风力发电机组变桨距

合集下载

变桨距调节的工作原理

变桨距调节的工作原理

变桨距调节的工作原理首先,风速测量是变桨距调节的基础。

在风力发电机组中,通常会安装一个或多个风速传感器,用于实时测量周围的风速。

这些风速传感器可以采用多种测量原理,如超声波、热线、风口压力差等。

测得的风速数据会传输给风力发电机组的主控制系统,供桨距控制使用。

桨距控制是变桨距调节的核心部分。

主控制系统会根据风速传感器测得的风速数据,通过对桨距的调节,控制叶片在不同风速下的角度,进而控制发电机的输出功率。

当风速较低时,桨距会被调整为较大的角度,以便最大程度地捕捉到风能;当风速较高时,桨距会被调整为较小的角度,以减小叶片的阻力,保护风力发电机组的安全运行。

桨距的调节通常是通过使用液压或电动机驱动的调节机构来实现的。

在液压调节系统中,主控制系统会根据风速数据发送信号给液压系统,液压系统会通过液压缸或液压马达等执行机构,调节叶片的角度。

而在电动机驱动的调节系统中,主控制系统会直接控制电动机的转速,电动机则通过传动装置来驱动叶片调节机构,实现桨距的调节。

无论采用何种调节机构,都需要通过精确的控制算法来准确地调节桨距角度,以确保发电机组的高效运行。

传动系统是实现桨距调节的关键。

桨距的调节需要通过传动装置将控制力传递给叶片。

传动系统通常由多个齿轮、轴承和传动带等组成,它的设计和制造需要满足高强度、高稳定性和低噪音等要求。

传动系统的稳定性对于保证叶片的桨距调节准确性至关重要,同时还需要耐受风力的冲击和振动等恶劣环境下的工作条件。

总之,变桨距调节通过风速测量、桨距控制和传动系统三个方面的工作原理,实现了风力发电机组叶片角度的自动调节,从而优化了发电机的发电效率。

这种技术的应用不仅提高了风力发电系统的能量利用率,也增强了其在可再生能源领域的竞争力,对于可持续能源的发展具有重要意义。

变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态从空气动力学角度考虑。

当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。

同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。

变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。

1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。

当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。

在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。

转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。

为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。

虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。

为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。

在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。

转速控制的给定值是恒定的,即同步转速。

转速反馈信号与给定值进行比较。

当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。

当转速在同步转速附近保持一定时间后发电机即并入电网。

2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。

与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。

定桨距与变桨距-风力发电机组

定桨距与变桨距-风力发电机组
节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。
2 变桨距调节型风力发电机组
变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。
l 定桨距失速调节型风力发电机组
定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。
桨距
螺旋桨的桨叶都与旋转平面有一个倾角。
假设螺旋桨在一种不能流动的介质中旋转,那么螺旋桨每转一圈,就会向前进一个距离,连续旋转就形成一段螺旋。
同一片桨叶旋转一圈所形成的螺旋的距离,就称为浆距。
显然,桨叶的角度越大,浆距也越大,角度与旋转平面角度为0,浆距也为0。
这个“距”,就是桨叶旋转形成的螺旋的螺距。
随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。

直驱式永磁同步风力发电机变速变桨距控制

直驱式永磁同步风力发电机变速变桨距控制

直驱式永磁同步风力发电机变速变桨距控制变桨距是最常见的控制风力发电机组吸收风能的方法。

变桨距控制会对所有由风轮产生的空气动力载荷产生影响。

直驱式永磁风力发电机组一旦达到额定转矩,载荷转矩就不能继续增加,但风速还在增加,所以转速也开始增加,应用变桨距控制调节转速,使转速不超过上限,并由变流器保证载荷转矩恒定不变。

通常PI或PID调节器调节桨距角就可以满足要求,在有些情况下要用滤波器对转速误差进行处理,以防止过度的桨距动作。

一、变速变桨距控制概述1.基本控制要求在额定风速以下时,风力发电机组应该尽可能捕捉较多风能,所以这时没有必要改变桨距角,此时的空气动力载荷通常比在额定风速以上时的动力载荷小,也没有必要通过变桨距来调节载荷。

在额定风速以上时,变桨距控制可以有效调节风力发电机组的吸收功率及风轮产生的载荷,使其不超出设计的限定值。

而且为了达到良好的调节效果,变桨距应该对变化的情况作出迅速的反应。

这种主动控制器需要仔细设计,因为它会与风力发电机组的动态特性相互影响。

随着叶片攻角的变化,气流对风轮的作用力也会随之发生改变,这就会导致风力发电机组塔架的振动。

随着风速的增加,为了保持功率恒定,转矩桨距角也随着增加,风轮所受到的力将会减小。

这就使塔架的弯曲减小,塔架的顶端就会向前移动引起以风轮为参照物的相对风速的增加。

空气动力产生的转矩进一步增加,引起更大的调桨动作。

显然,如果变桨距控制器的增益太高会导致正反馈不稳定。

2.主动失速变桨距在额定风速以下时,桨距角设定值应该设置在能够吸收最大功率的最优值。

按照这个原则,当风速超过额定风速时,增大或减小桨距角都会减小机组转矩。

减小桨距角,即将叶片前缘转向背风侧,通过增大失速角来调节转矩,使升力减小,阻力增加,称为主动失速变桨距。

尽管顺桨是更常见的控制策略,但是有些风力发电机组采用主动失速变桨距的方法,通常称为主动失速。

向顺桨方向变桨距比主动失速需要更多的动态主动性,一旦大部分叶片失速,就没有足够的变桨距调节来控制转矩。

《风力发电变桨距自抗扰控制技术研究及其参数整定》范文

《风力发电变桨距自抗扰控制技术研究及其参数整定》范文

《风力发电变桨距自抗扰控制技术研究及其参数整定》篇一一、引言随着全球能源结构的转型,风力发电作为清洁、可再生的能源形式,正受到越来越多的关注。

其中,变桨距技术作为一种关键技术,其性能直接影响风力发电机组的效率和稳定性。

本文将着重探讨风力发电变桨距自抗扰控制技术的相关研究,并对其参数整定进行深入分析。

二、风力发电变桨距技术概述风力发电变桨距技术是指通过调整风力发电机组叶片的桨距角,来改变机组对风的捕获能力和产生的电力。

当风速过高时,通过调整桨距角减小风的捕获量,防止机组过载;当风速较低时,增大桨距角以提高机组的发电效率。

自抗扰控制技术作为一种先进的控制策略,具有较好的鲁棒性和抗干扰能力,对于提高风力发电机组的性能具有重要意义。

三、自抗扰控制技术研究自抗扰控制技术是一种基于非线性控制理论的控制策略,其核心思想是通过引入非线性状态误差反馈和扩张状态观测器等手段,实现对系统状态的实时观测和误差的实时补偿。

在风力发电变桨距控制中,自抗扰控制技术能够有效地抑制风速波动、机组振动等干扰因素对系统的影响,提高机组的稳定性和发电效率。

四、参数整定研究参数整定是自抗扰控制在风力发电变桨距控制中应用的关键环节。

针对风力发电系统的非线性和时变性特点,合理的参数整定方法能够提高系统的动态性能和鲁棒性。

目前,常用的参数整定方法包括试凑法、遗传算法、神经网络等方法。

其中,遗传算法和神经网络等方法能够通过对大量数据的分析和学习,自动寻找到最优的参数组合,提高整定效率和整定精度。

五、实例分析以某风力发电场为例,采用自抗扰控制技术对风力发电机组的变桨距系统进行控制。

通过对比不同参数整定方法的效果,发现采用遗传算法整定的自抗扰控制器在风速波动和机组振动等干扰因素下表现出较好的鲁棒性和稳定性。

同时,通过对机组发电效率的统计和分析,发现采用自抗扰控制技术的机组在各种工况下均表现出较高的发电效率。

六、结论本文对风力发电变桨距自抗扰控制技术及其参数整定进行了深入研究和分析。

《风力发电变桨距自抗扰控制技术研究及其参数整定》

《风力发电变桨距自抗扰控制技术研究及其参数整定》

《风力发电变桨距自抗扰控制技术研究及其参数整定》篇一一、引言随着全球能源结构的转型,风力发电作为清洁、可再生的能源形式,正受到越来越多的关注。

在风力发电系统中,变桨距控制技术是提高风电机组性能和稳定性的关键技术之一。

自抗扰控制技术作为一种先进的控制策略,在风力发电变桨距控制中具有重要的应用价值。

本文旨在研究风力发电变桨距自抗扰控制技术,并探讨其参数整定方法,为风力发电的进一步发展提供理论支持。

二、风力发电变桨距控制技术概述风力发电变桨距控制技术是指通过调整风电机组桨叶的俯仰角度,实现对风能的捕获和转换。

该技术能够在风速变化时,通过调整桨叶的俯仰角度,保持风电机组的最佳运行状态,提高发电效率和稳定性。

目前,变桨距控制技术已成为现代风力发电系统的重要组成部分。

三、自抗扰控制技术原理及应用自抗扰控制技术是一种基于非线性控制的先进控制策略,具有较好的鲁棒性和抗干扰能力。

该技术通过构建扰动观测器,实时监测系统内部的扰动,并采取相应的控制策略,使系统保持稳定。

在风力发电变桨距控制中,自抗扰控制技术能够有效地抑制风速波动对系统的影响,提高系统的稳定性和发电效率。

四、风力发电变桨距自抗扰控制技术研究针对风力发电变桨距自抗扰控制技术,本文首先建立了系统的数学模型,然后设计了相应的自抗扰控制器。

在控制器设计中,采用了扰动观测器、非线性状态误差反馈等关键技术,使系统能够在风速变化时快速调整桨叶的俯仰角度,保持系统的稳定。

此外,还对控制器的性能进行了仿真验证和实验测试,结果表明,该控制策略能够有效地提高风电机组的发电效率和稳定性。

五、参数整定方法研究参数整定是自抗扰控制技术中的重要环节,直接影响到控制系统的性能。

针对风力发电变桨距自抗扰控制系统,本文提出了一种基于遗传算法的参数整定方法。

该方法通过优化控制器的参数,使系统在各种风速条件下都能保持最佳的运行状态。

具体而言,该方法首先建立了一个以系统性能指标为目标的优化模型,然后采用遗传算法对模型进行求解,得到最优的控制器参数。

变桨距机组的控制技术

变桨距机组的控制技术

变桨距机组的控制技术本文对变桨距风力发电机组控制系统的特点以及控制策略分别进行详细介绍。

一、变桨距机组控制系统的特点从空气动力学角度考虑,当风速过高时,只有通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。

同时,风力机在启动过程中也需要通过改变节距来获得足够的启动转矩。

采用变桨距机构的风力发电机组可使桨叶和整机的受力状况大为改善,这对大型风力发电机组的总体设计十分有利。

目前已有多种型号的变桨距600kW级风力发电机组进入市场。

其中较为成功的有丹麦VESTAS的V39/V42-600kW机组和美国Zand的Z 40-600kW机组。

从今后的发展趋势看,在大型风力发电机组中将会普遍采用变桨距技术。

变桨距风力发电机组又分为主动变桨距控制与被动变桨距控制。

主动变桨距控制可以在大于额定风速时限制功率,这种控制的实现是通过将每个叶片的部分或全部相对于叶片轴方向进行旋转以减小攻角,同时也减小了升力系数。

被动变桨距控制是一种令人关注的可替代主动变桨距限制功率的方式,其思路是将叶片或叶片的轮毂设计成在叶片载荷的作用下扭转,以便在高风速下获得所需的节距角。

但因为所必需的叶片随风速变换而扭转的变化量一般并不与叶片相应的载荷变化相匹配,所以很难实现。

对于独立运行的风力发电机组,发电量的最大化不是主要目标,被动变桨距控制方案有时候被采用,但是这一概念在并网运行的风力发电机组中尚未应用。

变桨距控制主要是通过改变翼型迎角变化,从而使翼型升力变化来进行调节的。

变桨距控制多用于大型风力发电机组。

变桨距控制是通过叶片和轮毂之间的轴承机构转动叶片减小迎角,由此来减小翼型的升力,以达到减小作用在风轮叶片上的扭矩和功率的目的。

变桨距调节时叶片迎角可相对气流连续地变化,以便得到风轮功率输出达到希望的范围。

在90°迎角时是叶片的顺桨位置。

在风力发电机组正常运行时,叶片向小迎角方向变化从而限制功率,一般变桨距范围为90°~100°。

风力发电机组变桨距控制策略

风力发电机组变桨距控制策略

2023-11-10CATALOGUE 目录•风力发电机组简介•变桨距控制策略的基本理论•变桨距控制策略的实现方法•变桨距控制策略的优化方法•变桨距控制策略在实际中的应用及案例分析01风力发电机组简介风力发电机组的基本构造风力发电机组的核心部件,由叶片和轮毂组成,用于捕捉风能并将其转化为机械能。

风轮齿轮箱发电机塔筒连接风轮和发电机的重要部件,将风轮的转速提升到发电机所需的速度。

将机械能转化为电能的重要部件,由定子和转子组成。

支撑风轮和发电机的高耸结构,通常由钢铁或混凝土制成。

风力发电机组通过旋转的风轮捕捉风的动能,并将其转化为机械能。

风的捕捉机械能的转化电能的产生机械能通过齿轮箱的传递,将转速提升到发电机所需的速度。

发电机将机械能转化为电能,通过电缆输送到电网。

03风力发电机组的运行原理0201按风向分类水平轴风力发电机组和垂直轴风力发电机组。

水平轴风力发电机组的风轮轴与地面平行,而垂直轴风力发电机组的风轮轴与地面垂直。

风力发电机组的分类按容量分类小型、中型和大型风力发电机组。

小型风力发电机组的功率通常在几百瓦到几千瓦之间,中型风力发电机组的功率在几兆瓦到几十兆瓦之间,而大型风力发电机组的功率通常在几百兆瓦到几兆瓦之间。

按运行原理分类恒速风力发电机组和变速风力发电机组。

恒速风力发电机组的风轮转速保持不变,而变速风力发电机组的风轮转速可以根据风速进行调整。

02变桨距控制策略的基本理论变桨距控制是一种用于调节风力发电机组功率输出的技术,通过改变桨叶的桨距角实现对风能捕获的优化控制。

在风速较高时,通过减小桨距角增加风能捕获,以提升发电机组的功率输出;在风速较低时,通过增大桨距角减小风能捕获,以避免过度捕获风能导致发电机组振动和疲劳损坏。

变桨距控制的概念和意义变桨距控制系统的基本结构变桨距控制系统主要由传感器、控制器和执行器组成。

传感器负责监测风速、风向和发电机组运行状态;控制器根据传感器信号和预设的控制逻辑对执行器进行指令输出;执行器根据指令调整桨叶的桨距角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。

本文从分析我国风力发电的现状出发,在总结分析风力发电技术发展的基础上,对我国风电发展过程中存在的主要问题进行了探讨分析,提出了相关建议。

关键词:风力发电;现状;技术发展能源、环境是当今人类生存和发展所要解决的紧迫问题。

常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。

因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。

风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。

我国风能储量很大、分布面广,开发利用潜力巨大。

近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。

总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。

1我国风力发电的现状2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。

2009年12月,我国政府向世界承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到2020年非化石能源占一次能源消费比重达到15%左右。

随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。

我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。

到2009年底,我国风电总装机容量达到2601万kW,位居世界第二,2009年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。

可以看出,我国风电产业正步入一个跨越式发展的阶段,预计2010年我国累计装机容量有望突破4000万kW。

从技术发展上来说,我国风电企业经过“引进技术—消化吸收—自主创新”的三步策略也日益发展壮大。

随着国内5WM容量等级风电产品的相继下线,以及国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。

同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。

目前我国风电机组整机制造业和关键零部件配套企业已能已能基本满足国内风电发展需求,但是像变流器、主轴轴承等一些技术要求较高的部件仍需大量进口。

因此,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。

2风力发电的技术发展风力发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。

目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。

2.1风力发电机组机型及容量的发展现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。

作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。

从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即达到2MW。

进入21世纪,兆瓦级风力机逐渐成为国际风电市场上的主流产品。

2004年德国Repower即研制出第一台5MW风电机,Enercon开发出第二代直驱式6WM 风电机,预计2013年单机容量将突破15MW[1,3]。

从世界范围来看,1.5MW-2MW 的机型占世界机组容量的比例,已从2007年的63.7%飞速上升到80.4%;而在我国,2005年风电场新安装的兆瓦级风电机组占当年新装机容量的21.5%,而2009年比例已经上升到86.86%[4]。

这表明容量风电机组已经成为我国风电市场上的主流产品。

2.2风力发电机组控制技术的发展控制技术是风力发电机组安全高效运行的关键技术[5,6],这是因为:1)自然风速的大小和方向随着大气的气压、气温和湿度等的活动和风电场地形地貌等因素的随机性和不可控性,这样风力机所获得的风能也是随机和不可控的。

2)为使风能利用率更高,大型风力发电机组的叶片直径大约在60m~100m 之间,因此风轮具有较大的转动惯量。

3)自动控制在风力发电机组的并网和脱网、输入功率的优化和限制、风轮的主动对风以及运行过程中故障的检测和保护中都应得到很好的利用。

4)风力资源丰富的地区通常环境较为恶劣[转贴于:论文大全网在海岛和边远的地区甚至海上,人们希望分散不均的风力发电机组能够无人值班运行和远程监控。

这就对风力发电机组的控制系统可靠性提出了很高的要求。

因此,众多学者都致力于深入研究风力发电的控制技术和控制系统,这些研究工作对于风力发电机组优化运行有极其重要的意义。

计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。

定桨距型风力机指桨叶与轮毂的连接是固定的,即桨距角固定不变,当风速变化时,桨叶的迎风角度固定不变。

失速型是当风速高于额定风速,利用桨叶翼型本身所具有的失速特性,即气流的攻角增大到失速条件,使桨叶的表面产生涡流,将发电机的功率输出限制在一定范围内。

失速调节型的优点是简单可靠,当风速变化引起输出功率变化时,只通过桨叶的被动失速调节而控制系统不做任何控制,使控制系统大为简化。

其缺点是叶片重量大,桨叶、轮毂、塔架等部件受力较大,机组的整体效率较低,也使得这些关键部件更容易疲劳磨损。

变速恒频风力发电机组是近年来发展起来的一种新型风力发电系统,其转速不受发电机输出功率的限制,而其输出电压的频率、幅值和相位也不受转子转速的影响。

与恒速风电机组相比,它的优越性在于:低风速时能够跟踪风速变化,在运行中保持最佳叶尖速比以获得最大风能;高风速时利用风轮转速的变化调节风力机桨距角,在保证风电机组安全稳定运行的同时,使输出功率更加平稳。

变速恒频风力发电机组通过励磁控制和变桨距调节来实现最佳运行状态。

变桨距是根据风速和发电机转速来调整叶片桨距角,从而控制发电机输出功率,由传动齿轮箱、伺服电机和驱动控制单元组成。

随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,以得到理想的输出功率。

变桨距风力发电机组的优点是:输出功率平稳,在额定点具有较高的风能利用系数,具有更好的起动性能与制动性能,能够确保高风速段的额定功率。

2.3风力发电机组控制策略的发展风能是一种能量密度低、稳定性较差的能源,由于风速、风向的随机性变化,导致风力机叶片攻角不断变化,使叶尖速比偏离最佳值,风力机的空气动力效率及输入到传动链的功率发生变化,影响了风电系统的发电效率并引起转矩传动链的振荡,会对电能质量及接入的电网产生影响,对于小电网甚至会影响其稳定性。

风力发电机组通常采用柔性部件,这有助于减小内部的机械应力,但同时也会使风电系统的动态特性复杂化,且转矩传动模块会有很大振荡。

目前,对风力发电机的控制策略研究根据控制器类型可分为两大类:基于数学模型的传统控制方法和现代控制方法。

传统控制采用线性控制方法,通过调节发电机电磁转矩或桨叶节距角,使叶尖速比保持最优值,从而实现风能的最大捕获。

对于快速变化的风速,其调节相对滞后。

同时基于某工作点的线性化模型的方法,对于工作范围较宽、随机扰动大、不确定因素多、非线性严重的风电系统并不适用。

现代控制方法主要包括变结构控制、鲁棒控制、自适应控制、智能控制等[7,8]。

变结构控制因具有快速响应、对系统参数变化不敏感、设计简单和易于实现等优点而在风电系统中得到广泛应用。

鲁棒控制具有处理多变量问题的能力,对于具有建模误差、参数不准确和干扰位置系统的控制问题,在强稳定性的鲁棒控制中可得到直接解决。

模糊控制是一种典型的智能控制方法,其最大的特点是将专家的知识和经验表示为语言规则用于控制,不依赖于被控制对象的精确的数学模型,能够克服非线性因素的影响,对被调节对象有较强的鲁棒性。

由于风力发电机的精确数学模型难以建立,模糊控制非常适合于风力发电机组的控制,越来越受到风电研究人员的重视。

人工神经网络是以工程技术手段来模拟人脑神经元网络的结构与特征的系统。

利用神经元可以构成各种不同的拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。

利用神经网络的学习特性,可用于风力机的低风速的节距控制。

3存在的问题及展望尽管近年来我国风电产业得到了迅猛的发展,但同时也暴露出众多的问题。

首先,我国尚未完全掌握风电机组的核心设计及制造技术。

在设计技术方面,我国不仅每年需支付大量的专利、生产许可及技术咨询费用,在一些具有自主研发能力的风电企业中,其设计所需的应用软件、数据库和源代码都需要从国外购买。

在风机制造方面,风机控制系统、逆变系统需要大量进口,同时,一些核心零部件如轴承、叶片和齿轮箱等与国外同类产品相比其质量、寿命及可靠性尚有很大差距。

其次,我国风电发展规划与电网规划不相协调,上网容量远小于装机容量。

风电发展侧重于资源规划,风电场的建设往[转贴于:论文大全网没有考虑当地电网的消纳能力,从而造成装机容量大,并网发电少的现状。

2009年新增装机容量中1/3未能上网,送电难已经成为制约风电发展的瓶颈。

最后,我国风电的技术标准和规范不健全,包括风机制造、检测、调试、关键零部件生产及电场入网等相关标准亟需建立和完善。

因此,展望我国未来的风电产业发展,必须加强自主创新掌握核心技术;必须加大电网建设力度,合理规范风电开发;必须加大政策扶持力度,建立健全完善统一的风电标准规范体系。

欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

相关文档
最新文档