新高考数学复习第三章 直线与方程单元测试(基础版)附解析
高中直线与方程练习题及讲解

高中直线与方程练习题及讲解### 高中直线与方程练习题及讲解题目一:直线方程的求解题目描述:已知点A(2,3)和点B(-1,-2),求经过这两点的直线方程。
解题步骤:1. 首先,我们需要找到直线的斜率。
斜率公式为 \( k = \frac{y_2- y_1}{x_2 - x_1} \)。
2. 将点A和点B的坐标代入公式,得到 \( k = \frac{-2 - 3}{-1 - 2} = \frac{-5}{-3} = \frac{5}{3} \)。
3. 有了斜率,我们可以使用点斜式方程 \( y - y_1 = k(x - x_1) \) 来写出直线方程。
选择点A代入,得到 \( y - 3 = \frac{5}{3}(x - 2) \)。
4. 最后,将方程化为一般形式 \( Ax + By + C = 0 \),得到 \( 5x - 3y + 1 = 0 \)。
题目二:直线的平行与垂直题目描述:已知直线 \( l_1: 3x - 4y + 5 = 0 \),求与 \( l_1 \) 平行且与直线 \( 2x + y - 7 = 0 \) 垂直的直线方程。
解题步骤:1. 平行直线的斜率相同,所以 \( l_1 \) 的斜率为 \( k =\frac{3}{4} \)。
2. 垂直直线的斜率互为相反数的倒数,因此 \( l_1 \) 垂直的直线斜率为 \( -\frac{4}{3} \)。
3. 利用点斜式方程,我们可以选择直线 \( l_1 \) 上的一点,比如\( (0, 5/4) \),代入 \( y - y_1 = k(x - x_1) \),得到 \( y - \frac{5}{4} = -\frac{4}{3}(x - 0) \)。
4. 将方程化为一般形式,得到 \( 4x + 3y - 15 = 0 \)。
题目三:直线的交点题目描述:求直线 \( l_1: 2x + 3y - 6 = 0 \) 与直线 \( l_2: x - y + 1 = 0 \) 的交点坐标。
高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析必修2第三章《直线与方程》单元检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是()A。
30° B。
45° C。
60° D。
90°2.如果直线ax+2y+2=与直线3x-y-2=平行,则系数a为()A。
-3 B。
-6 C。
-2/3 D。
2/33.下列叙述中不正确的是()A。
若直线的斜率存在,则必有倾斜角与之对应。
B。
每一条直线都有唯一对应的倾斜角。
C。
与坐标轴垂直的直线的倾斜角为0°或90°。
D。
若直线的倾斜角为α,则直线的斜率为tanα。
4.在同一直角坐标系中,表示直线y=ax与直线y=x+a的图象(如图所示)正确的是(选项不清晰,无法判断)5.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b等于()A。
2 B。
3 C。
9 D。
-96.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是()A。
x+y+1=0 B。
4x-3y=0 C。
4x+3y=0 D。
4x+3y=0或x+y+1=07.已知点A(x,5)关于点(1,y)的对称点为(-2,-3),则点P(x,y)到原点的距离是()A。
4 B。
13 C。
15 D。
178.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB 相交,则l的斜率k的取值范围是()A。
k≥3/4或k≤-4/3 B。
-4/3≤k≤3/4 C。
-3≤k≤4 D。
以上都不对9.已知直线l1:ax+4y-2=与直线l2:2x-5y+b=互相垂直,垂足为(1,c),则a+b+c的值为()A。
-4 B。
20 C。
完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
高中数学必修二第三章直线与方程知识点与常考题(附解析)

必修二第三章直线与方程知识点与常考题(附解析)知识点:一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k tan k α=当[) 90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
新高考数学复习第三章 直线与方程单元测试(基础版)

21.(2020 全国高二课时练)求连接下列两点的线段的长度和中点坐标:
(1) A7, 4, B 3, 2 ; (2) M 3,1, N 2,1 ; (3) P 6, 4,Q 2, 2 .
22.已知两条直线 l1 : a 1 x 2 y 1 0,l2 : x ay 3 0 .
(1)若 l1 / /l2 ,求实数 a 的值;
(2)若 l2 l1 ,求实数 a 的值.
如何学好数学
1.圆锥曲线中最后题往往联立起来很复杂导致 k 算不出,这时你可以取特殊值 法强行算出 k 过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解 的表达式,就 ok 了 2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差 2 倍的小的 就是答案,体积找到差 3 倍的小的就是答案,屡试不爽! 3.三角函数第二题,如求 a(cosB+cosC)/(b+c)coA 之类的先边化角然后把第一题算
16.(2020 上海高二课时练习)若直线 2a2 4a x a2 4 y 5a2 0 的倾斜角是 ,则实数 a 是 4
_______________.
三、解答题 共 6 小题,共 70 分。解答应写出文字说明,演算步骤或证明过程。
17.(2020 全国高二课时练)经过下列两点的直线的斜率是否存在?如果存在,求其斜率,并确定直线的 倾斜角 α. (1)A(2,3),B(4,5); (2)C(-2,3),D(2,-1); (3)P(-3,1),Q(-3,10).
数学无耻得分综合篇! 做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇 到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特 殊值代入法、特例求解法、选项一一带入验证法、数形结合法、逻辑推理验证
2020年高一下学期人教版必修二第三章 直线与方程(单元检测)含答案

第三章 直线与方程单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°2.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( ) A .12 B .-12C .-2D .23.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( ) A .-3 B .-6 C .-32D .234.过点P (4,-1),且与直线3x -4y +6=0垂直的直线方程是( ) A .4x +3y -19=0 B .4x +3y -13=0 C .3x +4y -16=0D .3x +4y -8=05.已知直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A .⎝⎛⎭⎫-12,3 B .⎝⎛⎭⎫12,3 C .⎝⎛⎭⎫12,-3D .⎝⎛⎭⎫-12,-3 6.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0D .x -y +1=07.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ) A .213B .113C .126D .5268.与直线l :3x -5y +4=0关于x 轴对称的直线的方程为( ) A .3x +5y +4=0 B .3x -5y -4=0 C .5x -3y +4=0D .5x +3y +4=09.若点A (-2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .k ≤34或k ≥43B .k ≤-43或k ≥-34C .34≤k ≤43D .-43≤k ≤-3410.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A.-4 B.-2 C.0 D.211.如图1,已知点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到点P,则光线所经过的路程为()图1A.210 B.10C.2 3 D.3 312.直线l过点P(1,3),且与x,y轴正半轴围成的三角形的面积等于6的直线方程是()A.3x+y-6=0 B.x+3y-10=0C.3x-y=0 D.x-3y+8=0二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知点A(2,1),B(-2,3),C(0,1),则△ABC中,BC边上的中线长为________.14.直线l与直线y=1,x-y-7=0分别交于A,B两点,线段AB的中点为M(1,-1),则直线l的斜率为________.15.经过两条直线2x+y+2=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线方程为________.16.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l的倾斜角为135°,且经过点P(1,1).(1)求直线l的方程;(2)求点A(3,4)关于直线l的对称点A′的坐标.18.((本小题满分12分)已知两条直线l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0,当m为何值时,l1与l2:(1)相交;(2)平行;(3)重合.19. (本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.20. (本小题满分12分)如图2所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.图221. (本小题满分12分)如图3,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.图3(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.22. (本小题满分12分)已知点M (3,5),在直线l :x -2y +2=0和y 轴上各找一点P 和Q ,当△MPQ 的周长最小时,求点P ,Q 的坐标.第三章 直线与方程单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°【答案】D [由题意可知,直线l 的斜率为-1,故由tan 135°=-1,可知直线l 的倾斜角为135°.] 2.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( ) A .12 B .-12C .-2D .2【答案】A [由-2-33-(-2)=m +212-3,得m =12.选A.]3.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( ) A .-3 B .-6 C .-32D .23【答案】B [两直线平行,斜率相等,所以-a2=3,所以a =-6.选B.]4.过点P (4,-1),且与直线3x -4y +6=0垂直的直线方程是( ) A .4x +3y -19=0 B .4x +3y -13=0 C .3x +4y -16=0D .3x +4y -8=0【答案】B [因为3x -4y +6=0的斜率为34,所以与其垂直的直线的斜率为-43.故所求方程为y +1=-43(x -4),即4x +3y -13=0.]5.已知直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A .⎝⎛⎭⎫-12,3 B .⎝⎛⎭⎫12,3 C .⎝⎛⎭⎫12,-3 D .⎝⎛⎭⎫-12,-3 【答案】D [直线2x -my +1-3m =0可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3.即当m 变动时,所有直线都通过定点⎝⎛⎭⎫-12,-3. 选D.]6.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0D .x -y +1=0【答案】D [k AB =4-32-3=-1,故直线l 的斜率为1,AB 的中点为⎝⎛⎭⎫52,72, 故l 的方程为y -72=x -52,即x -y +1=0.]7.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ) A .213B .113C .126D .526【答案】C [5x +12y +3=0可化为10x +24y +6=0.由平行线间的距离公式可得d =|6-5|102+242=126.]8.与直线l :3x -5y +4=0关于x 轴对称的直线的方程为( ) A .3x +5y +4=0 B .3x -5y -4=0 C .5x -3y +4=0D .5x +3y +4=0【答案】A [因为点(x ,y )关于x 轴对称的点的坐标为(x ,-y ),所以只需将已知直线中的变量y 变为-y 即可,即为3x +5y +4=0.]9.若点A (-2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .k ≤34或k ≥43B .k ≤-43或k ≥-34C .34≤k ≤43D .-43≤k ≤-34【答案】C [如图.计算得:k P A =43,k PB =34,由题意得34≤k ≤43.]10.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2【答案】B [因为l 的斜率为tan 135°=-1,所以l 1的斜率为1,所以k AB =2-(-1)3-a =1,解得a =0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2.]11.如图1,已知点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程为( )图1A .210B .10C .2 3D .3 3【答案】A [设点P 关于直线AB 的对称点为P 1,点P 关于y 轴的对称点为P 2,则|P 1P 2|即为所求路程.又直线AB 的方程为x +y -4=0,所以P 1(4,2),P 2(-2,0),故|P 1P 2|=210.]12.直线l 过点P (1,3),且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是( )A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0【答案】A [设直线方程为x a +yb =1(a >0,b >0),由题意有⎩⎪⎨⎪⎧ab =12,1a +3b=1,∴⎩⎪⎨⎪⎧a =2,b =6.∴x 2+y6=1.化为一般式为3x +y -6=0.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 【答案】10 [BC 中点为(-1,2),所以BC 边上中线长为(2+1)2+(1-2)2=10.]14.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为________. 【答案】-23 [设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1), ∴k AB =-3-14-(-2)=-23.]15.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.【答案】2x +3y -2=0 [由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,得交点A (-2,2),因为所求直线垂直于直线3x -2y +4=0,故所求直线的斜率k =-23,由点斜式得所求直线方程为y -2=-23(x +2),即2x +3y -2=0.]16.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 【答案】(2,4) [设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 即为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M (2,4).]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分10分)已知直线l 的倾斜角为135°,且经过点P (1,1).(1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标. 【答案】(1)∵k =tan 135°=-1, ∴l :y -1=-(x -1),即x +y -2=0. (2)设A ′(a ,b ),则⎩⎪⎨⎪⎧b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18. (本小题满分12分)已知两条直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0,当m 为何值时,l 1与l 2: (1)相交;(2)平行;(3)重合.【答案】当m =0时,l 1:x +6=0,l 2:x =0,∴l 1∥l 2. 当m =2时,l 1:x +4y +6=0,l 2:3y +2=0, ∴l 1与l 2相交.当m ≠0且m ≠2时,由1m -2=m 23m ,得m =-1或m =3,由1m -2=62m ,得m =3.故(1)当m ≠-1且m ≠3且m ≠0时,l 1与l 2相交. (2)当m =-1或m =0时,l 1∥l 2. (3)当m =3时,l 1与l 2重合.19. (本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5. 【答案】设点P 的坐标为(a,0)(a >0),点P 到直线AB 的距离为d . 由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =2 5.由已知易得,直线AB 的方程为x -2y +3=0, 所以d =|a +3|1+(-2)2=25, 解得a =7或a =-13(舍去), 所以点P 的坐标为(7,0).20. (本小题满分12分)如图2所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.图2【答案】由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3, 所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.21. (本小题满分12分)如图3,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.图3(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.【答案】(1)由题意可知,E 为AB 的中点, ∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为y -2=x -3, 即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC ,∴S △ABC =12|AC |·|BC |=2.22. (本小题满分12分)已知点M (3,5),在直线l :x -2y +2=0和y 轴上各找一点P 和Q ,当△MPQ 的周长最小时,求点P ,Q 的坐标.【答案】如图,作点M 关于直线l 的对称点M 1,再作点M 关于y 轴的对称点M 2,连接M 1M 2,M 1M 2与直线l 及y 轴分别交于P ,Q 两点,由轴对称及平面几何的知识,知这样得到的△MPQ 的周长最小. 由点M (3,5)及直线l ,可求得点M 1的坐标为(5,1), 点M 关于y 轴的对称点M 2的坐标为(-3,5), 可得直线M 1M 2的方程为x +2y -7=0. 令x =0,得M 1M 2与y 轴的交点Q ⎝⎛⎭⎫0,72. 解方程组⎩⎪⎨⎪⎧x +2y -7=0,x -2y +2=0,得交点P ⎝⎛⎭⎫52,94. 综上,点P ⎝⎛⎭⎫52,94,Q ⎝⎛⎭⎫0,72即为所求.。
高中数学 人教A版 必修2 第三章 直线与方程 高考复习习题(解答题1-100)含答案解析

高中数学 人教A 版 必修2 第三章 直线与方程 高考复习习题(解答题1-100)含答案解析学校:___________姓名:___________班级:___________考号:___________一、解答题 1.设椭圆的右焦点为 ,过 的直线 与 交于 两点,点 的坐标为 .(1)当 与 轴垂直时,求直线 的方程; (2)设 为坐标原点,证明: . 2.如图,圆 : . (1)若圆 与 轴相切,求圆 的方程; (2)求圆心 的轨迹方程;(3)已知 ,圆 与 轴相交于两点 (点 在点 的左侧).过点 任作一条直线与圆 : 相交于两点 .问:是否存在实数 ,使得 ?若存在,求出实数 的值,若不存在,请说明理由。
3.在平面直角坐标系xOy 中,已知ABC ∆的顶点()()5,1,1,5A B .(1)若A 为ABC ∆的直角顶点,且顶点C 在y 轴上,求BC 边所在直线方程; (2)若等腰ABC ∆的底边为BC ,且C 为直线:23l y x =+上一点,求点C 的坐标. 4.过点()2,1P 作直线l 分别交,x y 轴的正半轴于,A B 两点. 取最小值时,求出最小值及直线l 的方程; 取最小值时,求出最小值及直线l 的方程; 取最小值时,求出最小值及直线l 的方程.5.在直角坐标系 中,椭圆的离心率为,点在椭圆 上. (1)求椭圆 的方程;(2)若斜率存在,纵截距为 的直线 与椭圆 相交于 、 两点,若直线 的斜率均存在,求证:直线 的斜率依次成等差数列. 6.设 、 分别是椭圆的左、右焦点.若 是该椭圆上的一个动点,的最大值为1. (1)求椭圆 的方程;(2)设直线 与椭圆 交于 两点,点 关于 轴的对称点为 ( 与 不重合),则直线 与 轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.7.如图,在三棱柱111ABC A B C -中,底面ABC ∆是等边三角形,且1AA ⊥平面ABC , D 为AB 的中点,(Ⅰ) 求证:直线1//BC 平面1ACD ; (Ⅱ) 若12,AB BB E ==是1BB 的中点,求三棱锥1A CDE -的体积;8.如图,三棱锥P ABC -中,平面PAC ⊥平面ABC , AB BC ⊥,点,D E 在线段AC 上,且2AD DE EC ===, 4PD PC ==,点F 在线段AB 上,且//EF 平面PBC .(1)证明: //EF BC ; (2)证明: AB ⊥平面PEF ;(3)若四棱锥P DFBC -的体积为7,求线段BC 的长.9.(题文)(题文)已知两条直线 . (1)若 ,求实数 的值; (2)若 ,求实数 的值.10.已知直线l 经过点P (2,2)且分别与x 轴正半轴,y 轴正半轴交于A 、B 两点,O为坐标原点.(1)求AOB ∆面积的最小值及此时直线l 的方程; (2)l 的方程.11.为了了解甲、乙两名同学的数学学习情况,对他们的 次数学测试成绩(满分 分)进行统计,作出如下的茎叶图,其中 处的数字模糊不清,已知甲同学成绩的中位数是 ,乙同学成绩的平均分是 分.甲 乙(1)求 和 的值;(2)现从成绩在 之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率.12.在平面直角坐标系中,以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系.直线 的极坐标方程为:,点 ,参数 .(1)求点 轨迹的直角坐标方程; (2)求点 到直线 距离的最小值.13.如图,四棱锥P ABCD -中, PA ⊥平面A B C D , AD BC ,3AB AD AC ===, 4PA BC ==, M 为线段AD 上一点, 2AM MD =, N为PC 的中点.(1)证明: MN 平面PAB ;(2)求异面直线AN 与CD 所成角的余弦值.14.已知圆 ,圆 的圆心为 , 与 交于点 ,过点 且斜率为 的直线 分别交 、 于点 . (1)若 且 ,求的方程;(2)过点 作垂直于 的直线 分别交 、 于点 ,当 为常数时,试判断是否为定值?若是,求出这个定值;若不是,请说明理由.15.如图,正三棱柱111ABC A B C -中,侧棱2AB =, ,D E 分别为棱11,AC B C 的中点, ,M N 分别为线段1AC 和BE 的中点.(1)求证:直线//MN 平面ABC ; (2)求二面角C BD E --的余弦值.16.如图,在平面直角坐标系xOy 中,右顶点分别为A , B ,过右焦点F 的直线l 与椭圆C 交于P , Q 两点(点P 在x 轴上方).(1)若2QF FP =,求直线l 的方程;(2)设直线AP , BQ 的斜率分别为1k , 2k .是否存在常数λ,使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由.17(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左、右焦点,不经过1F 的直线l 与椭圆C 交于两个不同的点,A B ,如果直线1AF 、l 、1BF 的斜率依次成等差数列,求焦点2F 到直线l 的距离d 的取值范围.18.已知圆 与圆 :关于直线 对称,且点在圆 上. (1)判断圆 与圆 的公切线的条数;(2)设 为圆 上任意一点,,, 三点不共线, 为 的平分线,且交 于 ,求证: 与 的面积之比为定值.19 2F 为椭圆C 的右焦点,12,A A 分别为椭圆C 的左,右两个顶点.若过点()4,0B 且斜率不为0的直线l 与椭圆C 交于,M N 两点,且线段12,MA MA 的斜率之积为 (1)求椭圆C 的方程;(2)已知直线1A M 与2A N 相交于点G ,证明: 2,,G P F 三点共线.20.已知 = ,- , =,若存在非零实数k ,t 使得 , ,且 ⊥,试求:的最小值. 21.已知实数x ,y 满足2x +y =8,当2≤x ≤3时,求yx的最大值与最小值. 22.设点()11A --,, ABC ∆是正三角形,且点B C 、在曲线10xy x =(>)上. (1)证明:点B C 、关于直线y x =对称; (2)求ABC ∆的周长. 23.已知椭圆的左右顶点分别为 、 , 为椭圆 上不同于 , 的任意一点.(1)求 的正切的最大值并说明理由;(2)设 为椭圆 的右焦点,直线 与椭圆 的另一交点为 , 的中点为 ,若 ,求直线 的斜率.24.(双鸭山)已知圆22:4230P x y x y +-+-=和圆外一点(4,8)M -. (1)过点M 作圆的割线交圆于,A B 两点,若||4AB =,求直线AB 的方程; (2)过点M 作圆的两条切线,切点分别为,C D ,求切线长及CD 所在直线的方程. 25.已知圆22:2O x y +=,直线:2l y kx =-. (1)若直线l 与圆O 交于不同的两点,A B ,时,求k 的值.(2是直线l 上的动点,过P 作圆O 的两条切线,PC PD ,切点为,C D ,探究:直线CD 是否过定点;(3)若,EF GH 为圆22:2O x y +=边形FGFH 的面积的最大值.26.(题文)在直角坐标系中,椭圆 :的左、右焦点分别为 , ,其中 也是抛物线 : 的焦点,点 为 与 在第一象限的交点,且. (1)求椭圆的方程;(2)过 且与坐标轴不垂直的直线交椭圆于 、 两点,若线段 上存在定点 使得以 、 为邻边的四边形是菱形,求 的取值范围.27.如图,在三棱锥 中,平面 平面 , 为等边三角形, 且 , 分别为 的中点. (Ⅰ)求证: 平面 ; (Ⅱ)求证:平面 平面 ; (Ⅲ)求三棱锥 的体积.28.已知抛物线()2:20C y px p =>的焦点为F ,抛物线上横坐标为12的点到抛物线顶点的距离与该点到抛物线准线的距离相等。
2021-2022学年高中数学 第三章 直线与方程测评作业(含解析)新人教A版必修2

第三章测评(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x-√3y-1=0的倾斜角α的大小为( )A .30°B .60°C .120°D .150°x-√3y-1=0的斜率为k=√33,故tan α=√33.∵0°≤α<180°,∴α=30°.2.若直线l 1:2x-ay-1=0过点(1,1),则直线l 1与l 2:x+2y=0的位置关系为( ) A.平行 B.相交但不垂直 C.垂直D.相交于点(2,-1)解析因为直线l 1:2x-ay-1=0过点(1,1),所以2-a-1=0,解得a=1,所以直线l 1的方程为2x-y-1=0,其斜率k 1=2,因为l 2:x+2y=0,其斜率k 2=-12,所以k 1·k 2=2×-12=-1,所以l 1与l 2垂直,故选C .3.如图,在同一直角坐标系中,表示直线y=ax 与y=x+a 正确的是( )a>0时,A,B,C,D 均不成立;当a<0时,只有C 成立,故选C .4.过点P (1,2),且与原点距离最大的直线方程是( ) A.x+2y-5=0B.2x+y-4=0C.x+3y-7=0D.3x+y-5=0:因为选项的四条直线都过P 点,且原点到选项A 、B 、C 、D 所表示的直线的距离分别为d A =√5=√5,d B =√5,d C =√10,d D =√10,所以d D <d B <d C <d A ,故选A . 方法二:因为过点P (1,2),且与原点距离最大的直线方程必与直线OP 垂直,k OP =2,所以所求的直线的斜率为-12,根据直线的点斜式方程,得y-2=-12(x-1),即x+2y-5=0,故选A .5.与直线2x+y-3=0平行,且距离为√5的直线方程是 ( )A .2x+y+2=0B .2x+y-8=0C .2x+y+2=0或2x+y-8=0D .2x+y-2=0或2x+y+8=02x+y+C=0,则√5=√5,解得C=2或C=-8.所以所求直线方程为2x+y+2=0或2x+y-8=0.6.若直线x m +y n =1与直线5x-7y+1=0相互平行,则mn 等于( )A.-75B.75C.-57D.57解析直线x m +y n =1的斜率为-n m ,由两直线平行得-n m =57,即m n =-75.7.若直线l 1:y=kx+1与l 2:x-y-1=0的交点在第一象限内,则k 的取值范围是( ) A.k>1B.-1<k<1C.k<-1或k>1D.k<-1{y =kx +1,x -y -1=0,解得{x =21-k ,y =1+k 1-k,∵两直线的交点在第一象限,∴{21-k>0,1+k 1-k>0,解得-1<k<1.8.设点A (-2,3),B (3,2),若直线ax+y+2=0与线段AB 没有交点,则a 的取值范围是( )A.(-∞,-52]∪[43,+∞)B.(-43,52)C.(-52,43)D.(-∞,-43]∪[52,+∞),直线ax+y+2=0恒过点C (0,-2),k AC =-52,k BC =43,故-52<-a<43,即-43<a<52.9.过点P(1,3),且与x,y轴的正半轴围成的三角形的面积等于6的直线方程是()A.3x+y-6=0B.x+3y-10=0C.3x-y=0D.x-3y+8=0解析设所求直线的方程为xa +yb=1(a>0,b>0),则有12ab=6,且1a+3b=1.由{12ab=6,1a+3b=1,解得{a=2,b=6.故所求直线的方程为x2+y6=1,即3x+y-6=0.10.过点(2,4)可作在x轴,y轴上的截距相等的直线条数为()A.1B.2C.3D.4x轴,y轴上的截距相等且为0时,直线过原点,方程为y=2x;当截距不为0时,设直线方程为xa +ya=1,又直线过点(2,4),所以方程为x+y-6=0;所以有两条直线满足题意.故选B.11.将一张坐标纸折叠一次,使点(10,0)与(-6,8)重合,则与点(-4,2)重合的点是()A.(4,-2)B.(4,-3)C.(3,32)D.(3,-1)(10,0)和(-6,8)为端点的线段的垂直平分线的方程为y=2x,则(-4,2)关于直线y=2x的对称点即为所求点.设所求点为(x0,y0),则{y0-2x0+4=-12,y0+2 2=2·x0-42,解得{x0=4,y0=-2.12.若A(-4,2),B(6,-4),C(12,6),D(2,12),下面四个结论正确的个数是()①AB ∥CD ;②AB ⊥AD ;③|AC|=|BD|;④AC ⊥BD.A .1B .2C .3D .4k AB =-4-26+4=-35,k CD =12-62-12=-35, ∴AB ∥CD ;②∵k AB =-35,k AD =12-22+4=53, ∴k AB ·k AD =-1,∴AB ⊥AD ;③∵|AC|=√(12+4)2+(6-2)2=4√17,|BD|=√(2-6)2+(12+4)2=4√17,∴|AC|=|BD|;④∵k AC =6-212+4=14,k BD =12+42-6=-4,∴k AC ·k BD =-1,∴AC ⊥BD.综上知,①②③④均正确.故选D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.直线y=5x+3绕其与y 轴的交点旋转90°的直线方程是 .x=0时,y=3,因为旋转后的直线的斜率k=-15,所以直线方程为y=-x5+3,即x+5y-15=0.5y-15=014.若倾斜角为45°的直线m 被平行线l 1:x+y-1=0与l 2:x+y-3=0所截得的线段为AB ,则AB 的长为 .,直线m 与直线l 1,l 2垂直,则由两平行线间的距离公式得|AB|=√12+12=√2.√215.已知光线通过点M (-3,4),被直线l :x-y+3=0反射,反射光线通过点N (2,6),则反射光线所在直线的方程是 .光线通过点M (-3,4),设点M 关于直线l :x-y+3=0的对称点K (x ,y ),∴{y -4x+3=-1,x -32-y+42+3=0,解得{x =1,y =0,即K (1,0).∵N (2,6),∴直线NK 的斜率为6,∴反射光线所在直线的方程是6x-y-6=0.x-y-6=016.在函数y=4x 2的图象上求一点P ,使P 到直线y=4x-5的距离最短,则P 点的坐标为 .4x-y-5=0.设P (a ,4a 2),则点P 到直线的距离为d=2√42+(-1)=|-4(a -12)2-4|√17=4(a -12)2+4√17.当a=12时,点P (12,1)到直线的距离最短,最短距离为4√1717. (12,1) 三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在△ABC 中,已知A (5,-2),B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求: (1)顶点C 的坐标.(2)直线MN的方程.解(1)设C(x0,y0),则AC边的中点M的坐标为x0+52,y0-22,BC边的中点N的坐标为x0+7 2,y0+32,因为点M在y轴上,所以x0+52=0,解得x0=-5.又因为点N在x轴上,所以y0+32=0,所以y0=-3.即点C的坐标为(-5,-3).(2)由(1)可得M0,-52,N(1,0),所以直线MN的方程为x1+y-52=1,即5x-2y-5=0.18.(本小题满分12分)已知两条直线l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0,当m为何值时,l1与l2:(1)相交;(2)平行;(3)重合?m=0时,l1:x+6=0,l2:x=0,故l1∥l2.当m=2时,l1:x+4y+6=0,l2:3y+2=0,故l1与l2相交.当m≠0,且m≠2时,由1m-2=m23m,得m=-1或m=3;由1m-2=62m,得m=3.故(1)当m≠-1,且m≠3,且m≠0时,l1与l2相交.(2)当m=-1或m=0时,l1∥l2.(3)当m=3时,l1与l2重合.19.(本小题满分12分)已知直线l的方程为2x-y+1=0.(1)求过点A(3,2),且与l垂直的直线的方程;(2)求与l 平行,且到点P (3,0)的距离为√5的直线的方程.直线l 的斜率为2,故所求直线的斜率为-12,因为所求直线过点A (3,2),故所求直线方程为y-2=-12(x-3),即x+2y-7=0.(2)依题意设所求直线方程为2x-y+c=0, 点P (3,0)到该直线的距离为√5, 有√22+(-1)=√5,解得c=-1或c=-11,故所求直线方程为2x-y-1=0或2x-y-11=0.20.(本小题满分12分)已知方程(m 2-2m-3)x+(2m 2+m-1)y+6-2m=0(m ∈R ). (1)求该方程表示一条直线的条件;(2)当m 为何实数时,方程表示的直线斜率不存在?求出这时的直线方程; (3)已知方程表示的直线l 在x 轴上的截距为-3,求实数m 的值; (4)若方程表示的直线l 的倾斜角是45°,求实数m 的值.当x ,y 的系数不同时为零时,方程表示一条直线,令m 2-2m-3=0,解得m=-1或m=3; 令2m 2+m-1=0,解得m=-1或m=12.所以方程表示一条直线的条件是m ∈R 且m ≠-1.(2)由(1)易知,当m=12时,方程表示的直线的斜率不存在, 此时的方程为x=43,它表示一条垂直于x 轴的直线. (3)依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m-15=0, 所以m=3或m=-53,由(1)知所求m=-53.(4)因为直线l 的倾斜角是45°,所以直线l 的斜率为1,故由-m 2-2m -32m 2+m -1=1,所以3m 2-m-4=0,解得m=43或m=-1(舍去).所以直线l 的倾斜角为45°时,m=43.21.(本小题满分12分)等腰直角三角形斜边所在直线的方程是3x-y=0,一条直角边所在的直线l 的斜率为12,且经过点(4,-2),且此三角形的面积为10,求此等腰直角三角形的直角顶点的坐标.C ,C 到直线3x-y=0的距离为d.则12·d ·2d=10,解得d=√10.∵直线l 的斜率为12,∴直线l 的方程为y+2=12(x-4), 即x-2y-8=0.设l'是与直线3x-y=0平行且距离为√10的直线,则l'与l 的交点就是点C.设l'的方程是3x-y+m=0,则√32+(-1)=√10,解得m=±10,∴l'的方程是3x-y ±10=0,由方程组{x -2y -8=0,3x -y -10=0及{x -2y -8=0,3x -y +10=0,得点C 坐标是(125,-145)或(-285,-345).22.(本小题满分12分)为了绿化城市,拟在如图所示的矩形区域ABCD 内建一个矩形草坪,其中在△AEF 区域内有一文物保护区不能被占用.经测量AB=100 m,BC=80 m,AE=30 m,AF=20 m,应如何设计才能使草坪面积最大?并求出草坪的最大面积.,则E (30,0),F (0,20),线段EF 的方程为x 30+y20=1(0≤x ≤30).在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,作PR ⊥CD 于点R ,设矩形草坪PQCR 的面积为S m 2,则S=|PQ|·|PR|=(100-m )(80-n ).又m 30+n 20=1(0≤m ≤30),所以n=20-23m ,于是S=(100-m )80-20+23m=-23(m-5)2+180503(0≤m ≤30), 所以当m=5时,S max =180503, 此时|EP|=30-55|PF|=5|PF|.故当矩形草坪的一组邻边分别在BC ,CD 上,其中一个顶点P 在线段EF 上,且满足|EP|=5|PF|时,面积最大,最大面积为180503m 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.(2020·靖西市二中高二)若直线过点 ,则此直线的倾斜角是_________.
【答案】
【解析】直线过点 则直线的斜率
设倾斜角为 ,根据斜率与倾斜角关系可得 由直线倾斜角 可得
14.已知 , , ,点 满足 ,且 ,则点 的坐标为______
【答案】
【解析】设 ,则 , , ,
, ,解得: ,即:
【答案】C
【解析】由两直线平行得,当k−3=0时 ,两直线的方程分别为y=−1和 ,显然两直线平行。
当k−3≠0时,由 ,可得k=5.综上,k的值是3或5,本题选择C选项
12.若直线 与 平行,则实数 的值等于( )
A. 1或 B. 1C. D.不存在
【答案】C
2、填空题共4小题,每小题5分,共20分。
第三章直线与方程单元测试卷(基础版)
一、选择题共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项。
1.(2020山东泰安实验中学高二月考)已知直线l:x ,则直线l的倾斜角为()
A. B. C. D.
【答案】B
【解析】根据题意,直线l:x ,是与x轴垂直的直线,其倾斜角为 .故选:B.
求: 顶点C的坐标;
直线MN的方程.
【解析】(1)设点C(x,y),
∵边AC的中点M在y轴上得 =0,
∵边BC的中点N在x轴上得 =0,
解得x=﹣5,y=﹣3.故所求点C的坐标是(﹣5,﹣3).
(2)点M的坐标是(0,﹣ ),点N的坐标是(1,0),
直线MN的方程是 = ,即5x﹣2y﹣5=0.
20.(2020全国高二课时练)根据下列条件分别写出直线方程,并化成一般式:
C.在直线 与 中,若一条直线的斜率存在,另一条直线的斜率不存在,则 与 定相交
D.若直线 与 的斜率都不存在,则
【答案】C
【解析】对于A,若直线 与 的斜率相等,则 或 与 重合;对于B,若直线 与 互相平行,则它们的斜率相等或者斜率都不存在;对于D,若 与 的斜率都不存在,则 或 与 重合.
4.(2020山东泰安一中高二期中)经过点( ,2),倾斜角为60°的直线方程是()
5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!
6.高考选择题中求条件啥的充要和既不充分也不必要这两个选项可以直接排除!考到概率超小
7.选择题中考线面关系的可以先从D项看起前面都是来浪费你时间的
7.选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案
理科如果考数列题的话,注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Sn求an、已知Sn与an关系求an(前两种都是利用an=Sn-Sn-1,注意讨论n=1、n>1)、累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。如有其它问题,注意放缩法证明,还有就是数列可以看成一个以n为自变量的函数。
或 (舍)
三、解答题共6小题,共70分。解答应写出文字说明,演算步骤或证明过程。
17.(2020全国高二课时练)经过下列两点的直线的斜率是否存在?如果存在,求其斜率,并确定直线的倾斜角α.
(1)A(2,3),B(4,5);
(2)C(-2,3),D(2,-1);
(3)P(-3,1),Q(-3,10).
A.30°B.45°C.60°D.90°
【答案】B
【解析】由x-y+2=0,得y=x+2.其斜率为1,倾斜角为45°.
7.(2020上海高二课时练)“ ”是“直线 和直线 平行且不重合”的().
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件
【答案】C
【解析】当 时,两直线分别为: , ,∴两直线斜率相等,则平行且不重合;若两直线平行且不重合,则 ,∴ ,综上所述, 是两直线平行且不重合的充要条件,故选:C.
(1)斜率是 ,经过点A(8,-2);
(2)经过点B(-2,0),且与x轴垂直;
(3)斜率为-4,在y轴上的截距为7;
(4)经过点A(-1,8),B(4,-2).
(5)经过C(-1,5),D(2,-1)两点;
(6)在x,y轴上的截距分别是-3,-1.
【解析】(1)由点斜式,得y+2= (x-8),化简,得 x-3y-8 -6=0.
(2)直线方程为x=-2,即x+2=0.
(3)由斜截式,得y=-4x+7,化成一般式为4x+y-7=0.
(4)由两点式,得 = ,化成一般式为2x+y-6=0.
(5)由两点式方程得 = ,整理得2x+y-3=0;
(6)由截距式方程得 + =1,整理得x+3y+3=0.
21.(2020全国高二课时练)求连接下列两点的线段的长度和中点坐标:
【解析】(1)存在.直线AB的斜率kAB= =1,即tanα=1,
又0°≤α<180°,所以倾斜角α=45°.
(2)存在.直线CD的斜率kCD= =-1,即tanα=-1,
又0°≤α<180°,所以倾斜角α=135°.
(3)不存在.因为xP=xQ=-3,所以直线PQ的斜率不存在,倾斜角α=90°.
18.(2020湖南衡阳五中高二月考)已知在平行四边形ABCD中, .
【解析】由于 的面积等于 面积的 ,故 ,设 ,由 得 ,解得 ,即 ,
所以 .故选A.
10.(2020甘肃武威八中高二期中)原点到直线 的距离为()
A. B. C. D.
【答案】D
【解析】由点到直线距离可知所求距离 .故选: .
11.已知直线 与 平行,则 的 值是( )
A. 1或3B. 1或5C. 3或5D. 1或2
(1) ;
(2) ;
(3) .
【解析】(1) ,中点坐标 .
(2) ,中点坐标 .
(3) ,中点坐标 .
22.已知两条直线 .
(1)若 ,求实数 的值;
(2)若 ,求实数 的值.
【答案】(1)2,-1 ;(2) .
【解析】试题分析:(1)本小题考查两直线平行的性质,当两直线的斜率存在且两直线平行时,他们的斜率相等,注意截距不相等;由 ,得 或-1,经检验,均满足;(2)本小题考查两直线垂直的性质,当两直线斜率存在时,两直线的斜率之积为 ,注意斜率不存在的情况;由于直线 的斜率存在,所以 ,由此即可求出结果.
试题解析:
(1)因为直线 的斜率存在,
又∵ ,
∴ ,∴ 或 ,两条直线在 轴是的截距不相等,
所以 或 满足两条直线平行;学科&网
如何学好数学
1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了
2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!
3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。省时省力!
4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
A. B.
C. D.
【答案】C
【解析】由直线的倾斜角为 ,得到直线的斜率 ,又直线过点
则直线的方程为 ,故选
5.(2020全国高二课时练)经过 与 两点的直线的方程为()
A. B. C. D.
【答案】B
【解析】由 两点的坐标可知,直线 与 轴平行,所以直线的方程为 .
6.直线x-y+2=0的倾斜角是()
15.(2020福建莆田一中高二月考)已知两点 , ,则直线 的方程为______.
【答案】 或
【解析】当 时,直线 的方程为 ;当 时,直线 的方程为 ,即 .
16.(2020上海高二课时练习)若直线 的倾斜角是 ,则实数 是_______________.
【答案】
【解析】因为直线 的倾斜角是 ,所以直线 的斜率为 ,因此
大题文科第一题一般是三角函数题,第一步一般都是需要将三角函数化简成标准形式Asin(wx+fai)+c,接下来按题做就行了,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴、对称中心、单调区间、最大值、最小值都是用整体法求解。求最值时通过自变量的范围推到里面整体u=wx+fai的范围,然后可以直接画sinu的图像,避免画平移的图像。这部分题还有一种就是解三角形的问题,运用正弦定理、余弦定理、面积公式,通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可。
2.(2020山东菏泽三中高二期中)已知直线斜率的绝对值等于1,则此直线的倾斜角()