是一个二次函数的图像,因此不是直线的方程。
2. 一条直线的斜率为2,过点(3,4),该直线的方程为:A. y = 2x + 4B. y = 2x - 4C. y = 4x + 2D. y = 4x - 2答案:A。
根据直线的点斜式可知,斜率为2,过点(3,4)的直线方程为y = 2x + 4。
第二部分:填空题3. 过点(2,-1)且斜率为-3的直线方程为________。
答案:y = -3x + 5。
根据直线的点斜式可知,过点(2,-1)且斜率为-3的直线方程为y = -3x + 5。
4. 直线2x - 3y = 6的截距形式是________。
答案:x/3 - y/2 = 1。
将原方程化为截距形式得x/3 - y/2 = 1。
第三部分:计算题5. 求直线y = 3x - 2与y = -2x + 5的交点坐标。
解:将两直线方程联立,得3x - 2 = -2x + 5,解方程得x = 1,代入任意一条直线方程,得y = 3*1 - 2 = 1,故交点坐标为(1,1)。
6. 已知直线过点(1,2)且斜率为4,求该直线的方程。
解:根据直线的点斜式可得直线方程为y = 4x - 2。
通过以上解析,相信读者对几何的直线方程单元测试有了更深入的理解,希。
直线与方程》单元测试卷

直线与方程》单元测试卷1.若直线x=2015的倾斜角为α,则α()。
A。
等于° B。
等于180° C。
等于90° D。
不存在如果直线的方程为x=2015,则它是垂直于y轴的直线,没有倾斜角,因此答案是D.不存在。
2.过点(1,0)且与直线x-2y-2=0平行的直线方程是()。
A。
x-2y-1=0 B。
x-2y+1=0 C。
2x+y-2=0 D。
x+2y-1=0将直线x-2y-2=0改写为斜截式方程y=x/2-1,则它的斜率为1/2.与它平行的直线斜率也为1/2,且过点(1,0),因此直线方程为y=1/2x-1/2,即选项B。
3.已知三角形ABC的顶点坐标为A(-1,5),B(-2,-1),C(4,3),若M是BC边的中点,则中线AM的长为()。
A。
42 B。
13 C。
25 D。
21首先求出BC边的中点坐标:M[(Bx+Cx)/2.(By+Cy)/2] = [(4-2)/2.(3-1)/2] = (1,1)。
然后计算AM的长度:√[(-1-1)²+(5-1)²] = √32 = 4√2,因此答案是B.13.5.到直线3x-4y-1=0的距离为2的直线方程是()。
A。
3x-4y-11=0 B。
3x-4y-11=0或3x-4y+9=0C。
3x-4y+9=0 D。
3x-4y+11=0或3x-4y-9=0将直线3x-4y-1=0改写为斜截式方程y=3/4x-1/4.到该直线距离为2的直线,其斜率为-4/3(两直线垂直),过点(-1,0)(垂足),因此直线方程为y=-4/3(x+1),即选项B。
6.直线5x-4y-20=0在x轴上的截距,在y轴上的截距和斜率分别是()。
A。
4,5,5/4 B。
5,4,4/5 C。
4,-5,-5/4 D。
4,-5,5/4将直线5x-4y-20=0改写为截距式方程y=5/4x-5,则它在x 轴上的截距为4,y轴上的截距为-5,斜率为5/4,因此答案是A。
直线的方程单元测试题

分 所成的比
,求直线 的斜率和倾斜角.
睘
18.在直线方程 此直线方程.
ݔ中,当 ݔ
]时,
],求
19.已知点 ሺ睘 ܽ , ሺܽ 6 , 为坐标原点;
(Ⅰ)若点 在线段 上, 且∠
, 求∆ 的面积;
(Ⅱ) 若原点 关于直线 的对称点为 , 延长 到 , 且
睘ȁ ȁ.已知直线 : ܽ ݔ 斜角.
ܽ
ܽ 经过 求直线 的倾
20.已知直线 于 ,且ȁ ȁ
ݔ,过点 ሺ 睘
作直线
ȁ ȁ,试求直线 的方程.
交 轴于 ,交
21..已知直线
ݔ和 ሺ6 ,在 上求一点 ,使直线 及 ݔ轴在
第一象限上围成的三角形面积最小,并求出面积的最小值.
22 已知过原点 的一条直线与函数 log ݔ的图象交于 、 两点,
则直线 倾斜角的取值范围是
.
14.已知 ሺ
sinθ cos睘θ , ሺܽ 是相异两点,则直线 的倾斜角
的取值范围是
.
15.要使三点 ሺ睘 cos睘 ,Bሺsin睘
为
.
睘,ሺ
共线,则角θ的值
16.将直线 ݔ
绕它上面一点ሺ 沿逆时针方向旋转 ,
则所得直线方程为
.
三.解答题
17.过点 ሺ ,睘 的直线 与 ݔ轴和 轴分别交于 、 两点,若
线 有( )
A.1 条 B.2 条
C.3 条
D.4 条
9.直线 ݔ 应满足(
ܽ 同时要经过第一、第二、第四象限,则 )
A.
ܽ
ܽ
B.
ܽ
ܽ
C.
ܽ
ܽ
10.三直线 ݔ睘
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
……………………答……………………………………………………题…………………………………………线………………………
直线方程单元测试试卷
考试时间:90分钟;
总分100分
一、选择题
1、直线0253=-+y x 的斜率是(
)
A 、53
-
B 、35-
C 、
53D 、
3
52、过点(3,0),倾斜角为135度的直线方程为(
)
A 、03=-+y x
B 、03=+-y x
C 、0
3=++y x D 、0
3=--y x 3、已知A )21(,
-,B )4,5(-,则直线AB 的斜率是()
A 、1
-B 、1
C 、
31
D 、3
1-
4、两条直线0543:1=+-y x l 与0543:2=--y x l 的位置关系是(
)
A 、重合
B 、平行
C 、垂直
D 、相交不垂直
5、过点)3,1(-P 且垂直于直线032=+-y x 的直线方程为(
)
A 、012=-+y x
B 、052=-+y x
C 、0
52=-+y x D 、0
72=+-y x 6、点)1,2(P 到直线0543:=++y x l 的距离是()
A 、1
B 、2
C 、3
D 、4
7、已知点A )23(,
-,B )45(,-,则线段AB 的垂直平分线方程是()A 、0
7=--y x B 、07=--x y C 、0
112=--y x D 、0
22=+-y x 8、已知直线方程是0632=+-y x ,则直线在x 轴,y 轴上的截距分别是()A 、3,2
B 、-3,2
C 、-3,-2
D 、3,-2
9、如果0<AC 且0<BC ,那么直线0=++C By Ax 不通过()A 、第一象限B 、第二象限
C 、第三象限
D 、第四象限
10、设直线0=++c by ax 的倾斜角为α,且0cos sin =+αα,
则a,b 满足()A 、1
=+b a B 、1
=-b a C 、0
=+b a D 、0
=-b a 11、两直线033=-+y x 与016=++my x 平行,则他们之间的距离
是(
)
A 、4
B 、1313
2
C 、13
265D 、10
20
712、已知过点A(-2,m)和B(m,4)的直线与直线012=-+y x 平行,则m 的值为()A 、0B 、-8
C 、2
D 、10
二、填空题
……………………答……………………………………………………题…………………………………………线………………………
13、已知A(3,9)和B(-1,1),则线段AB 的长度为。
14、过点(3,4)且与直线023=+-y x 平行的直线的方程是。
15、已知只想b kx y +=经过点A(0,6)且平行直线x y 2-=,若该直线经过P(M,2),则三角形AOP 的面积为。
16、过点M(3,-4)且在坐标轴上截距相等的直线方程。
17、已知点M (2,a )在直线0532=+-y x 上,则a=。
18、与直线05247=++y x 平行,且距离等于3的直线方程是。
三、解答题
19、已知直线l 经过A(-2,1)和B(1,3),
(1)求直线l 的斜率(2)求直线l 的方程
20、求经过直线052=+-y x 和直线01=++y x 的交点,且平行于
053=+-y x 的直线方程。
21求点A(3,-2)关于直线012:=--y x l 的对称点1A 的坐标。
22、经过点A(1,2)且在两坐标轴上的截距的绝对值相等的直线有几条?写出这些方程。
23、过点A(-5,-4)作一直线l ,使它与两坐标轴相交且两轴所围成的三角形面积为5.
25、直线13
3
+-=x y 和x 轴,y 周分别交于A,B ,以线段AB 为边在第一象限内作等边三角形ABC ,如果在第一象限内有点P(m,2
1
)使
得ABC ABP ∆∆和的面积相等,求m 的值。