关于干热岩
干热岩用途

干热岩用途
干热岩是一种稀有的火山岩,可以在各种地质环境中形成。
它属于普通火山岩,但与其他火山岩有所不同,因为它含有比其他火山岩更高的温度。
因此,干热岩具有独特的一些性质,这使得它可以在许多不同的领域被用来利用,从而为人类的生活带来越来越便利。
本文将讨论干热岩的用途,以及它对人类健康和环境的影响。
首先,干热岩可以用来生产能源。
它可以产生巨大的能量,被用来发电。
它的发电效率高,更重要的是它可以被用来替代传统的煤炭发电,减少对环境的污染。
此外,干热岩可以用来供热,因为它拥有较高的温度,可以被用来替代传统的煤气取暖,从而减少污染。
其次,干热岩可以用来制造食物和药物。
由于它能够保持高温,它可以用来烹饪食物,从而保留食物的营养成分和香味。
此外,干热岩还可以用来消毒药物,从而消除细菌和病毒,确保药物的有效性。
最后,干热岩可以用来改善人类的健康。
干热岩可以被用来热水浴,从而帮助放松肌肉、改善血液循环、强化免疫系统等。
它也可以用来热敷,有助于缓解关节炎和肌肉疼痛等症状。
此外,干热岩的有色矿物质可以被用来制作护肤品,以改善皮肤的健康状态。
总之,干热岩是一种非常有用的火山岩,它可以在能源生产、食物制作、药物消毒以及改善人类健康等多个领域得到应用,给人类的日常生活带来更多便利。
它也可以减少对环境的污染,从而为
人类提供更加绿色、可持续的发展环境。
地热第4课-干热岩

1 干热岩的发展优势
资源量巨大、分布广泛。(初步估算,我国陆区3.010.0km深处干热岩资源为860万亿吨标准煤燃烧所释放的 能量)
几乎为零排放。(无废气和其他流体或固体废弃物,可维持 对环境最低水平的影响)
开发系统安全。(没有爆炸危险,更不会引起灾难性事故或 伤害性污染)
热能连续性好。(在可再生能源中,只有EGS可以提供不间 断的电力供应,不受季节、气候、昼夜等自然条件的影响)
经济实惠(商业价值可观)
2 干热岩的赋存
干热岩的热能赋存于各种变质岩或结晶岩类岩体,较常见的岩石 有黑云母片麻岩、花岗岩、花岗闪长岩等。一般于热岩上覆盖有沉 积岩或土等隔热层。 干热岩主要被用来提取其内部的热量, 因此其主要的工业指标是岩 体内部的温度。
黑云母花岗岩
花岗闪长岩
二长花岗岩(soltz)
在高温但无水或无渗透 率的热岩体中,通过水 力压裂等方法制造出一 个人工热储,将地面冷 水注入地下深部获取热 能,通过在地表建立高 温发电站来实现深部地 热能的有效利用。
4 EGS 技术
4 EGS 应用
美国Dersertpeak电站2010.9-2011.4间对 # 27-15进行了储层激发,使 发电量提高了1.5MW。 美国Geysers地热田近年来发电量稳定,除了通过增加回灌以外,其部 分井在2012年采用了EGS储层激发增产技术,进一步增加了储层产量。 美国bottlefield地热田电站发电量为10MW,将于2014年由Altarock公 司对两个开采井进行激发增产。
水流损失可能否定系统的经济性能和环境影响结论; 而水流 短路形成后需要废弃已经激发的岩体体积中很大的一部分, 会给后续钻井和激发造成困难。
理想EGS的水耗应小于10%。
干热岩文档

干热岩1. 什么是干热岩干热岩是一种地热资源,指的是地下深部岩石中的高温岩体。
这些岩体通常位于地下几千米深处,温度可以达到200℃以上。
相比之下,传统地热资源主要来自于热液和蒸汽,而干热岩则不需要地下水的存在。
干热岩能量来源于地球内部的辐射热,属于一种无限可再生的资源。
2. 干热岩资源利用2.1 干热岩发电利用干热岩发电是目前对干热岩资源利用最主要的方式。
通过在地下钻探井中注水,注入高压高温的水使其与岩石发生热交换,形成蒸汽,然后利用蒸汽驱动涡轮发电机发电。
相比传统地热发电,干热岩发电具有更高的温度和压力条件,可以获得更高的发电效率。
2.2 干热岩热能利用除了发电,干热岩还可以直接利用其热能进行供暖、加热和工业过程。
通过在地表进行钻探,将高温岩体的热能输送到地表,再经过换热器进行热交换,将热能转移到需要加热的介质上,实现供热和加热的目的。
干热岩热能利用可以广泛应用于居民区、工业区和温室等场所,提供清洁、可持续的热能。
2.3 干热岩矿物资源利用干热岩中含有丰富的矿物资源,可以进行开采和利用。
例如,干热岩中的伴生物质,如铀、钍、稀土元素等,都具有重要的经济价值。
此外,干热岩中的岩盐、花岗岩等也可以用于建材、化工等领域。
3. 干热岩资源开发与环境影响干热岩资源开发对环境有一定的影响。
首先,干热岩资源的开采需要进行地下钻探和水力压裂等工作,可能会引起地震活动。
其次,注入的水和地下岩石的接触可能会导致岩石中的矿物质释放,对地下水质产生影响。
此外,干热岩资源开发需要大量的用水,可能会对水资源造成一定的压力。
为了减少环境影响,干热岩资源开发需要采取合适的技术和措施。
例如,使用先进的地震监测设备进行地震监测,控制地震活动的范围和强度。
此外,注水前需要对地下岩石进行充分的矿物学研究,了解矿物质释放的情况,并采取防护措施。
同时,可以推广水资源的节约利用和回收利用,减少对水资源的压力。
4. 干热岩资源的前景干热岩资源作为一种清洁、可持续的能源资源,具有广阔的发展前景。
干热岩的利用

干热岩的利用
热岩是极具价值的自然资源,它可以利用当地流水或冷水进行湿式冷热,从而获取温度范围较窄的舒适温度,以满足居民的舒适空调需求。
一、热岩的利用可以改善居民的环境温度,使居民享受舒适的室内温度。
利用热岩,可以有效温度范围获取7-35摄氏度,使得温度需求得到满足。
二、利用热岩,也有助于减少对煤炭、石油和其他化石燃料的依赖。
热岩能源保证温度和室内温度舒适,而且它不排放碳二氧化物,这是一种很好的替代煤炭的节能技术。
三、利用热岩,可以降低室内能耗。
热岩利用了温度差,利用自然回路,以尽可能低的成本提供舒适室内舒适空调的温度。
热岩的能源消耗更低,能耗更低,可以降低室内单位面积的电流消耗,从而节约能源。
四、热岩能源具有几个重要优势,可以节约时间和成本,安全可靠,不受天气影响,适合长期使用,准确可控,可以实现室外温度的准确控制。
总的来说,热岩的利用有益于节能减排、居民生活环境改善、室内空调温度舒适调控等,它是一种有效的节能减排技术。
它可以发挥其独特的优势,利用自然资源,有助于实现绿色和可持续发展。
中学地理科普讲解稿-干热岩

污 染火 大力 气发 环电 境 河 流水 生电 态破 系坏 统 气风 候电 的受 影季 响节
01
高温高 压钻井
02
耐高温 钻井液
03
动力钻具与 长寿命钻头
04
仪器耐高 与密封
关键技术
2017年我国科学家在青海共和盆地3705米深处钻获236℃的高温干热岩体 这是我国首次钻获温度最高的干热岩体,实现了我国干热岩勘查的重大突破
有深度 就有热度
Hale Waihona Puke 地壳中干热岩所蕴含的 能量相当于全球所有石油、 天然气和煤炭所蕴藏能量 的30倍,是一种前景广阔 的绿色环保、可再生能源 之一。
干热岩是一种新兴的地热能源,是指一般大于200摄氏度、深埋数千米、 内部不存在流体或存在少量地下流体的高温岩体
干热岩发电可以摆脱外界的干扰
干热岩能源是当前国际社会公认的 高效低碳清洁能源
干热岩及其开发技术(1)

干热岩及其开发技术(1)胡经国一、广义与狭义干热岩1、干热岩一般定义众所周知,地球内部蕴藏着巨大的能量,地心温度高达6000℃。
地球通过火山、地震、地热等方式源源不断地释放着内部的能量。
干热岩(Hot Dry Rock,HDR)是地球内部热能的一种赋存介质。
自20世纪70年代美国Los Alamos国家实验室提出干热岩地热能的概念以来,干热岩的定义也在不断地发展。
在最新的《地热能术语》中,干热岩被定义为:内部不存在或仅存在少量流体、温度高于180℃的异常高温岩体。
2、广义与狭义干热岩定义另外,考虑其客观性、科学性、可行性和经济性,干热岩的基本含义可分为广义干热岩和狭义干热岩两类。
广义干热岩是指流体含量很少、温度为150~400℃的储热岩体。
狭义干热岩必须考虑地热能发电的经济性和可行性,主要是指流体含量少、埋深为3~8千米、温度为200~350℃的储热岩体。
其岩性主要是各种变质岩或结晶岩体,较常见的干热岩体有黑云母片麻岩、花岗岩、花岗闪长岩等。
二、干热岩开发利用潜力1、干热岩开发利用潜力概述干热岩资源就是存在于岩体中的热量资源。
人们通常通过温度对干热岩体中的热量资源量进行评估。
那么,干热岩体中赋存的热量究竟有多大?以一个边长为1千米、温度为200℃的高温岩体为例,其温度下降10℃所释放的热量可实现发电量约为1000万MWh,可满足2000万平方米1年的建筑供暖需求。
在地下达到一定的深度以后,这样的高温岩体无处不在,可以说干热岩资源的潜力是巨大的。
目前,限制干热岩开发主要是技术问题。
但是,就现阶段而言,由于技术和手段等限制,能被人类所揭露及开发利用的干热岩资源主要集中在埋深较浅、温度较高、有开发经济价值的地下干热岩体。
据保守估计,地壳中干热岩(通常指3~10 千米深处)所蕴藏的能量相当于全球所有石油、天然气和煤炭所蕴藏能量的30倍。
2、中国干热岩开发利用潜力中国地质调查局的评价数据显示,中国大陆3~10千米深处的干热岩资源总量为2.5×1025 J,相当于856万亿吨标煤);若能开采出2%,则相当于中国2015年全国一次性能耗总量的4400倍。
干热岩资源研究2

干热岩1、干热岩:是指地层深处(深埋超过2000m)普遍存在的没有水或蒸汽的、致密不渗透的热岩体,主要是各种变质岩或结晶岩体,赋存状态有蒸汽型、热水型、地压型、岩浆型的地热资源。
较常见的干热岩有黑云母片麻岩、花岗岩、花岗闪长岩等。
干热岩型地热资源是专指埋藏较深,温度较高,有开发经济价值的热岩体。
2、地热梯度:又称“地热梯度”、地热增温率。
指地球不受大气温度影响的地层温度随深度增加的增长率。
表示地球内部温度不均匀分布程度的参数。
一般埋深越深处的温度值越高,以每百米垂直深度上增加的℃数表示。
不同地点地温梯度值不同,通常为(1—3)℃/百米,火山活动区较高。
在实际工作中,通常用每深100米或1千米的温度增加值来表示地热梯度;在地热异常区,也常用每深10米或1米的温度增加值来表示地热梯度。
地壳的近似平均地热梯度是每千米25℃,大于这个数字就叫做地热梯度异常。
近地表处的地热梯度则因地而异,其大小与所在地区的大地热流量成正比,与热流所经岩体的热导率成反比。
因此,地热梯度的区域性变化可能来源于热流量的变化,也可能来源于近地表岩体的热导率的变化。
而在整个地球内部,地温梯度随深度的增加逐渐降低。
地热梯度的方向一般指向温度增加的方向,称正梯度。
如果温度向下即随深度的增加反而降低时,称负梯度。
热田钻孔穿透热储层后,常出现负梯度。
3、地热增温陡度(geothermal degree),又称地热增温级(geothermaldegree):地热梯度的倒数,其物理意义可以理解为温度相差1℃时两个等温面之间的距离。
4、干热岩的最佳选址问题:由于在地温梯度和热流量值较高的地方最有利于干热岩的开发利用,从宏观的大地构造角度来考虑,应选择板块碰撞地带:包块海洋板块和大陆板块的碰撞带,大陆内部,大陆和大陆板块之间的碰撞带以及大陆内部的断陷盆地地区。
5、干热岩资源开发系统的设计与运行关键技术参数包括系统的出力(设计年限内允许提取的地热资源量)和寿命(可提取资源量的枯竭期限)、注水井与生产井的井口压力、注水流量、生产井的温度等。
干热岩——沉睡的宝贝地热能在线

干热岩——沉睡的宝贝地热能在线干热岩是新兴能源,温度一般大于200℃,深埋数千米,内部不存在流体,获仅有少量流体的高温岩体,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。
中国首次大规模发现干热岩资源位于青海省共和盆地。
温度高达153℃,它们埋藏浅、温度高、分布广、填补了我国干热岩地热资源的空白。
干热岩就在我们脚下我们赖以生存的地球蕴含着巨大的能量,地心温度高达6000℃。
地球通过火山、地震、地热等方式源源不断地释放着内部能量。
我们所熟悉的温泉正是地球比较温和地释放能量的方式,属于地热资源的一种。
干热岩是深埋地下、没有或极少量含有水或蒸汽的热岩体,属于另一种地热资源。
从理论上来讲,从地球表面向内部延伸,温度会逐渐增加。
任何区域达到一定深度,内部高温都足以开发干热岩。
可以说,干热岩是无处不在的自然资源,是可再生能源的主力军。
干热岩资源量巨大然而,地球内部的地热能并非我们都能开采。
由于当前技术条件有限,干热岩型地热资源专指埋深较浅(3千米~10千米)、温度较高(>150℃)、具有经济开发价值的热岩体。
据保守估计,地壳浅部干热岩(3千米~10千米)所蕴含的能量相当于全球所有石油、天然气和煤炭能量的30倍。
有关数据显示,中国大陆(3千米~10千米)干热岩地热资源总量为2.5×1025J,相当于860万亿吨标准煤,按2%的可开采资源量计算,相当于我国2016年能源消耗总量的3927倍。
同时,地热发电生命周期内二氧化碳的排放量比太阳能发电还要低,是燃煤发电二氧化碳排放量的1/60,天然气发电二氧化碳排放量的1/30。
所以,开发这种巨大的清洁型能源,不仅可以改变当前社会能源结构,还可以遏制污染排放,还一片碧海云天。
我国干热岩分布我国地热资源丰富。
经科学测算,有国内专家认为,中国大陆3-10公里深处干热岩资源总计为2.09×107EJ,合7.149×1014吨标准煤,高于美国本土(不含黄石公园)干热岩地热资源量(1.4×107EJ)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于干热岩一、什么就是干热岩干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,就是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体得高温岩体。
这种岩体得成分可以变化很大,绝大部分为中生代以来得中酸性侵入岩,但也可以就是中新生代得变质岩,甚至就是厚度巨大得块状沉积岩。
干热岩主要被用来提取其内部得热量,因此其主要得工业指标就是岩体内部得温度。
輻鍬试舆蘺睜爱。
二、干热岩资源得成因类型根据地壳结构与成因机制,中国干热岩资源主要可分为高放射性产热型、近代火山型、沉积盆地型及强烈构造活动带型。
1、高放射性产热型干热岩资源:类似于法国Soultz地区及澳大利亚Cooper盆地等高放射性花岗岩地区,中国东南沿海地区,地表及地壳浅部发育许多大型得中生代酸性花岗岩类岩体,该类岩体具有较高得放射性产热特征,在壳源产热与幔源产热均理想得情况下大地热流值可超过100μW/m2。
在覆盖层理想得地方,可以获取理想得干热岩资源。
高放射性产热干热岩资源主要集中在中国东南沿海,如广东、福建、江西、海南以及广西部分地区,以燕山期大范围形成得酸性岩体为赋存体形成干热岩资源区。
2、沉积盆地型干热岩资源:沉积盆地型干热岩资源具有基岩覆盖层较大、表层地温梯度较大、增温稳定得特点。
深部热源向上传导到达覆盖层时,由于沉积覆盖层热导率小得特点,阻止了热量得散失。
本类干热岩资源虽然地表热流值并不太高,但由于热量在浅部得聚集,其底部基岩岩体温度可以达到150℃以上。
沉积盆地型干热岩资源主要分布在关中、咸阳、贵德、共与、东北等白垩系形成盆地得下部,由于沉积覆盖层具有较高得地温梯度,通常与水热型地热田共生。
3、近代火山型干热岩资源:近代火山型干热岩资源与火山活动密切相关。
国际上很多知名得干热岩资源区均属于这种类型。
受底部未冷却岩浆得作用,地表具有明显得水热活动现象。
通常在较浅得地方就可以获得较高得温度。
近代火山型干热岩资源分布在中国腾冲、长白山、五大连池等地区。
其热源特征与底部岩浆活动历史与岩浆活动特征密切相关。
4、强烈构造活动带型干热岩资源:强烈构造活动带型干热岩资源分布在青藏高原。
受亚欧板块与印度样板块得挤压,新生代以来青藏高原逐渐隆升,局部有岩浆底侵得存在,在这些区域可能形成理想得干热岩资源。
受构造活动得影响,自第四纪以来,西藏高原受到南北向强烈挤压,随着地质应力得变化,早期以东西向展布为主得构造格局逐渐遭受破坏,产生了一系列得北西向走滑断裂及近南北向得张性与张扭性得活动构造带。
在这些近南北向断裂带内现代地热活动强烈,又以那曲—羊八井—多庆错活动构造带与查去俄—古堆—错那构造带最为显著。
查去俄—古堆—错那构造带内由南往北有错那、古堆、日多、沃卡、松多、查去俄等中—高温地热显示区。
这些地区可作为强烈构造活动带型干热岩资源得理想前景区。
三、寻找干热岩得勘查工作步骤首先就是收集地、物、化、遥、地热等各种区域性资料;通过对所收集资料进行分析,选择有远景得地区开展地质调查、物化探、深部钻探工作,然后对岩心进行采样、对钻孔进行测温,获取各种有用信息。
最后通过实际工作成果,结合收集相关资料对干热岩资源进行评价。
四、干热岩勘查手段与要求干热岩地质勘查工作,依据勘查地得具体条件,有选择地选用航卫片解译、地面地质调查、地球化学调查、地球物理勘查、地热地质钻探及岩、土、水实验测试等综合手段。
覓缅贸钏嶧蠐維。
1、航卫片解译主要应用于干热岩地质勘查工作得初期,配合地面地质调查工作进行,通过最新航卫片图像得解译,判断工作区地貌、地质构造基本轮廓及其隐伏构造,工作区及其相邻地区地面泉点、泉群、地热溢出带及地表热显示得位置,地表得水热蚀变带分布范围,为开展地面地质调查提供依据与工作方向。
缦誒萊维競吓駙。
2、地质调查在航卫片解译及充分利用区域地质调查资料得基础上进行。
通过调查,实地验证航卫片解译得成果、难点;查明工作区得地层时代、岩性特征、地质构造、岩浆活动及地热形成得地质条件;查明地表热显示得类型、规模、分布范围及其与地质构造得关系;选定进一步工作得重点地区,为下一步得勘查工作提供依据。
静態疇飽腽烟鱧。
3、地球化学调查应用于干热岩地质勘查工作得各个阶段,主要就是:采取工作区及其周边地区得地热水(井、泉)、常温地下水、地表水样进行化验分析,对比分析彼此得关系;利用地热水中特征离子(组分)如氟、二氧化硅等高于常温地下水得变化与分布规律,圈定工作区内得地热异常区得范围;测定工作区内代表性地热水(井、泉)中稳定同位素(18O、34S、2H)与放射性同位素(3H、14C)含量,推断地热水得成因与年龄;分析研究代表性地热水(井、泉)中特殊组分(SiO2、K、Na、Mg)等得含量变化,进行温标计算,推断深部热储温度;对地表岩石与钻孔(井)岩心中得水热蚀变矿物进行取样鉴定,分析推断地热活动特征及其发展历史等。
躥棟勸鋌薮磚車。
4、地球物理勘查就是干热岩资源勘查工作得重要组成部分,一般应在干热岩勘查得各个阶段进行。
主要就是:圈定地热蚀变带、地热异常范围与热储体得空间分布;确定地热田得基底起伏及隐伏断裂得空间展布,圈定隐伏火成岩体与岩浆房位置;一般利用地温勘查圈定地热异常区;利用重力法确定地热田基底起伏(凸起与凹陷)及断裂构造得空间展布;利用磁法确定水热蚀变带位置与隐伏火成岩体得分布、厚度及其与断裂带得关系;利用电法、α卡、210Po法圈定热异常与确定热储体得范围、深度;利用人工地震法准确测定断裂位置、产状与热储构造;利用磁大地电流法确定高温地热田得岩浆房及热储位置与规模;利用微地震法测定活动断裂带。
地球物理勘查成果,就是作为地热钻探井布置得重要依据。
軫浹嗶争鍶敛掷。
5、深部地质钻探干热岩资源勘查工作最重要也就是耗资最多得手段,用于查明干热形成得地质条件、准确确定热储层得空间分布及其开发利用条件,查明热储得压力、温度、水位、地热流体得流量及质量,获取计算评价地热资源得各项参数。
钻探深度一般应达到有开采利用价值得热储层底界或当前技术经济合理得开采深度内;钻探控制网度视勘查工作阶段不同而定,钻探井位得确定应进行严格审定。
钻探工程必须确保工程质量,取全取准各项资料。
6、地热水、土、岩实验分析在地热资源勘查中,应比较系统得采取水、土、岩等样品进行分析鉴定,以获取热储得有关参数。
为评价地热水水质,应进行地热水得全分析(主要阴、阳离子与F、Br、I、SiO2、B、H2S)、微量元素(Li、Sr、Cu、Zn等)、放射性元素(U、Ra、Rn)及总放射性得分析,对温泉出露点与浅埋热储,还应增加污染指标(酚、氰等)得分析;为研究地热水得成因、年龄、补给来源等可视条件进行稳定同位素(18O、34S、2H)与放射性同位素(3H、14C)得测定;为确定热储得密度、比热、导热率、渗透率、孔隙度等物性参数,则应选取代表性岩、土试样进行分析测定。
四、部分勘查工作手段得目得1、地球物理方法:具体得就是采用热红外遥感、高精度航磁测量、天然地震背景噪声层析成像技术、地震勘探、大地电磁测深、放射性γ能谱测量、重力测量等技术手段。
①热红外遥感:圈定地热场。
遥感解译:判断地热田地貌、地质构造基本轮廓及其隐伏构造,地热田及其相邻地区地面泉点、泉群、地热溢出带及地表热显示得位置,地表得水热蚀变带分布范围,为地热田地面地质调查提供依据与工作方向。
②高精度航磁测量:确定水热蚀变带位置与隐伏火成岩体得分布、厚度及其与断裂带得关系。
③大地电磁测深:利用磁大地电流法确定高温地热田得岩浆房及热储位置与规模;确定基岩面得埋深、断裂得发育程度。
④天然地震背景噪声层析成像:揭示工作区中上地壳速度结构得横向不均匀性,反映了区域内不同构造单元得地震波速度结构特征。
显示研究区内山脉、盆地等构造单元得分布特征。
⑤地震勘探:利用人工地震法准确测定断裂位置、产状与热储构造;利用微地震法测定活动断裂带。
⑥放射性γ能谱测量:γ能谱测量可用来勘查放射性矿产:铀、钍矿,钾盐矿等;岩性分类与地质填图;勘查水资源;工程地质中确定裂隙、断层。
寻找各种非放射性矿产(金矿床、铝土矿、油气田等);放射性环境评价。
主要用于地质填图,推断铀、钍成矿区得位置,寻找与放射性元素分布有关得某些非放射性矿产资源。
γ测量还可以在钻孔中进行,即用辐射仪在钻孔中测量岩矿石得天然γ射线强度,以寻找地下深处放射性矿床。
有γ测井(总量)与能谱测井两种。
荫颶蠐泽艰腳紅。
⑦重力测量:利用重力法确定地热田基底起伏(凸起与凹陷)及断裂构造得空间展布;查明工作区内引起重力异常得地质体得形态、部位、性质、深度,发现与圈定工作区内隐伏、半隐伏岩浆岩体、深大断裂,寻找形成干热岩体最有利区域。
2、深部钻探:采用深部钻探工程,查明工作区得地层层序;控制构造得发育程度;了解覆盖层得保温隔热条件,取得有代表性得热物性参数评价干热岩资源开采技术条件。
3、岩心采样:了解岩石得密度、岩石生热率、岩石比热容、岩石热导率、岩石比热容等、岩石物理力学性质等参数。
4、测井:对全孔进行井温、井斜及井径测量;终孔后对主要目得层段进行稳态测温。
对全孔进行分阶段多参数测井工作,进行全孔岩性解释,进行视电阻率、自然伽玛、自然电位、声波等参数测量。
划分全孔地质剖面、裂隙发育带及破碎带等。
镣鐿壢厩銦嶄耻。
寝阎書执礙钯横。
开宾熒嗎滄铹聹。
龚罢輊號涟軒獎。
篱馍枨霁輾嬪箨。
跞詭欧霧樅辖广。
遙溝谣騁棂踪鹾。
棧绦郓芗诖凜赉。
沪峡丛巅飢鈍谵。
锰訖恼辫晓顴镤。
轵颞繚绎辋譜囪。