基于完整数据采集系统设计方案

合集下载

数据采集系统设计方案

数据采集系统设计方案

数据采集系统设计方案数据采集系统是指通过一定的手段和工具,从各种数据源中采集和提取数据,并将其存储、分析和应用的一套系统。

以下是一个数据采集系统的设计方案:1. 系统目标和需求分析:明确系统的目标和需求,包括需要采集的数据类型、频率、来源等,以及对数据的存储、处理和分析的要求。

2. 数据源选择和接口设计:根据系统需求,选择适合的数据源,例如数据库、日志文件、API接口等。

设计和开发相应的接口,实现与数据源之间的数据交互。

3. 数据采集和提取:通过编写脚本或使用专业的数据采集工具,从数据源中获取数据,并对数据进行提取、清洗和转换。

4. 数据存储和管理:设计合适的数据存储结构,选择合适的数据库或其他存储方案,将采集到的数据进行存储和管理。

需要考虑数据安全性、可扩展性和性能等方面的要求。

5. 数据处理和分析:根据系统需求,对采集到的数据进行处理和分析。

可以使用数据挖掘、机器学习等技术对数据进行分析和建模,以提供有价值的信息和洞察。

6. 数据应用和展示:根据用户需求,将处理和分析后的数据应用到相应的业务场景中。

设计和开发相应的应用程序或接口,将数据以可视化的形式展示给用户,并提供相应的操作和交互功能。

7. 系统监控和优化:监控系统的运行状态和性能指标,及时发现和解决问题。

对系统进行优化,提高系统的稳定性、可用性和性能。

8. 安全和隐私保护:对系统中的数据进行安全保护,包括数据加密、访问控制等措施,确保数据的机密性和完整性。

同时,遵守相关法律法规,保护用户隐私。

以上是一个数据采集系统的基本设计方案。

根据具体的需求和情况,可能还需要做一些调整和扩展。

设计和开发过程中,需要充分考虑系统的稳定性、可扩展性、性能和安全性等方面的要求,以满足用户的实际需求。

智慧数据采集系统设计方案

智慧数据采集系统设计方案

智慧数据采集系统设计方案智慧数据采集系统(Intelligent Data Acquisition System)是一个集数据采集、传输、存储、处理和应用于一体的系统。

它利用各类传感器、网络通信技术和数据分析算法,能够实时地获取、处理和管理各种类型的数据,以支持分析、决策和控制等应用。

以下是一个智慧数据采集系统的设计方案:1.系统架构设计智慧数据采集系统的架构应包括前端感知层、传输层、数据处理和存储层、数据应用层。

前端感知层:通过各类传感器,对环境、设备、人员等进行数据采集,包括温度、湿度、压力、光照强度、位置等信息。

传输层:采用无线通信技术(如Wi-Fi、蓝牙、LoRaWAN 等)将前端感知层采集到的数据传输至数据处理和存储层。

数据处理和存储层:对传输层传输过来的原始数据进行处理、清洗和转换,然后存储到数据库中。

此层可以使用大数据处理技术(如Spark、Hadoop等)进行数据分析和处理。

数据应用层:根据不同需求,将处理后的数据用于进行各种应用,如数据分析、决策支持、监控控制等。

2.传感器选择与配置根据采集的数据种类和应用需求,选择适合的传感器进行数据采集。

例如,可以选择温湿度传感器、光照传感器、压力传感器、位置传感器等。

同时,需要对传感器进行合理的布置和配置,以确保数据的准确性和完整性。

3.数据传输选择合适的通信方式进行数据传输,根据数据传输的频率和距离来选择通信技术。

例如,可以使用无线通信方式将数据传输到数据处理和存储层,同时保证数据传输的稳定性、安全性和实时性。

4.数据处理和存储根据采集到的数据特性和应用需求,选择合适的数据处理和存储技术。

例如,可以使用关系数据库或者NoSQL数据库进行数据存储,使用大数据处理技术进行数据分析和处理。

5.数据应用根据应用需求,设计相应的数据应用模块。

例如,可以开发数据分析模块,对采集到的数据进行统计分析、趋势预测等;开发监控控制模块,实现对设备、环境等的实时监控和控制;开发决策支持模块,提供数据分析结果和决策建议等等。

数据采集系统设计方案

数据采集系统设计方案

数据采集系统设计方案摘要:本文为一份数据采集系统的设计方案,旨在提供一个高效、可靠的数据采集解决方案。

首先分析了数据采集的意义,接着介绍了系统的整体架构和各个模块的功能设计。

然后详细阐述了涉及到的技术选型和系统实施计划。

最后针对可能遇到的问题,提供了相应的解决方案。

通过本文提供的设计方案,可以有效地满足数据采集的需求,并提高数据的准确度和可用性。

一、引言数据采集是信息管理领域中非常重要的一环,能够帮助机构、企业等实现大规模数据的自动收集和整理。

而数据采集系统旨在解决数据采集过程中遇到的瓶颈和难题,并提供高效的数据采集工具。

本文旨在设计一个可靠、高效的数据采集系统,满足企业对数据采集的需求。

二、系统架构设计数据采集系统采用了分布式架构设计,包含四个关键的模块:数据采集模块、数据存储模块、数据处理模块、数据展示模块。

数据采集模块主要负责从多个数据源收集数据,并进行初步的清洗和整理。

采集模块需要支持多种数据采集方式,如爬虫采集、API采集、文件导入等,以确保能够覆盖不同数据源的采集需求。

此外,数据采集模块还需要具备实时采集和定时采集的功能,以满足不同采集频率的需求。

2. 数据存储模块数据存储模块负责将采集到的数据存储到数据库或者数据仓库中。

系统可以根据实际需求选择合适的存储技术,如关系型数据库、NoSQL数据库等。

数据存储模块还需要支持数据的备份和容灾,以确保数据的可靠性和安全性。

3. 数据处理模块数据处理模块对采集到的数据进行预处理和加工,以满足后续的分析和应用需求。

包括数据清洗、数据转换、数据聚合等操作。

数据处理模块还需要支持自定义的数据加工规则,以满足不同业务场景下的数据需求。

数据展示模块负责将处理后的数据以可视化的形式展示给用户。

可以通过图表、报表、仪表盘等方式展示数据,以便用户能够直观地理解和分析数据。

三、技术选型1. 数据采集模块在数据采集模块中,可以选用Python作为主要的开发语言,利用其丰富的第三方库和成熟的爬虫框架进行数据采集工作。

基于单片机的多路数据采集系统设计(3章)

基于单片机的多路数据采集系统设计(3章)

基于单片机的多路数据采集系统设计摘要数据采集是指从带有模拟、数字被测单元的传感器或者其他设备中对非电量或电量信号进行自动采集,再送到上位机中进行分析和处理。

近年来,众人时刻关注着数据采集及其应用的发展和市场形势。

广大人们的关注使得数据采集系统的发展有了质的飞跃,它被广泛用于各种数字市场。

本文介绍了数据采集的相关概念和基本原理,设计了基于STM32F407的多路数据采集系统的硬件和软件的实现方法及实现过程,并经过调试完成其主要功能和主要技术指标。

硬件部分包括:主控电路、信号采集处理电路、TFT液晶显示电路、SD 卡存储电路、串口通讯电路。

实现过程是以STM32F407为控制核心,通过模数转换器,实时对输入信号进行采样,得到一串数据流,通过控制器的处理实现数据的采集和显示。

软件部分包括:信号采集分析算法、嵌入式操作系统移植、UC-GUI人机交互界面设计、文件管理系统移植。

主要实现了对采集数据的存储和分析,频率和幅值的计算,液晶屏的控制和界面显示。

程序是在keil uVision的集成开发环境中用C语言写成的,编程具有模块化的特点,因此可读性比较高,维护成本较低。

最后,用Altium designer(DXP)设计了数据采集系统的原理图,并制作了PCB电路板。

在实验室里制作了数据采集系统并进行了系统调试,经过调试,达到了所应该实现的功能和技术指标。

关键词:多路数据采集,STM32F407,液晶显示MULTI-CHANNEL DATA ACQUISITION SYSTEMBASED ON SINGLE CHIP DESIGNABSTRACTData acquisition is the automatic acquisition of non electric or electric quantity signals from sensors and other devices, such as analog and digital.In recent years, data acquisition and its application has gradually become the focus of attention. Therefore, the data acquisition system has been rapid development, it is widely used in various fields.The software part includes: signal acquisition and the embedded operating system transplant, UC-GUI man-machine interface design. Mainly realizes the storage and analysis of the collected data, calculate the frequency and am plitude of the LCD screen display and control interface. The program is written by C language in the integrated development environment KEIL uVision and modular programming makes the program readable and easy maintenance features Finally, using designer Altium to design and manufacture the digital oscilloscope circuit board PCB. In the laboratory, the digital oscilloscope has been made and the system has been debugged. After debugging, it has achieved the function and technical index that should be realized.KEY WORDS: Multi-channel data acquisition,STM32F407,liquid-crystal display目录摘要 (I)ABSTRACT (II)1绪论 (1)1.1研究背景及其目的意义 (1)1.2国内外研究现状 (2)1.3研究的主要内容 (2)2系统总体方案设计 (4)2.1系统总体设计方案 (4)2.2系统总体框图 (4)2.3硬件系统方案设计 (4)2.3.1单片机的选择 (5)2.3.2信号衰减和放大电路 (5)2.3.3A/D模数转换器的选择 (6)2.3.4显示部分 (6)2.4软件系统方案设计 (6)2.5本章小结 (7)3硬件电路设计 (8)3.1电源部分 (8)3.2信号调理部分 (10)3.3信号采样 (12)3.4系统控制部分 (12)3.5本章小结 (14)1绪论1.1研究背景及其目的意义最近几年,众人时刻关注着数据采集及其应用的发展和市场形势。

基于STM32单片机的多路数据采集系统设计

基于STM32单片机的多路数据采集系统设计

基于STM32单片机的多路数据采集系统设计概述:多路数据采集系统是一种用于采集和处理多种传感器信号的系统。

基于STM32单片机的多路数据采集系统具有低功耗、高精度、稳定可靠的特点,广泛应用于工业控制、环境监测和医疗设备等领域。

本文将介绍基于STM32单片机的多路数据采集系统的设计方案及实现方法。

设计方案:1.系统硬件设计:系统硬件由STM32单片机、多路模拟输入通道、数模转换器(ADC)和相关模拟电路组成。

其中,多路模拟输入通道可以通过模拟开关电路实现多通道选通;ADC负责将模拟信号转换为数字信号;STM32单片机负责控制和处理这些数字信号。

2.系统软件设计:系统软件可以采用裸机编程或者使用基于STM32的开发平台来进行开发。

其中,主要包括数据采集控制、数据转换、数据处理和数据存储等功能。

具体实现方法如下:-数据采集控制:配置STM32单片机的ADC模块,设置采集通道和相关参数,启动数据采集。

-数据转换:ADC将模拟信号转换为相应的数字量,并通过DMA等方式将数据传输到内存中。

-数据处理:根据实际需求对采集到的数据进行预处理,包括滤波、放大、校准等操作。

-数据存储:将处理后的数据存储到外部存储器(如SD卡)或者通过通信接口(如UART、USB)发送到上位机进行进一步处理和分析。

实现方法:1.硬件实现:按照设计方案,选择适应的STM32单片机、模拟开关电路和ADC芯片,完成硬件电路的设计和布局。

在设计时要注意信号的良好地线与电源隔离。

2.软件实现:(1)搭建开发环境:选择适合的开发板和开发软件(如Keil MDK),配置开发环境。

(2)编写初始化程序:初始化STM32单片机的GPIO口、ADC和DMA等模块,配置系统时钟和相关中断。

(3)编写数据采集程序:设置采集参数,例如采样频率、触发方式等。

通过ADC的DMA功能,实现数据的连续采集。

(4)编写数据处理程序:根据实际需求,对采集到的数据进行预处理,例如滤波、放大、校准等操作。

数据采集系统设计方案

数据采集系统设计方案

数据采集系统设计方案1. 引言在当前信息爆炸的时代,数据已成为企业决策和业务发展的重要支撑。

为了能够获得准确、及时、完整的数据,建立一个高效的数据采集系统至关重要。

本文将介绍一个数据采集系统的设计方案,旨在帮助企业快速搭建一个可靠的数据采集系统。

2. 系统架构数据采集系统主要由以下几个模块组成:2.1 数据源模块数据源模块负责与各个数据源进行连接,并提供数据抓取的功能。

根据具体需求,可以包括数据库、文件系统、API等各种数据源。

2.2 数据处理模块数据处理模块负责对采集到的原始数据进行清洗、去重、转换等处理操作,以便后续分析和存储。

2.3 数据存储模块数据存储模块负责将处理后的数据存储到数据库、数据仓库或数据湖等存储介质中,以便后续的数据分析和挖掘。

2.4 监控和日志模块监控和日志模块负责监控系统的运行状态,并记录系统的运行日志,以便后续的故障排查和系统性能优化。

2.5 定时任务模块定时任务模块负责定期执行数据采集任务,可以使用定时调度工具来实现。

3. 系统设计与实现3.1 数据源模块的设计数据源模块可以使用不同的技术栈来实现,例如使用Python的Requests库连接API,使用JDBC或ORM框架连接数据库,使用文件操作库连接文件系统。

3.2 数据处理模块的设计数据处理模块的设计需要根据具体的业务需求来确定。

常见的处理操作包括数据清洗(去除重复数据、缺失值处理等)、数据转换(格式转换、字段合并等)等。

3.3 数据存储模块的设计数据存储模块可以选择合适的数据库或数据仓库来存储处理后的数据。

常见的选择包括关系型数据库(如MySQL、PostgreSQL)和大数据存储系统(如Hadoop、Spark)等。

3.4 监控和日志模块的设计监控和日志模块可以使用监控工具和日志框架来实现。

监控工具可以监控系统的资源使用情况,例如CPU、内存、磁盘等。

日志框架可以记录系统的运行日志,有助于故障排查和系统性能优化。

数据采集系统软件的设计

数据采集系统软件的设计

数据采集系统软件的设计一主程序开发模块通信主线程的主要功能是对各个通信子线程进行调度和管理。

启动通信主线程:AfxBeginThread(ThreadMainCommunication, GetSafeHwnd());变量m_com_usable 为可用的串口个数。

S_comnum=CreateSemaphore(NULL,m_com_usable,m_com_usable,NULL);然后再用下面的语句为每个可用的串口创建一个对应的子通信线程,主要代码如下所示:for(ii=0;ii<32;ii++)//最多三十二个串口{ThreadID[ii]=ii;if(m_comst[ii].com_status==1)///如果该串口的状态为可用的{m_comst[ii].telephone.Empty();hThread[ii]=AfxBeginThread(ThreadRead,&&ThreadID[ii]);// 创建一个对应的子通信线程} }二多串口多线程开发模块三 TCP/IP多线程通信开发模块主程序:通信主线程的主要功能是对各个通信(串口和TCP/IP)子线程进行调度和管理;多串口多线程开发模块:每个子通信线程对应一个串口,每个子通信线程负责通过对应的串口进行数据的读写;主程序中的主线程通过向子线程依次传递不同的数据从而使一个串口依次与不同的设备进行连接。

希望使用信号量和互斥变量,用多线程并行的方式通过多个串口进行并行通信。

这种多串口多线程通信方法,使多个串口能并行通信和数据传输;TCP/IP多线程通信开发模块(客户端和服务端)串口传过来的数据可以通过TCP/IP传给客户端或服务端;或这个模块也可以单独与其他客户端和服务端进行连接接收他们的数据;四 LOG开发模块五数据库开发模块六不同设备以及不同协议开发各自的协议模块,而且互不干扰;七对不同串口以及不同协议可以进行有效控制八加密安全管理模块九系统采用c++ for linux or java十数据库采用Oracle;本例子是本人Linux下基于TCP多线程Socket编程的第二个例子,本例子是用C++实现的服务器采用了面向对象的多线程,用到了队列与链表,信号量(操作系统中叫PV操作)本例子中的队列与链表源代码在前面可以找到,这里就不多贴了此系统所支持的自定义命令跟上个例子相同,就里就不多说明了头文件Thread.h代码,里面就一个抽象类(抽象类没有自己的实例,一定要被子类所继承) #ifndef THREAD_H_INCLUDED#define THREAD_H_INCLUDEDclass Thread{public:void ThreadEnter();protected:virtual void Start() = 0;virtual void Initialize(){}};#endif // THREAD_H_INCLUDEDThread.cpp代码:#include "Thread.h"void Thread::ThreadEnter(){Start();}以下为服务器主要头文件Server.h代码:#ifndef SERVER_H_INCLUDED#define SERVER_H_INCLUDED#include "Thread.h"#include "LinkList.h"#include "ThreadQueue.h"#include <netinet/in.h>#include <pthread.h>#include <semaphore.h>#define MSG_SIZE 1024#define BACKLOG 10#define PORT 8001class Server : public Thread{public:Server();~Server();public:void Start();void Initialize();void SendMessage(Server* serer);static void* SendMessageThread(void* param);void ReadMessage(Server* server);static void* ReadMessageThread(void* param);private:int sock_fd,new_fds[BACKLOG],new_fd;struct sockaddr_in serv_addr,dest_addr;pthread_mutex_t mutex;pthread_t pth_r,pth_s;sem_t sem_r,sem_s;int thread_cout;LinkList list;ThreadQueue queue;DataType *pData;};#endif // SERVER_H_INCLUDED以下为Thread.h实现的Thread.cpp代码:#include "Server.h"#include <stdio.h>#include <stdlib.h>#include <strings.h>#include <string.h>#include <unistd.h>#include <sys/types.h>#include <sys/socket.h>#include <arpa/inet.h>#include <iostream>#include <string>using namespace std;//------------------------------------------------------------------ Server::Server(){pthread_mutex_init(&mutex,NULL);sem_init(&sem_r,0,10);sem_init(&sem_s,0,0);}//------------------------------------------------------------------ void Server::Initialize(){sock_fd = socket(AF_INET,SOCK_STREAM,0);if(sock_fd < 0){perror("socket fail!" );exit(-1);}serv_addr.sin_family = AF_INET;serv_addr.sin_port = ntohs(PORT);serv_addr.sin_addr.s_addr = INADDR_ANY;bzero(&(serv_addr.sin_zero), 8);if (bind(sock_fd, (struct sockaddr*) &serv_addr,sizeof(struct sockaddr)) < 0){perror("bind fail! ");exit(-1);}if(listen(sock_fd,BACKLOG) < 0){perror("listen fail!" );exit(-1);}cout << "listenning......" << endl;socklen_t sin_size = sizeof(dest_addr);while(1){if(thread_cout == BACKLOG - 1){return;}new_fd = accept(sock_fd,(struct sockaddr *)&dest_addr,&sin_size); if(new_fd < 0){perror("accept fail!" );exit(-1);}cout << "\nA client has connected to me "<< inet_ntoa(dest_addr.sin_addr)<< ":" << ntohs(dest_addr.sin_port)<< endl;pthread_mutex_lock(&mutex);thread_cout++;list.InsertNode(thread_cout,new_fd);pthread_mutex_unlock(&mutex);pthread_create(&pth_r,NULL,ReadMessageThread,this);}}//------------------------------------------------------------------ void Server::Start(){pthread_create(&pth_s,NULL,SendMessageThread,this);Initialize();}//------------------------------------------------------------------ void Server::ReadMessage(Server* server){int fd = server->new_fd;char buf[MSG_SIZE];int len;/*pthread_mutex_lock(&mutex);int count = thread_cout - 1;pthread_mutex_unlock(&mutex);*/while(1){sem_wait(&sem_r);if ((len = read(fd, buf, MSG_SIZE)) == -1){perror("read fail!");pthread_exit(NULL);}else if (len == 0){cout << "Current client has disconnected to me" << endl; //cout << "close fd = " << fd << endl;close(fd);list.DeleteNode(fd);pthread_exit(NULL);}//cout << "read fd = " << fd << endl;buf[len] = '\0';DataType *data = new DataType();data->fd = fd;strcpy(data->buff,buf);cout << "\nRECEIVE: " << buf<< " receive fd = " << fd << endl;//pthread_mutex_lock(&mutex);queue.EnterQueue(data);//pthread_mutex_unlock(&mutex);//delete data;sem_post(&sem_s);}}//------------------------------------------------------------------void* Server::ReadMessageThread(void* param){Server* server = (Server *)param;server->ReadMessage(server);return NULL;}//------------------------------------------------------------------void Server::SendMessage(Server* server){while(1){sem_wait(&sem_s);int list_len = list.GetLength();int tNewfd,tReceivefd;//pthread_mutex_lock(&mutex);pData = queue.OutQueue();//int queue_len = queue.Queuelength();//pthread_mutex_unlock(&mutex);tReceivefd = pData->fd;//cout << "Received fd = " << tReceivefd << endl;pthread_mutex_lock(&mutex);for(int i = 1; i <= list_len; i++){list.GetNodeData(i,tNewfd);//cout << "New fd = " << tNewfd << endl;//if(queue_len != 0)//{if(tNewfd != tReceivefd){write(tNewfd,pData->buff,sizeof(pData->buff));cout << "Send to client successful! fd = " << tNewfd << endl;; }//}}delete pData;pthread_mutex_unlock(&mutex);sem_post(&sem_r);}}//------------------------------------------------------------------ void* Server::SendMessageThread(void* param){Server* server = (Server *)param;server->SendMessage(server);return NULL;}//------------------------------------------------------------------ Server::~Server(){close(sock_fd);pthread_join(pth_r,NULL);pthread_join(pth_s,NULL);}//------------------------------------------------------------------以下为主文件main.cpp代码:#include "Server.h"int main(void){Server* server = new Server();server->ThreadEnter();return 0;} <!--v:3.2-->基于多线程技术实现多串口的实时通信邓林涛(江西赣粤高速公路股份有限公司江西南昌 330000)摘要:介绍了采用一种通过基于多线程的多串口实时通信方式实现在现代加工制造业中对多台数控设备进行集中控制的方法。

基于WinCC的数据采集和监控系统设计

基于WinCC的数据采集和监控系统设计

基于WinCC的数据采集和监控系统设计.txt大人物的悲哀在于他们需要不停地做出选择;而小人物的悲哀在于他们从来没有选择的机会。

男人因沧桑而成熟,女人因成熟而沧桑。

男人有了烟,有了酒,也就有了故事;女人有了钱,有了资色,也就有了悲剧。

本文由stayfordie贡献pdf文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

2007年第 4期工业仪表与自动化装置53基于 W inCC的数据采集和监控系统设计张晓杰, 刘海昌(平顶山工学院电气与电子工程系, 河南平顶山 467001) 摘要: 针对工程的具体情况, 结合 W inCC 的特点, 提出了使用 W inCC 监控系统的硬件配置, 介绍了如何利用 W inCC 创建动态人机界面, 实现过程监控的具体步骤, 并给出了一些功能实现的编程技巧与相关源程序。

关键词: W inCC; 组态软件; 人机界面; 过程控制; PLC 中图分类号: TP319 文献标识码: A 文章编号: 1000- 0682( 2007) 04- 0053- 03Th e design of data acqu isition and supervisory system based on W inCCZ HANG X iao jie L I H a i chang , U(P ingd ing shan Institute of Technology, H enan P ingd ingshan 467000 China ) , Abstract T his artic le puts forw ards the system hard are configurat io n accord ing to the wo rk ing con : w d it io ns and th e characteristics ofW inCC, and presents th e m e th od of estab lish ing a dyna ic HM I and i m m p lem enting the monitorin g process by using theW inCC system. T he paper also summ arizes som e program m ing techn iques to fulfil required funct io ns. K ey w ords: W inCC; conf ig uration softw are HM I process contro;l PLC ; ;0 引言平顶山中盐皓龙有限责任公司是由中国盐业总公司控股的一家大型的食盐生产加工企业, 是我国目前最大的食盐定点生产企业之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于完整数据采集系统设计方案
简介
可编程逻辑控制器(PLC)是很多工业自动化和过程控制系统的核心,可
监控和控制复杂的系统变量。

基于PLC 的系统采用多个传感器和执行器,可测量和控制模拟过程变量,例如压力、温度和流量。

PLC 广泛应用于众多不同应用,例如工厂、炼油厂、医疗设备和航空航天系统,它们需要很高的精度,还
要保持稳定的长时间工作。

此外,激烈的市场竞争形势要求必须降低成本和缩
短设计时间。

因此,工业设备和关键基础设施的设计人员在满足客户对精度、
噪声、漂移、速度和安全的严格要求方面遇到了严峻的挑战。

本文以PLC 应用为例,说明多功能、低成本的高度集成ADAS3022 如何通过更换模拟前端(AFE)级,降低复杂性、解决多通道数据采集系统设计中遇到的诸多难题。


种高性能器件具有多个输入范围,非常适合高精度工业、仪器、电力线和医疗
数据采集卡应用,可以降低成本和加快产品面市,同时占用空间很小,易于使用,在1 MSPS 速率下提供真正的16 位精度。

PLC 应用示例
在工业应用中,模拟输入模块可获取和监控恶劣环境中的远程传感器信号,例如存在极端温度和湿度、振动、爆炸化学物品的环境。

典型信号包括具
有5 V、10 V、&plusmn;5 V 和&plusmn;10 V 满量程范围的单端电压或差分电压,或者0 mA 至20 mA、4 mA 至20 mA、&plusmn;20 mA 范围的环路电流。

当遇到具有严重电磁干扰(EMI)的长电缆时,通常使用电流环路,因为它们本
身具有良好的抗扰度。

模拟输出模块通常控制执行器,例如继电器、电磁阀和阀门等,以形成
完整自动化控制系统。

它们通常提供具有5 V、10 V、&plusmn;5 V 和。

相关文档
最新文档