2017年河南省商丘市高考数学二模试卷(文科)(解析版)
2017年高考真题 文科数学(全国II卷)解析版

绝密★启用前2017年普通高等学校招生全国统一考试文科数学【试卷点评】【命题特点】2017年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选一.试卷坚持对基础知识、基本方法与基本技能的考查,注重数学在生活中的应用.同时在保持稳定的基础上,进行适度的改革和创新,与2016年相比难度稳中略有下降.具体来说还有以下几个特点:1.知识点分布保持稳定小知识点如:集合、复数、程序框图、线性规划、向量问题、三视图保持一道小题,大知识点如:三角与数列三小一大,概率与统计一大一小,立体几何两小一大,圆锥曲线两小一大,函数与导数三小一大(或两小一大).2.注重对数学文化与数学应用的考查教育部2017年新修订的《考试大纲(数学)》中增加了对数学文化的考查要求.2017年高考数学全国卷II文科第18题以养殖水产为题材,贴近生活.3.注重基础,体现核心素养2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有所涉及.【命题趋势】1.函数与导数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质的重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重分类讨论及化归思想的应用.2.立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何体的表面积与体积结合在一起考查,解答题一般分两问进行考查.3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低. 4.三角函数与数列知识:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,重点考查利用基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一难,数列客观题一般具有小、巧、活的特点.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分。
2017年河南省六联考高考数学二模试卷(文科) 含解析

2017年河南省六市联考高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,有且只有一项符合题目要求。
1.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A ∩B=()A.(1,3) B.(1,3]C.[﹣1,2) D.(﹣1,2)2.设复数z=(i为虚数单位),则z的虚部是( )A.﹣1 B.1 C.﹣i D.i3.在定义域内既是奇函数又是减函数的是()A.y= B.y=﹣x+C.y=﹣x|x| D.y=4.如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示GH,MN是异面直线的图形的序号为()A.①②B.③④C.①③D.②④5.以(a,1)为圆心,且与两条直线2x﹣y+4=0与2x﹣y﹣6=0同时相切的圆的标准方程为()A.(x﹣1)2+(y﹣1)2=5 B.(x+1)2+(y+1)2=5 C.(x﹣1)2+y2=5 D.x2+(y﹣1)2=56.函数y=的图象大致为()A .B .C .D .7.若不等式,所表示的平面区域内存在点(x0,y0),使得x0+ay0+2≤0成立,则实数a的取值范围是()A.a≤﹣1 B.a<﹣1 C.a>1 D.a≥18.阅读算法框图,如果输出的函数值在区间[1,8]上,则输入的实数x的取值范围是( )A.[0,2) B.[2,7]C.[2,4]D.[0,7]9.某同学用“随机模拟方法"计算曲线y=lnx与直线x=c,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数x i和10个区间[0,1]上的均匀随机数y i(i∈N*,1≤i≤10),其数据如下表的前两行.x 2.50 1。
011。
901.222。
52 2.17 1.89 1.96 1.36 2。
22y0。
84 0。
25 0。
98 0。
15 0。
01 0。
60 0.59 0.88 0。
河南省商丘市高考数学二模试卷(文科)

河南省商丘市高考数学二模试卷(文科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·漳州模拟) 复数满足,则()A .B .C .D .2. (2分)设全集U={x|x<4,x∈N},A={0,1,2},B={2,3},则B∪∁UA等于()A . {3}B . {2,3}C . ∅D . {0,1,2,3}3. (2分)设6件产品中有4件合格品2件不合格品,从中任意取2件,则其中至少一件是不合格品的概率为()A . 0.4B . 0.5C . 0.6D . 0.74. (2分) (2016高二上·和平期中) 设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=()A . 5B . 7C . 9D . 115. (2分) (2016高二下·东莞期末) 已知函数f(x)= 在点(1,2)处的切线与f (x)的图象有三个公共点,则b的取值范围是()A . [﹣8,﹣4+2 )B . (﹣4﹣2 ,﹣4+2 )C . (﹣4+2 ,8]D . (﹣4﹣2 ,﹣8]6. (2分) (2018高二下·温州期中) 椭圆与双曲线有相同的焦点坐标,则()A . 3B .C . 5D .7. (2分)(2020·江西模拟) 已知是球O的内接三棱锥,球O的半径为2,且,,,则点A到平面的距离为()A .B .C .D .8. (2分)(2017·上高模拟) 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为()(参考数据:sin15°=0.2588,sin75°=0.1305)A . 3.10B . 3.11C . 3.12D . 3.139. (2分)设,若函数在上单调递增,则的取值范围是()A .B .C .D .10. (2分) (2019高二上·惠州期末) 函数的极大值为()A .B . 6C .D . 711. (2分)(2017·揭阳模拟) 某工件的三视图如图所示,现将该工件通过切割,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则新工件的体积为()A .B . 1C . 2D .12. (2分) (2019高一上·东至期中) 若函数单调递增,则实数的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)已知向量,若,则 ________.14. (1分) (2016高一下·雅安期末) 若变量x、y满足约束条件:,则y﹣2x的最大值为________.15. (1分)(2012·辽宁理) 已知等比数列{an}为递增数列,且a52=a10 , 2(an+an+2)=5an+1 ,则数列{an}的通项公式an=________.16. (1分)已知双曲线的方程为,点是其左右焦点,是圆上的一点,点在双曲线的右支上,则的最小值是________.三、解答题 (共7题;共65分)17. (10分) (2019高三上·郑州期中) 在中,点在边上,,,.(1)若的面积为3,求;(2)若,求 .18. (10分)如图所示的空间几何体中,四边形是边长为2的正方形,平面,,,, .(1)求证:平面平面;(2)求平面与平面所成的锐二面角的余弦值.19. (5分) (2017高二下·肇庆期末) 某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.10.2[30,60)0.20.2[60,90)0.30.3[90,120)0.20.2[120,150]0.20.1优秀不优秀总计甲班乙班总计k0 2.072 2.706 3.841 5.024 6.6357.87910.828P(K2≥k0)0.150.100.050.0250.0100.0050.001(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?20. (10分)(2017·鄂尔多斯模拟) 设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F 为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21. (10分)已知函数在处的切线方程为 .(1)求,的值;(2)求的单调区间与极值.22. (10分)(2017·郴州模拟) 在平面直角坐标系xoy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数)以坐标原点O为极点,x轴的正半轴为极轴的极坐标系.(1)写出直线l的普通方程以及曲线C的极坐标方程;(2)若直线l与曲线C的两个交点分别为M,N,直线l与x轴的交点为P,求|PM|•|PN|的值.23. (10分) (2020高二上·安徽月考)(1)已知 , , ,试比较与的大小;(2)求证:.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
河南省商丘市-高三第二次模拟考试文科数学试题Word版含答案

河南省商丘市2017-2018高三第二次模拟考试试题文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A2.) A3.) A.8 C. 1 D .24.)A..15.角形的三个顶点,则双曲线的离心率为( )A .2 B6.)A7.)A.10 B.15 C. 21 D.288.)A.1 B.9.)A10.)AD11.某几何体的三视图如图所示,则该几何体的体积为()A12.则不)A第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.的最小值为.14.的距离为.15. “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲。
1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2018这2017个整数中能被2除余1且被3除余1的数按由小到大的顺序排成一列,则此数列的项数为.16.上任意一点的距离的最小值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1(22.18. 唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史,某陶瓷厂在生产过程中,对仿制100件工艺品测得其重量(数据,将数据分组如下表:(1)统计方法中,同一组数据常用该组区间的中点值 2.25)作为代表.据此,估计这100个数据的平均值;(2)根据样本数据,以频率作为槪率,若该陶瓷厂生产这样的工艺品5000件,试估计重量(3)从第一组和第六组6件工艺品中随机抽取2个工艺品,求一个来自第一组,一个来自第六组的概率.19.(1(2在,说明理由.20.(1(221.(1(2(3).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程.(1(2积.23.选修4-5:不等式选讲(1(2.试卷答案一、选择题1-5: CBDAC 6-10: BABDD 11、12:CA 二、填空题三、解答题17. 解:(Ⅰ)证明:∵(Ⅱ),,,18.解:(Ⅰ) 这100个数据的平均值约为…4分所以某陶瓷厂生产这样的工艺品5000(Ⅲ)记第一组的4第六组2有:共有15种取法,8种,19..2的正三角形.(Ⅱ)在直线AA上存在点P ,使得//CP平面C C20.解:(Ⅰ)右.∴21.解: (Ⅰ)()0x '>;当,,.综上所述,,;递减.∴在.()g x22.解:.23.解:83⎛+∞⎝,()fx取最小值。
2017年河南省全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.3 8.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC ﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
【河南省商丘市】2017届高考二模文科数学试卷(附答案)

A B=(<≤{x x|13==m nm n29,15==29,1623满足11CM CB CA=+,则AM BM的值为(C.152D.211.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为()248km2}n a +的前分)为了考查某种药物预防9a ,∴(12}n a +的前1111)((3241n +-++--ADM平面ABCM,42d=,9,)(2,)+∞;31,x ⎧⎪+⎪⎪](0,)+∞.的解集为空集,所以实数河南省商丘市2017届高考二模文科数学试卷解析一、选择题1.【考点】交集及其运算.【分析】分别求解指数不等式与对数不等式化简集合A,B,再利用交集运算得答案.【解答】解:∵A={x|log3x<1}={x|0<x<3},B={y|y=3x,x≥0}={y|y≥1},∴A∩B={x|1≤x<3}.故选:D.【点评】本题考查交集及其运算,考查指数不等式与对数不等式的解法,是基础题.2.【考点】复数的代数表示法及其几何意义.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.【解答】解:由z(4+i)=3+i,得,∴复数z在复平面内对应的点的坐标为(),位于第一象限.故选:A.【点评】本题考查复数的代数表示法及其几何意义,是基础题的计算题.3.【考点】奇偶性与单调性的综合.【分析】确定函数的奇偶性、单调性,即可得出结论.【解答】解:由题意,f(﹣x)=ln(e﹣x)+ln(e+x)=f(x),函数是偶函数,在(0,e)上,f′(x)=﹣=<0,函数单调递减,故选D.4.【考点】椭圆的简单性质.【分析】利用已知条件列出a,b关系式,最后求解离心率即可.【解答】解:由题意得∠CAB=30°,则tan∠CAB==,可得离心率为e===,故选:D.【点评】本题考查椭圆的简单性质的应用,考查计算能力.5.【考点】程序框图.【分析】算法的功能是计算学生在60名学生的化学考试成绩中,成绩大于等于80的人数,和成绩小于80且大于等于60的人数,根据茎叶图可得.【解答】解:由程序框图知:算法的功能是计算学生在60名学生的化学考试成绩中,成绩大于等于80的人数,和成绩小于80且大于等于60的人数,由茎叶图得,在60名学生的成绩中,成绩大于等于80的人数有80,80,82,84,84,85,86,89,89,89,90,91,96,98,98,98,共1,6人,故n=16,由茎叶图得,在60名学生的成绩中,成绩小于60的人数有43,46,47,48,49,50,51,52,53,53,56,58,59,59,59共15人,则在60名学生的成绩中,成绩小于80且大于等于60的人数有60﹣16﹣15=29,故m=29,故选:B.【点评】本题借助茎叶图考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.6.【考点】正弦函数的对称性;三角函数的周期性及其求法.【分析】确定函数的解析式,即可得出结论.【解答】解:由题意,T=π=,∴ω=2,∵f(x+)=f(﹣x),∴函数关于x=对称,∴sin(+φ)=±1,∵|φ|<,∴φ=,∴f(x)=sin(2x+),对照选项,可得C正确.故选C.【点评】本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,属于中档题.7.【考点】三角形的形状判断.【分析】先运用正弦定理,把角化为边,再将方程整理为一般式,再根据判别式的意义得到△=4b2﹣4(a ﹣c)(a+c)<0,即可判断三角形形状.【解答】解:由正弦定理,可得sinA=,sinB=,sinC=,则关于x的方程(1+x2)sinA+2xsinB+(1﹣x2)sinC=0,即为(1+x2)a+2xb+(1﹣x2)c=0方程整理为(a﹣c)x2+2bx+a+c=0,根据题意得△=4b2﹣4(a﹣c)(a+c)<0,∴a2>b2+c2,∴cosA<0∴A为钝角,故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了勾股定理的逆定理,属于中档题.8.【考点】轨迹方程.【分析】运用双曲线的定义,可得双曲线方程和渐近线方程,即可得到结论.【解答】解:若||MF1|﹣|MF2||=24,则点M的轨迹是以F1(﹣13,0),F2(13,0)为焦点的双曲线,其方程为=1.因为直线5x+12y=0是它的渐近线,整条直线在双曲线的外面,因此有||MF1|﹣|MF2||<24.故选:C.【点评】本题考查双曲线的定义、方程和性质,考查运算能力,属于中档题.9.【考点】直线与圆的位置关系.【分析】根据题意设P的坐标为P(2m+3,m),由切线的性质得点A、B在以OP为直径的圆C上,求出圆C的方程,将两个圆的方程相减求出公共弦AB所在的直线方程,再求出直线AB过的定点坐标.【解答】解:因为P是直线x﹣2y﹣3=0的任一点,所以设P(2m+3,m),因为圆x2+y2=1的两条切线PA、PB,切点分别为A、B,所以OA⊥PA,OB⊥PB,则点A、B在以OP为直径的圆上,即AB是圆O和圆C的公共弦,则圆心C的坐标是(m+,),且半径的平方是r2=,所以圆C的方程是(x﹣m﹣)2+(y﹣)2=,①又x2+y2=1,②,②﹣①得,(2m+3)x+my﹣1=0,即公共弦AB所在的直线方程是:(2m+3)x+my﹣1=0,即m(2x+y)+(3x﹣1)=0,由得x=,y=﹣,所以直线AB恒过定点(,﹣),故选D.【点评】本题考查了直线和圆的位置关系,圆和圆的位置关系,圆的切线性质,以及直线过定点问题,属于中档题.10.【考点】平面向量数量积的运算.【分析】如图所示,建立直角坐标系.利用向量坐标运算性质、数量积运算性质即可得出.【解答】解:如图所示,建立直角坐标系:B(0,),A(,0),C(﹣,0).=(,),=(3,0)=+=(2,).=(,),∴=(﹣1,),=(,﹣)则•=﹣=﹣2. 故选:B . 【点评】本题考查了向量坐标运算性质、数量积运算性质,考查了推理能力与计算能力,属于中档题. 11.【考点】由三视图求面积、体积.【分析】如图所示,由三视图可知该几何体为:四棱锥P ﹣ABCD .【解答】解:如图所示,由三视图可知该几何体为:四棱锥P ﹣ABCD .连接BD .其体积V=V B ﹣PAD +V B ﹣PCD==.故选:B .【点评】本题考查了正方体与四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于中档题. 12.【考点】函数的最值及其几何意义.【分析】由题意求出f (x )的值域,再把对任意x 1∈R ,都存在x 2∈R ,使f (x 1)=g (x 2)转化为函数g (x )的值域包含f (x )的值域,进一步转化为关于m 的不等式组求解.【解答】解:∵f (x )=e x ﹣e ﹣x 在(﹣∞,0]为增函数, ∴f (x )≤f (0)=0,∵∃x 2∈R ,使f (x 1)=g (x 2),∴g (x )=lg (mx 2﹣x+)的值域包含(﹣∞,0],当m=0时,g (x )=lg (﹣x+),显然成立;当m ≠0时,要使g (x )=lg (mx 2﹣x+)的值域包含(﹣∞,0],则mx 2﹣x+的最大值大于等于1,∴,解得﹣≤m <0,综上,﹣≤m ≤0,∴实数m 的最小值﹣故选:A .【点评】本题考查函数的值域,体现了数学转化思想方法,正确理解题意是解答该题的关键,是中档题.二、填空题13.【考点】简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的三角形及其内部,再将目标函数z=5x﹣y对应的直线进行平移,可得Z=5x﹣y的最小值.【解答】解:作出不等式组约束条件,表示的平面区域,得到如图的三角形及其内部,由得B(,),设z=F(x,y)=5x﹣y,将直线l:z=5x﹣y进行平移,可得当l经过点B时,目标函数z达到最小值,∴z最小值=F(,)=1.故答案为:1.【点评】本题给出二元一次不等式组,求目标函数z=5x﹣y的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.14.【考点】球的体积和表面积;球内接多面体.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O 的半径为R,此时V O﹣ABC=V C﹣AOB==,故R=4,则球O的表面积为4πR2=64π,故答案为:64π.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.15.【考点】根的存在性及根的个数判断.【分析】作出函数y=g(g(x))的图象,即可确定实数k的取值范围.【解答】解:当x<0时,g(x)=﹣x+1>0,此时g(g(x))=(﹣x+1)2﹣1=x2﹣2x当0≤x<1时,g(x)=x2﹣1<0,此时g(g(x))=﹣(x2﹣1)+1=﹣x2+2当x≥1时,g(x)=x2﹣1≥0,此时g(g(x))=(x2﹣1)2﹣1=x4﹣2x2,函数y=g(g(x))=.函数y=g(g(x))的图象如下:结合图象可得若函数y=g(g(x))﹣2m有3个不同的零点,则实数m的取值范围是(,1]故答案为:(]【点评】本题考查函数的零点,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题16.【考点】三角函数的最值.【分析】设∠BAM=α,由题意可知,AM=,AN=,可求三角形面积,利用三角函数的恒等变换化简得到S△AMN关于α的三角函数,利用正弦函数的性质结合α的范围即可计算得解.【解答】解:设∠BAM=α,由题意可知,AM=,AN=,则S△AMN=AM•ANsin=×××=,当α=22.5°时,三角形AMN面积最小,最小值为(8﹣8)km2.故答案为:8﹣8.【点评】本题考查了三角函数的恒等变换,三角形的面积公式,考查了转化思想和数形结合思想的应用,属于中档题.三、解答题17.(12分)【考点】数列的求和.【分析】(1)设数列{a n}的公差d≠0,a1=1,且,,成等比数列.可得=×,解得d,即可得出.(2)==.利用“裂项求和”与数列的单调性即可得出.【点评】本题考查了等差数列的通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.18.(12分)【考点】独立性检验.【分析】(Ⅰ)根据公式假设K2的值,对照临界值表即可得出结论;(Ⅱ)利用列举法求出基本事件数,计算所求的概率值.【点评】本题考查了独立性检验与列举法求古典概型的概率问题,是基础题目.19.(12分)【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(Ⅰ)推导出AM⊥BM,从而BM⊥平面DAM,由此能证明AD⊥BD.(Ⅱ)由BM⊥平面ADM,BM=2,由V M﹣ADE=V E﹣ADM,能求出E为BD的三等分点时,四棱锥M﹣ADE的体积为.【点评】本题考查线线垂直的证明,考查满足条件的点的位置的确定及求法,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(12分)【考点】轨迹方程.【分析】(Ⅰ)利用抛物线的定义,得出轨迹方程;(Ⅱ)联立直线MN方程与C的轨迹方程,得出M,N的坐标关系,代入斜率公式化简|k1﹣k2|,利用二次函数的性质求出最小值.【点评】本题考查了轨迹方程的求解,直线与抛物线的位置关系,直线的斜率公式,属于中档题.21.(12分)【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出导函数f′(x).利用f′(e﹣1)求出m的值,从而求出函数的解析式;(Ⅱ)设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),求出导函数,利用导函数的判断函数的单调性,推出g(x)≥g(0)=0.推出结果f(x)≥x2.(Ⅲ)设h(x)=(x+1)2ln(x+1)﹣x﹣mx2,求出导函数h′(x),利用(Ⅱ)中的结果,通过讨论m 的范围,求解即可.【点评】本题考查函数的导数的综合应用,函数的单调性以及导函数的单调性的应用,考查分析问题解决问题的能力.[选修4-4:坐标系与参数方程22.(10分)【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)把直线l的参数方程消去参数t可得,它的直角坐标方程;把圆C的极坐标方程依据互化公式转化为直角坐标方程.(Ⅱ)把直线l的参数方程(t为参数),代入圆C的直角坐标方程,得,结合根与系数的关系进行解答.【点评】本题重点考查了直线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化、直线与圆的位置关系等知识,属于中档题.[选修4-5:不等式选讲]23.(2017•商丘二模)【考点】绝对值不等式的解法.【分析】(Ⅰ)分类讨论求得原不等式解集.(Ⅱ)由分段函数f(x)的解析式可得f(x)的单调性,由此求得函数f(x)的值域,求出的取值范围.再根据关于x的方程=a的解集为空集,求得实数a的取值范围.【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2017年河南省高考第二次质量预测试卷(文科)含答案

.
17. (本题满分 12 分)在 ABC 中,角 A, B , C 的对边分别为 a, b,c ,已知 B 2C ,2 b 3c.
( 1 )求 cosC ; ( 2 )若 c 4 ,求 ABC 的面积 .
18. (本题满分 12 分)
经国务院批复同意,郑州成功入围国家中心城市
. 某学校学生社团针对“郑州的发展环
an 的前 n 项和, S19
.
15. 已知点 P a,b 在函数 y
ex 的图象上, a
1,b
1 ,则 a lnb 的最大值
x
为
.
16. 已知双曲线
x2 C2 与椭圆 C1 : 4
y2 3
1 具有相同的焦点,则两条曲线相交四个交点形成
的四边形面积最大时,双曲线 C2 的离心率为
.
三、解答题:本大题共 6 小题,共 70 分 . 解答应写出必要的文字说明或推理、验算过程
A.
B.
5
4
8
C.
5
25
A,B,则 PAB 的面积为 D. 与 P 点位置有关
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分 .
13. 以点 M 2,0 , N 0,4 为直径的圆的标准方程为
.
14. 在等差数列 an 中, an
0, a7
1 2
a4
4 , Sn 为数列
2. 已知集合 A x |log 2 x 1 , B
1 x|
1 ,则 A
CRB
x
A.
,2 B.
0,1 C. 1,2 D. 2,
3. 已知 a 2, m , b 1, 2 ,若 a // a 2b ,则 m的值是
2017届河南省商丘市高三第二次模拟考试文科综合试题及答案 精品

商丘市2014年高三第二次模拟考试文科综合能力测试参考答案1.C2.B3.A4.D5.B6.D7.C8.B9.B 10.D 11.C 12.B 13.A 14.C 15.B 16.B 17.C 18.B 19.D 20.A 21.A 22.C 23.D 24.B 25.D 26.A 27.B 28.B 29.B 30.C 31.A 32.A 33.D 34.D 35.C36.(24分)(1)M地12月至次年5月期间,降水少;(2分) 6月到11月期间,降水多。
(2分)M地12月至次年5月期间,主要受东北信风影响,且地势低平,故降水少;(2分)6月到11月期间,主要受赤道低压控制,多对流雨。
(2分)(2)海陆位置:北部临海,有利于发展海洋事业,发展海上交通,与海外各国发展经济贸易关系。
(3分)相对位置:南部与拉丁美洲其他国家接壤,利于与拉丁美洲经济一体化集团的成员国之间发展经贸联系。
(3分)纬度位置:低纬度,热带地区,水热资源丰富,利于热带经济作物种植。
(2分)(3)该国石油、煤、铁、水能等资源丰富;(2分)水运(海运与河运)便利;(2分)市场潜力较大;(或国家政策优惠)(2分)人均收入较高。
(2分)37.(22分)(1)主导因素:位于河流交汇处。
(2分)区位条件:铝矿资源的开发;(2分)交通运输条件的改善。
(2分)(2)理由:老城区用地紧张;(2分)交通拥堵,环境恶化;(2分) R地块地价较低;(2分) R地有铁路和公路经过,交通更加便利;(2分) R地位于河流的下游及与当地盛行风垂直的老城区郊外,对老城区影响较小。
(2分)(3)变化:森林、草地的比重上升,(或耕地、荒地的比重下降)(2分)影响:径流量的季节变化变小;(2分)河流含沙量变小(2分)。
38.(1)①有利于完善社会主义市场经济体制,促进我国市场经济的健康发展。
(4分)②有利于更加尊重市场规律,发挥市场在资源配置中的决定性作用,提高资源的配置效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河南省商丘市高考数学二模试卷(文科)一、选择题(共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|log3x<1},B={y|y=3x,x≥0},则A∩B=()A.∅B.{x|1<x≤3}C.{x|1<x<3}D.{x|1≤x<3} 2.(5分)复数z满足z(4+i)=3+i,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)设函数f(x)=ln(e+x)+ln(e﹣x),则f(x)是()A.奇函数,且在(0,e)上是增函数B.奇函数,且在(0,e)上是减函数C.偶函数,且在(0,e)上是增函数D.偶函数,且在(0,e)上是减函数4.(5分)已知椭圆=1(a>b>0)的左、右顶点分别为A、B,上顶点为C,若△ABC是底角为30°的等腰三角形,则=()A.B.C.D.5.(5分)茎叶图如图1,为高三某班60名学生的化学考试成绩,算法框图如图2中输入的a1为茎叶图中的学生成绩,则输出的m,n分别是()A.m=29,n=15B.m=29,n=16C.m=15,n=16D.m=16,n=15 6.(5分)已知函数f(x)=sin(ωx+φ)(ω>,|φ|<),其图象相邻两个对称中心的距离为,且f(x+)=f(﹣x),下列判断正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点(,0)对称C.函数f(x)在[,π]上单调递增D.函数f(x)的图象关于直线x=﹣对称7.(5分)在△ABC中,关于x的方程(1+x2)sin A+2x sin B+(1﹣x2)sin C=0无实数根,则△ABC的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形8.(5分)点M为直线5x+12y=0上任一点,F1(﹣13,0),F2(13,0),则下列结论正确的是()A.||MF1|﹣|MF2||>24B.||MF1|﹣|MF2||=24C.||MF1|﹣|MF2||<24D.以上都有可能9.(5分)已知圆O:x2+y2=1,点P为直线x﹣2y﹣3=0上一动点,过点P向圆O引两条切线P A,PB,A、B为切点,则直线AB经过定点()A.(2,0)B.(3,0)C.(,﹣1)D.(,﹣)10.(5分)若等边△ABC的边长为3,平面内一点M满足=+,则•的值为()A.﹣B.﹣2C.D.211.(5分)如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.412.(5分)设函数f(x)=e x﹣e﹣x,g(x)=lg(mx2﹣x+),若对任意x1∈(﹣∞,0],都存在x2∈R,使得f(x1)=g(x2),则实数m的最小值为()A.﹣B.﹣1C.﹣D.0二、填空题(本题共4小题,每小题5分,共20分)13.(5分)已知x,y满足约束条件,则z=5x﹣y的最小值为.14.(5分)已知A,B是求O的球面上两点,且∠AOB=120°,C为球面上的动点,若三棱锥O﹣ABC体积的最大值为,则求O的表面积为.15.(5分)已知函数g(x)=,若函数y=g(g(x))﹣2m有3个不同的零点,则实数m的取值范围是.16.(5分)如图,某地区有四个单位分别位于矩形ABCD的四个顶点,且AB=2km,BC=4km,四个单位商量准备在矩形空地中规划一个三角形区域AMN种植花草,其中M,N 分别在变BC,CD上运动,若∠MAN=,则△AMN面积的最小值为km2.三、解答题(苯大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)已知数列{a n}是公差不为0的等差数列,a1=1,且,,成等比数列.(1)求数列{a n}的通项公式(2)设数列{}的前n项和为T n,求证:T n<.18.(12分)为了考查某种药物预防H7N9禽流感的效果,某研究中心选了100只鸡做实验,统计如下(Ⅰ)能有多大的把握认为药物有效(Ⅱ)在服药后得禽流感的鸡中,有2只母鸡,3只公鸡,在这5只鸡中随机抽取3只再进行研究,求至少抽到1只母鸡的概率K2=临界值表19.(12分)如图,四棱锥D﹣ABCM中,AD=DM,且AD⊥DM,底面四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=4,平面AMD⊥平面ABCM.(Ⅰ)求证:AD⊥BD(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,四棱锥M﹣ADE的体积为?20.(12分)点P到直线y=﹣3的距离比到点F(0,1)的距离大2(Ⅰ)求点P的轨迹C的方程(Ⅱ)设点A(﹣4,4),过点B(4,5)的直线l交轨迹C于M,N两点,直线AM,AN 的斜率分别为k1,k2,求|k1﹣k2|的最小值.21.(12分)设函数f(x)=m(x+1)2ln(x+1)+[f′(e﹣1)﹣3e]x,其中x>﹣1,曲线y=f(x)在点(0,0)处的切线方程为y=0(Ⅰ)求f(x)的解析式(Ⅱ)证明:当x≥0时,f(x)≥x2(Ⅲ)若当x≥0时,f(x)≥ax2恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求+的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|2x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若关于x的方程=a的解集为空集,求实数a的取值范围.2017年河南省商丘市高考数学二模试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|log3x<1},B={y|y=3x,x≥0},则A∩B=()A.∅B.{x|1<x≤3}C.{x|1<x<3}D.{x|1≤x<3}【解答】解:∵A={x|log3x<1}={x|0<x<3},B={y|y=3x,x≥0}={y|y≥1},∴A∩B={x|1≤x<3}.故选:D.2.(5分)复数z满足z(4+i)=3+i,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由z(4+i)=3+i,得,∴复数z在复平面内对应的点的坐标为(),位于第一象限.故选:A.3.(5分)设函数f(x)=ln(e+x)+ln(e﹣x),则f(x)是()A.奇函数,且在(0,e)上是增函数B.奇函数,且在(0,e)上是减函数C.偶函数,且在(0,e)上是增函数D.偶函数,且在(0,e)上是减函数【解答】解:由题意,f(﹣x)=ln(e﹣x)+ln(e+x)=f(x),函数是偶函数,在(0,e)上,f′(x)=﹣=<0,函数单调递减,故选:D.4.(5分)已知椭圆=1(a>b>0)的左、右顶点分别为A、B,上顶点为C,若△ABC是底角为30°的等腰三角形,则=()A.B.C.D.【解答】解:由题意得∠CAB=30°,则tan∠CAB==,可得离心率为e===,故选:D.5.(5分)茎叶图如图1,为高三某班60名学生的化学考试成绩,算法框图如图2中输入的a1为茎叶图中的学生成绩,则输出的m,n分别是()A.m=29,n=15B.m=29,n=16C.m=15,n=16D.m=16,n=15【解答】解:由程序框图知:算法的功能是计算学生在60名学生的化学考试成绩中,成绩大于等于80的人数,和成绩小于80且大于等于60的人数,由茎叶图得,在60名学生的成绩中,成绩大于等于80的人数有80,80,82,84,84,85,86,89,89,89,90,91,96,98,98,98,共1,6人,故n=16,由茎叶图得,在60名学生的成绩中,成绩小于60的人数有43,46,47,48,49,50,51,52,53,53,56,58,59,59,59共15人,则在60名学生的成绩中,成绩小于80且大于等于60的人数有60﹣16﹣15=29,故m=29,故选:B.6.(5分)已知函数f(x)=sin(ωx+φ)(ω>,|φ|<),其图象相邻两个对称中心的距离为,且f(x+)=f(﹣x),下列判断正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点(,0)对称C.函数f(x)在[,π]上单调递增D.函数f(x)的图象关于直线x=﹣对称【解答】解:由题意,T=π=,∴ω=2,∵f(x+)=f(﹣x),∴函数关于x=对称,∴sin(+φ)=±1,∵|φ|<,∴φ=,∴f(x)=sin(2x+),对照选项,可得C正确.故选:C.7.(5分)在△ABC中,关于x的方程(1+x2)sin A+2x sin B+(1﹣x2)sin C=0无实数根,则△ABC的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【解答】解:由正弦定理,可得sin A=,sin B=,sin C=,则关于x的方程(1+x2)sin A+2x sin B+(1﹣x2)sin C=0,即为(1+x2)a+2xb+(1﹣x2)c=0方程整理为(a﹣c)x2+2bx+a+c=0,根据题意得△=4b2﹣4(a﹣c)(a+c)<0,∴a2>b2+c2,∴cos A<0∴A为钝角,故选:B.8.(5分)点M为直线5x+12y=0上任一点,F1(﹣13,0),F2(13,0),则下列结论正确的是()A.||MF1|﹣|MF2||>24B.||MF1|﹣|MF2||=24C.||MF1|﹣|MF2||<24D.以上都有可能【解答】解:若||MF1|﹣|MF2||=24,则点M的轨迹是以F1(﹣13,0),F2(13,0)为焦点的双曲线,其方程为=1.因为直线5x+12y=0是它的渐近线,整条直线在双曲线的外面,因此有||MF1|﹣|MF2||<24.故选:C.9.(5分)已知圆O:x2+y2=1,点P为直线x﹣2y﹣3=0上一动点,过点P向圆O引两条切线P A,PB,A、B为切点,则直线AB经过定点()A.(2,0)B.(3,0)C.(,﹣1)D.(,﹣)【解答】解:因为P是直线x﹣2y﹣3=0的任一点,所以设P(2m+3,m),因为圆x2+y2=1的两条切线P A、PB,切点分别为A、B,所以OA⊥P A,OB⊥PB,则点A、B在以OP为直径的圆上,即AB是圆O和圆C的公共弦,则圆心C的坐标是(m+,),且半径的平方是r2=,所以圆C的方程是(x﹣m﹣)2+(y﹣)2=,①又x2+y2=1,②,②﹣①得,(2m+3)x+my﹣1=0,即公共弦AB所在的直线方程是:(2m+3)x+my﹣1=0,即m(2x+y)+(3x﹣1)=0,由得x=,y=﹣,所以直线AB恒过定点(,﹣),故选:D.10.(5分)若等边△ABC的边长为3,平面内一点M满足=+,则•的值为()A.﹣B.﹣2C.D.2【解答】解:如图所示,建立直角坐标系:B(0,),A(,0),C(﹣,0).=(,),=(3,0)=+=(2,).=(,),∴=(﹣1,),=(,﹣)则•=﹣=﹣2.故选:B.11.(5分)如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.4【解答】解:如图所示,由三视图可知该几何体为:四棱锥P﹣ABCD.连接BD.其体积V=V B﹣P AD+V B﹣PCD==.故选:B.12.(5分)设函数f(x)=e x﹣e﹣x,g(x)=lg(mx2﹣x+),若对任意x1∈(﹣∞,0],都存在x2∈R,使得f(x1)=g(x2),则实数m的最小值为()A.﹣B.﹣1C.﹣D.0【解答】解:∵f(x)=e x﹣e﹣x在(﹣∞,0]为增函数,∴f(x)≤f(0)=0,∵∃x2∈R,使f(x1)=g(x2),∴g(x)=lg(mx2﹣x+)的值域包含(﹣∞,0],当m=0时,g(x)=lg(﹣x+),显然成立;当m≠0时,要使g(x)=lg(mx2﹣x+)的值域包含(﹣∞,0],则mx2﹣x+的最大值大于等于1,∴,解得﹣≤m<0,综上,﹣≤m≤0,∴实数m的最小值﹣故选:A.二、填空题(本题共4小题,每小题5分,共20分)13.(5分)已知x,y满足约束条件,则z=5x﹣y的最小值为1.【解答】解:作出不等式组约束条件,表示的平面区域,得到如图的三角形及其内部,由得B(,),设z=F(x,y)=5x﹣y,将直线l:z=5x﹣y进行平移,可得当l经过点B时,目标函数z达到最小值,∴z最小值=F(,)=1.故答案为:1.14.(5分)已知A,B是求O的球面上两点,且∠AOB=120°,C为球面上的动点,若三棱锥O﹣ABC体积的最大值为,则求O的表面积为64π.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB==,故R=4,则球O的表面积为4πR2=64π,故答案为:64π.15.(5分)已知函数g(x)=,若函数y=g(g(x))﹣2m有3个不同的零点,则实数m的取值范围是(,1].【解答】解:当x<0时,g(x)=﹣x+1>0,此时g(g(x))=(﹣x+1)2﹣1=x2﹣2x 当0≤x<1时,g(x)=x2﹣1<0,此时g(g(x))=﹣(x2﹣1)+1=﹣x2+2当x≥1时,g(x)=x2﹣1≥0,此时g(g(x))=(x2﹣1)2﹣1=x4﹣2x2,函数y=g(g(x))=.函数y=g(g(x))的图象如下:结合图象可得若函数y=g(g(x))﹣2m有3个不同的零点,则实数m的取值范围是(,1]故答案为:(]16.(5分)如图,某地区有四个单位分别位于矩形ABCD的四个顶点,且AB=2km,BC=4km,四个单位商量准备在矩形空地中规划一个三角形区域AMN种植花草,其中M,N分别在变BC,CD上运动,若∠MAN=,则△AMN面积的最小值为8﹣8km2.【解答】解:设∠BAM=α,由题意可知,AM=,AN=,则S△AMN=AM•AN sin=×××=,当α=22.5°时,三角形AMN面积最小,最小值为(8﹣8)km2.故答案为:8﹣8.三、解答题(苯大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)已知数列{a n}是公差不为0的等差数列,a1=1,且,,成等比数列.(1)求数列{a n}的通项公式(2)设数列{}的前n项和为T n,求证:T n<.【解答】(1)解:设数列{a n}的公差d≠0,a1=1,且,,成等比数列.∴=×,解得:=a1•a9,∴(1+2d)2=1×(1+8d),d≠0,解得d=1.∴a n=1+n﹣1=n.(2)证明:==.∴数列{}的前n项和T n=+++…++=<.∴T n<.18.(12分)为了考查某种药物预防H7N9禽流感的效果,某研究中心选了100只鸡做实验,统计如下(Ⅰ)能有多大的把握认为药物有效(Ⅱ)在服药后得禽流感的鸡中,有2只母鸡,3只公鸡,在这5只鸡中随机抽取3只再进行研究,求至少抽到1只母鸡的概率K2=临界值表【解答】解:(Ⅰ)假设H0:服药与家禽得流感没有关系,则K2=≈5.26>5.024∵P(K2>5.024)=0.025,∴有97.5%的把握认为药物有效;(Ⅱ)记2只母鸡为a、b,3只公鸡为A、B、C,则从这5只中随机抽取3只的基本事件为:abA、abB、abC、aAB、aAC、aBC、bAB、bAC、bBC、ABC共10种,则至少抽到1只母鸡的基本事件是9种,故所求的概率为P=0.9.19.(12分)如图,四棱锥D﹣ABCM中,AD=DM,且AD⊥DM,底面四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=4,平面AMD⊥平面ABCM.(Ⅰ)求证:AD⊥BD(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,四棱锥M﹣ADE的体积为?【解答】证明:(Ⅰ)∵四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,AB=2BC=2MC=4,∴BM=AM=2,∴BM2+AM2=AB2,即AM⊥BM,∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM,∴BM⊥平面DAM,又DA⊂平面DAM,∴AD⊥BD.解:(Ⅱ)由(Ⅰ)知BM⊥平面ADM,BM=2,设,则E到平面ADM的距离d=2λ,∵△ADM是等腰直角三角形,AD⊥DM,AM=2,∴AD=DM=2,∴V M﹣ADE=V E﹣ADM==,即,解得,∴E为BD的三等分点.20.(12分)点P到直线y=﹣3的距离比到点F(0,1)的距离大2(Ⅰ)求点P的轨迹C的方程(Ⅱ)设点A(﹣4,4),过点B(4,5)的直线l交轨迹C于M,N两点,直线AM,AN的斜率分别为k1,k2,求|k1﹣k2|的最小值.【解答】解:(Ⅰ)∵点P到直线y=﹣3的距离比到点F(0,1)的距离大2,∴点P到直线y=﹣1的距离等于到点F(0,1)的距离,∴点P的轨迹是以点F(0,1)为焦点的抛物线,方程为x2=4y.(Ⅱ)设过点B的直线方程为y=k(x﹣4)+5,M(x1,),N(x2,).联立抛物线,得x2﹣4kx+16x﹣20=0,则x1+x2=4k,x1x2=16k﹣20,∵k1=,k2=.∴|k1﹣k2|=|x1﹣x2|==≥1.∴当k=2时,|k1﹣k2|取得最小值1.21.(12分)设函数f(x)=m(x+1)2ln(x+1)+[f′(e﹣1)﹣3e]x,其中x>﹣1,曲线y=f(x)在点(0,0)处的切线方程为y=0(Ⅰ)求f(x)的解析式(Ⅱ)证明:当x≥0时,f(x)≥x2(Ⅲ)若当x≥0时,f(x)≥ax2恒成立,求实数a的取值范围.【解答】解:(Ⅰ)f′(x)=2m(x+1)ln(x+1)+m(x+1)+f′(e﹣1)﹣3e,∴f′(e﹣1)=2me+me+f′(e﹣1)﹣3e,故m=1,曲线y=f(x)在(0,0)处的切线方程是:y=0,∴f′(0)=m+f′(e﹣1)﹣3e=0,∴f′(e﹣1)=3e﹣1,∴f(x)=(x+1)2ln(x+1)﹣x;(Ⅱ)f(x)=(x+1)2ln(x+1)﹣x,设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),g′(x)=2(x+1)ln(x+1)﹣x,(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴f(x)≥x2;(Ⅲ)设h(x)=(x+1)2ln(x+1)﹣x﹣mx2,h′(x)=2(x+1)ln(x+1)+x﹣2mx,(Ⅱ)中知(x+1)2ln(x+1)≥x2+x=x(x+1),∴(x+1)ln(x+1)≥x,∴h′(x)≥3x﹣2mx,①当3﹣2m≥0即m≤时,h′(x)≥0,∴h(x)在[0,+∞)单调递增,∴h(x)≥h(0)=0,成立.②当3﹣2m<0即m>时,h′(x)=2(x+1)ln(x+1)+(1﹣2m)x,h′′(x)=2ln(x+1)+3﹣2m,令h′′(x)=0,得x0=﹣1>0,当x∈[0,x0)时,h′(x)<h′(0)=0,∴h(x)在[0,x0)上单调递减,∴h(x)<h(0)=0,不成立.综上,m≤.[选修4-4:坐标系与参数方程22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求+的值.【解答】解:(Ⅰ)由直线l的参数方程为(t为参数),得直线l的普通方程为x+y﹣7=0.又由ρ=6sinθ得圆C的直角坐标方程为x2+(y﹣3)2=9;(Ⅱ)把直线l的参数方程(t为参数),代入圆C的直角坐标方程,得,设t1,t2是上述方程的两实数根,所以t1+t2=4,t1t2=7,∴t1>0,t2>0,所以+=.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|2x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若关于x的方程=a的解集为空集,求实数a的取值范围.【解答】解:(Ⅰ)解不等式|x﹣2|+|2x+1|>5,x≥2时,x﹣2+2x+1>5,解得:x>2;﹣<x<2时,2﹣x+2x+1>5,无解,x≤﹣时,2﹣x﹣2x﹣1>5,解得:x<﹣,故不等式的解集是(﹣∞,﹣)∪(2,+∞);(Ⅱ)f(x)=|x﹣2|+|2x+1|=,故f(x)的最小值是,所以函数f(x)的值域为[,+∞),从而f(x)﹣4的取值范围是[﹣,+∞),进而的取值范围是(﹣∞,﹣]∪(0,+∞).根据已知关于x的方程=a的解集为空集,所以实数a的取值范围是(﹣,0].。