变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态
变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态

从空气动力学角度考虑。当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。

变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。

1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。

为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。转速控制的给定值是恒定的,即同步转速。转速反馈信号与给定值进行比较。当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。当转速在同步转速附近保持一定时间后发电机即并入电网。

2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。这时的变桨距风力发电机组与定桨距风力发电机组相同,其功率输出完全取决于桨叶的气动性能。

3)额定功率状态当风速达到或超过额定风速后,风力发电机组进入

额定功率状态,在传统的变桨距控制方式中,这时将转速控制切换到功率控制,变桨距系统开始根据发电机的功率信号进行控制。控制信号的给定值是恒定的,即额定功率。功率反馈信号与给定值进行比较,当功率超过额定功率时,桨叶节距就向迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。

由于变桨距系统的响应速度受到限制,对快速变化的风速,通过改变节距来控制输出功率的效果并不理想,因此,为了优化功率曲线,最新设计的变桨距风力发电机组在进行功率控制的过程中,其功率反馈信号不再作为直接控制桨叶节距的变量。变桨距系统由风速低频分量和发电机转速控制,风速的高频分量产生的机械能波动,通过迅速改变发电机的转速来进行平衡,即通过转子电流控制器对发电机转差率进行控制。当风速高于额定风速时,允许发电机转速升高,将瞬变的风能以风轮动能的形式储存起来;速转降低时,再将动能释放出来,使功率曲线达到理想的状态。

定距桨变距桨与风力发电机组

桨距 螺旋桨的桨叶都与旋转平面有一个倾角。 假设螺旋桨在一种不能流动的介质中旋转,那么螺旋桨每转一圈,就会向前进一个距离,连续旋转就形成一段螺旋。 同一片桨叶旋转一圈所形成的螺旋的距离,就称为浆距。显然,桨叶的角度越大,浆距也越大,角度与旋转平面角度为0,浆距也为0。 这个“距”,就是桨叶旋转形成的螺旋的螺距。 桨距指的是直升机的旋翼或固定翼的螺旋桨旋转一周360 度,向上或向前行走的距离(理论上的)。就好比一个螺丝钉,您拧一圈后,能够拧入的长度。桨距越大前进的距离就越大,反之越小!然而要测量实际桨距的大小是比较困难的,所以一般固定翼飞机使用桨距不变的螺旋桨上都会标明其直径和桨距的大小(单位以英寸居多),以便于和合适的发动机配套使用。绝大多数的固定桨距的直升机桨一般是专为某一级别的飞机定制的,所以只标明直径。可变桨距直升机可以非常容易的通过测量桨叶的攻角(迎风角度)大小来体现桨距的大小,和变化幅度。 l 定桨距失速调节型风力发电机组 定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69 ,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/ 小发电机)。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。 失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。 2 变桨距调节型风力发电机组 变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“, 直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。 随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用 OptitiP 技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。 变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。 3 主动失速调节型风力发电机组

风力发电机组的运行维护技术(新编版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 风力发电机组的运行维护技术 (新编版)

风力发电机组的运行维护技术(新编版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 随着科技的进步,风电事业的不断发展。风能公司下属的达坂城风力发电场的规模也日益扩大,单机容量从30kW逐渐升至600kW,风机也由原来的引进进口设备,发展到了如今自己生产、设计的国产化风机。伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也是越来越重要。现在就风机的运行维护作一下探讨。 一.运行 风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行远程控制,这大大降低了运行的工作量。所以风机的运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。 1.远程故障排除 风机的大部分故障都可以进行远程复位控制和自动复位控制。风

机的运行和电网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护故障,如电网电压高、低,电网频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动复位,如发电机温度高,齿轮箱温度高、低,环境温度低等。风机的过负荷故障也是可自动复位的。 除了自动复位的故障以外,其它可远程复位控制故障引起的原因有以下几种: (1)风机控制器误报故障; (2)各检测传感器误动作; (3)控制器认为风机运行不可靠。 2.运行数据统计分析 对风电场设备在运行中发生的情况进行详细的统计分析是风电场管理的一项重要内容。通过运行数据的统计分析,可对运行维护工作进行考核量化,也可对风电场的设计,风资源的评估,设备选型提供有效的理论依据。 每个月的发电量统计报表,是运行工作的重要内容之一,其真实可靠性直接和经济效益挂钩。其主要内容有:风机的月发电量,场用

我国大型风电机组技术发展情况

截至2013年底,国内约30家大型风电机组整机制造企业已向国内外风电市场提供了合格的大型风电机组整机产品。2013年在我国风电场建设中,国产风电机组的市场占有率达到94%,大幅超过外资企业。其中,在国内新增总装机占比中,金风科技的份额最大,占23.31%;联合动力第二,占9.25%;广东明阳第三,占7.99%。通过对我国大型风电机组发展情况的分析,归纳出我国大型风电机组技术主要呈现如下特点。 1 水平轴风电机组是主流 水平轴风电机组的应用已近100年。由于水平轴风电机组的风轮具有风能转换效率高、传动轴较短、控制和制动技术成熟、制造成本较低、并网技术可靠等优点,近年来大型并网水平轴风电机组得到快速发展,使大型双馈式和直驱永磁式等水平轴风电机组成为国内大型风电场建设所需的主流机型,并在国内风电场建设中占到100%的市场份额。 2 垂直轴风电机组有所发展 大型垂直轴风电机组因具有全风向对风、变速装置及发电机可置于风轮下方或地面等优点。近年来相关研究和开发也在不断进行并取得一定进展,单机试验示范正在进行,在美国已有大型垂直轴风电机组在风电场运行,但在我国还无垂直轴风电机组产品在风电场成功应用的先例。 3 风电机组单机容量持续增大 近年来,国内风电市场中风电机组的单机容 我国大型风电机组技术发展情况 中国农业机械化科学研究院 ■ 沈德昌 量持续增大,2012年新安装机组的平均单机容量达1.65 MW , 2013年为1.73 MW 。2013年我国风电场安装的最大风电机组为6 MW 。 随着单机容量不断增大和利用效率的提高,国内主流机型已从2005年的750~850 kW 增加到2014年的1.5~2.5 MW 。 近年来,海上风电场的开发进一步加快了大容量风电机组的发展。我国华锐风电的3 MW 海上风电机组已在海上风电场批量应用。3.6、4、5、5.5、6和6.5 MW 的海上风电机组已陆续下线或投入试运行。目前,华锐、金风、联合动力、湖南湘电、重庆海装、东方汽轮机、广东明阳和太原重工等公司都已研制出5~6.5 MW 的大容量海上风电机组产品。 4 变桨变速功率调节技术得到全面应用 由于变桨距功率调节方式具有载荷控制平稳、安全高效等优点,近年在大型风电机组上得到广泛应用。结合变桨距技术的应用及电力电子技术的发展,大多数风电机组制造厂商采用了变速恒频技术,并开发出变桨变速风电机组,在风能转换效率上有了进一步完善和提高。从2012年起,国内定桨距并网风电机组已停止生产,在全国安装的风电机组全部采用了变桨变速恒频技术。2 MW 以上的风电机组大多采用3个独立的电控调桨机构,通过3组变速电机和减速箱对桨叶分别进行闭环控制。 5 双馈异步发电技术仍占主导地位 外资企业如丹麦V estas 公司、西班牙Gamesa 收稿日期:2014-11-27 通信作者:沈德昌 ,男,研究员,中国农业机械化科学研究院。shendc06@https://www.360docs.net/doc/131211111.html,

变速变桨距风力发电机组控制策略改进与仿真

变速变桨距风力发电机组控制策略改进与仿真 刘 军,何玉林,李 俊,黄 文 (重庆大学机械传动国家重点实验室,重庆市400030) 摘要:在分析变速变桨距风力发电机组基本控制策略的基础上,提出一种扩大过渡区的改进控制策略,用来消除额定功率运行点附近切换造成的功率波动及突变载荷等不利影响。依据改进的控制策略设计了3个控制器平滑过渡方案,实现对该策略的最佳跟踪。运用MAT LAB 仿真平台模拟了改进控制策略下的风力发电机组运行特性,结果表明了改进控制策略的正确性及控制器设计的有效性。 关键词:风力发电机组;变速变桨距;控制策略;扩大过渡区;平滑控制 收稿日期:2010 06 23;修回日期:2010 10 09。重庆市科技攻关重点项目(CST C2007A A3027)。 0 引言 风力发电机组的控制技术由原来单一的定桨距失速控制转向变桨距变速控制,目的是为了防止风能转换系统承受的载荷过重,从风场中最大限度地捕获能量以及为电网提供质量较好的电能。然而,风力发电机组作为一种复杂的、多变量、强耦合、非线性的系统,要想减小风力机载荷以延长其使用寿命,抑制功率波动以降低对电网的不利影响,控制策略的选取及控制器的设计至关重要[1 6]。 本文通过对变速变桨距风力发电机组基本控制策略的分析,针对过渡区运行过程中出现的功率波动大及突变载荷强等情况,提出一种改进的控制策略来减缓此种影响。为最佳跟踪改进的控制策略,设计了3个控制器以实现3个运行区间的平滑过渡。同时应用M ATLAB 仿真平台对变速变桨距风力发电机组运行特性进行了仿真,结果表明了所提出方案的合理性和可行性。 1 基本的变速变桨距控制策略 如图1所示,在转速 转矩平面图中,曲线A BC 描述了变速变桨距风力发电机组的基本控制策略。在低风速区,风电机组从切入风速为V in 的A 点到风速为V N 的B 点,沿着C pmax 曲线轨迹运行,此区间称为恒C p 运行区。由于在B 点发电机转速达到了其上限值 N ,当风速从V N 上升到V N 时,转速将恒定在 N ,提升发电机转矩使风电机组达到其额定功率,在图1中为BC 段,也称为恒转速区或过渡区。当风速超过额定风速V N 时,变桨距系统将开 始工作,通过改变桨距角保持功率的恒定,风电机组将持续运行在C 点,直到风速超过切出风速V out ,此区间称为恒功率区,而此区间内桨距角控制方式采用统一桨距控制,它是指风力机所有桨距角均同时 改变相同的角度[7 8] 。在此需要注意的是:若最大功率P N 曲线与C pmax 曲线的相交点在额定转速极限值左侧,就会造成风电机组在未达到额定转速时,已进入失速状态,相应的A B 区间将被缩小,这时就需 对整个风电机组额定点进行重新选取。 图1 变速变桨距风力发电机组控制策略Fig.1 C ontrol strategy of the variable speed pitch controlled wind turbine driven generator system 从图1可以看出,3个区间工作点的划分非常明显,而控制器的设计与工作点的选取有着必然的联系,因此,基本的变速变桨距风电机组通常会设计2个独立的控制器,一个用来跟踪参考速度,另一个用来跟踪额定功率。由于2个控制器都有各自的控制目标,在运行过程中相互独立,然而在工作点附近,2个控制器又相互制约,这种制约就会导致风电机组在C 点控制系统的调节能力下降,在突遇阵风 82 第35卷 第5期2011年3月10日Vo l.35 N o.5M ar.10,2011

风力发电机液压变桨系统简介

风力发电机液压变桨系统简介 全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。 风机变桨调节的两种工况 风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统 液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。 液压变桨系统的结构 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。 图1 控制原理图 液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

大型风力发电机组控制系统的安全保护功能(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 大型风力发电机组控制系统的安全保护功能(新编版) Safety management is an important part of production management. Safety and production are in the implementation process

大型风力发电机组控制系统的安全保护功 能(新编版) 1制动功能 制动系统是风力发电机组安全保障的重要环节,在硬件上主要由叶尖气动刹车和盘式高速刹车构成,由液压系统来支持工作。制动功能的设计一般按照失效保护的原则进行,即失电时处于制动保护状态。在风力发电机组发生故障或由于其他原因需要停机时,控制器根据机组发生的故障种类判断,分别发出控制指令进行正常停机、安全停机以及紧急停机等处理,叶尖气动刹车和盘式高速刹车先后投入使用,达到保护机组安全运行的目的。 2独立安全链 系统的安全链是独立于计算机系统的硬件保护措施,即使控制系统发生异常,也不会影响安全链的正常动作。安全链采用反逻辑

设计,将可能对风力发电机造成致命伤害的超常故障串联成一个回路,当安全链动作后,将引起紧急停机,执行机构失电,机组瞬间脱网,从而最大限度地保证机组的安全。发生下列故障时将触发安全链:叶轮过速、看门狗、扭缆、24V电源失电、振动和紧急停机按钮动作。 3防雷保护 多数风机都安装在山谷的风口处或海岛的山顶上,易受雷击,安装在多雷雨区的风力发电机组受雷击的可能性更大,其控制系统最容易因雷电感应造成过电压损害,因此在600kW风力发电机组控制系统的设计中专门做了防雷处理。使用避雷器吸收雷电波时,各相避雷器的吸收差异容易被忽视,雷电的侵入波一般是同时加在各相上的,如果各相的吸收特性差异较大,在相间形成的突波会经过电源变压器对控制系统产生危害。因此,为了保障各相间平衡,我们在一级防雷的设计中使用了3个吸收容量相同的避雷器,二、三级防雷的处理方法与此类同。控制系统的主要防雷击保护:①主电路三相690V输入端(即供给偏航电机、液压泵等执行机构的前段)

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态 从空气动力学角度考虑。当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。 变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。 1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。 为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。转速控制的给定值是恒定的,即同步转速。转速反馈信号与给定值进行比较。当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。当转速在同步转速附近保持一定时间后发电机即并入电网。 2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。这时的变桨距风力发电机组与定桨距风力发电机组相同,其功率输出完全取决于桨叶的气动性能。 3)额定功率状态当风速达到或超过额定风速后,风力发电机组进入

《风力发电机组电动变桨系统基本原理》试题及答案

1.变桨系统与风机主控通讯的部件是?(6.0分) A.变桨控制器 B.变桨驱动器 C.变桨电机 D.备用电源 我的答案:A√答对 2.变桨系统的驱动执行机构是?(6.0分) A.变桨控制器 B.变桨驱动器 C.变桨电机 D.备用电源 我的答案:C√答对 3.变桨系统调节桨叶的主要作用是什么?(6.0分) A.调节风机机头对风 B.使风机跟踪最大风能 C.解除扭揽 D.将风能变换成电能 我的答案:B√答对 4.风电变桨系统是用于调节风机的那个部位?(6.0分) A.A桨叶

C.机舱 D.塔筒 我的答案:A√答对 5.下列哪个部件不属于变桨系统?( 6.0分) A.变桨电机 B.轴控柜 C.限位开关 D.轴承润滑泵 我的答案:D√答对 1.变桨电机有以下哪几种形式?(8.0分)) A.永磁电机 B.感应电机 C.直流电机 D.直线电机 我的答案:ABC√答对 2.用于变桨系统温湿度控制的设备有?(8.0分)) A.温控开关 B.湿控开关 C.加热器

我的答案:AB×答错 3.按动力类型分类变桨系统有以下哪几种?(8.0分)) A.电磁型 B.液压型 C.电动型 D.蒸汽型 我的答案:BC√答对 4.变桨系统的备用电源主要有哪几种形式?(8.0分)) A.超级电容 B.铅酸蓄电池 C.飞轮储能 D.锂离子电池 我的答案:ABD√答对 5.变桨系统电磁兼容防护的主要形式有哪几种?(8.0分)) A.加热器 B.雷击浪涌保护器 C.电抗器和滤波器 D.接地防护 我的答案:BC×答错

1.变桨系统的供电电压是400VAC(6.0分) 我的答案:正确√答对 2.变桨系统是安装在风机的机舱中(6.0分) 我的答案:错误√答对 3.变桨系统不会高原上使用(6.0分) 我的答案:错误√答对 4.安全链中的任何一个环节故障都会导致整个系统保护(6.0分) 我的答案:正确√答对 5.在感应电机、直流电机、永磁电机三种电机中,永磁同步电机的功率密度最高( 6.0分) 我的答案:正确√答对

风力发电机组偏航系统详细介绍

风力发电机组偏航系统详细介绍2012-12-15 资讯频道 偏航系统的主要作用有两偏航系统是水平轴式风力发电机组必不可少的组成系统之一。 使风力发电机组的风轮始终处于迎风状态,其一是与风力发电机组的控制系统相互配合,个。以保障风力发其二是提供必要的锁紧力矩,充分利用风能,提高风力发电机组的发电效率;被动风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。电机组的安全运行。舵轮常见的有尾舵、偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,和下风向三种;通常都采用主动偏航的齿轮驱动对于并网型风力发电机组来说,齿轮驱动和滑动两种形式。形式。 1.偏航系统的技术要求 1.1. 环境条件 在进行偏航系统的设计时,必须考虑的环境条件如下: 1). 温度; 2). 湿度; 3). 阳光辐射; 雨、冰雹、雪和冰;4). 5). 化学活性物质; 机械活动微粒;6). 盐雾。风电材料设备7). 近海环境需要考虑附加特殊条件。8). 应根据典型值或可变条件的限制,确定设计用的气候条件。选择设计值时,应考虑几 气候条件的变化应在与年轮周期相对应的正常限制范围内,种气候条件同时出现的可能性。不影响所设计的风力发电机组偏航系统的正常运行。 1.2. 电缆 必须使电缆有足够为保证机组悬垂部分电缆不至于产生过度的纽绞而使电缆断裂失效, 电缆悬垂量的多少是根据电缆所允许的扭转角度确定的悬垂量,在设计上要采用冗余设计。的。阻尼1.3. 偏航系统在机组为避免风力发电机组在偏航过程中产生过大的振动而造成整机的共振, 阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩来偏航时必须具有合适的阻尼力矩。只有在其基本的确定原则为确保风力发电机组在偏航时应动作平稳顺畅不产生振动。确定。阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。 1.4. 解缆和纽缆保护 偏航系统的偏航动解缆和纽缆保护是风力发电机组的偏航系统所必须具有的主要功能。 所以在偏航系统中应设置与方向有关的计数作会导致机舱和塔架之间的连接电缆发生纽绞,检测装置或类一般对于主动偏航系统来说,装置或类似的程序对电缆的纽绞程度进行检测。对于被动偏航系统检测装置或类似似的程序应在电缆达到规定的纽绞角度之前发解缆信号;偏航系并进行人工解缆。的程序应在电缆达到危险的纽绞角度之前禁止机舱继续同向旋转,一般与偏航圈统的解缆一般分为初级解缆和终极解缆。初级解缆是在一定的条件下进行的,这个装置的控制逻纽缆保护装置是风力发电机组偏航系统必须具有的装置,数和风速相关。辑应具有最高级别的权限,一旦这个装置被触发,则风力发电机组必须进行紧急停机。偏航转速 1.5. 1 对于并网型风力发电机组的运行状态来说,风轮轴和叶片轴在机组的正常运行时不可避免的产生陀螺力矩,这个力矩过大将对风力发电机组的寿命和安全造成影响。为减少这个力矩对风力发

风力发电机组运行规程

华能东营河口风力发电有限公司技术标准 运行技术标准 风力发电机组运行规程Q/HNDYHK.YX.DQ.2010 1 主题内容与适用范围 本规程规定了华能东营河口风电场设备和运行人员的要求及正常运行、维护的内容和方法与事故处理的原则和方法等。 本规程适用于华能东营河口风电场的风力发电机组的运行及日常维护。 2 引用标准 DL/T666—1999 《风力发电场运行规程》 华锐风电科技有限公司《SL1582/70风机操作手册》 华锐风电科技有限公司《SL1500系列风力发电机维护与维修手册》 3 运行规程说明 本手册提供的内容可供用户进行以下工作: ?快速熟悉风机的性能 ?安全地进行与风机有关的工作 ?操作风机 ?修复故障要获得风机的可靠运行,延长其使用寿命,防止发生停机停产,必须要遵照本手册的要求。因此,风机中必须留有本操作手册。本操作手册不能代替培训,但是可起到补充培训的作用。 3.1 符号

本手册中重要的信息都附有以下各项符号表示:3.1.1 人员防护装备符号 戴安全帽! 戴耳罩! 穿防护服! 戴安全手套! 系安全带! 穿防护鞋! 3.1.2 危险符 表示对生命和健康有直接危险 表示电流危险 表示悬挂载荷造成的危险 表示有绊倒的危险 高温危险

3.1.3 警示符号 未经许可禁止入内! 上字和符号表示该区域未经许可禁止入内。 禁止吸烟! 基本原则之一是整个设备内禁止吸烟。 严禁明火! 在有此标记的作业过程中禁止明火。 3.1.4 指示符号 表示如此可迅速、安全地完成任务。 4.技术说明 SL1582/70 机型额定功率为1500kW,风轮直径为82米的华锐风机。 4.1部件说明 SL1582/70风机用在固定的位置,将风能转换为电能并按照供电公司的指标为其电网供电。风机主要包括以下部件: ?发动机舱(1),含发电机(5),齿轮箱(7)和轮毂(10)?塔筒(2) ?风轮叶片(3)

风力发电机组变桨距

随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。本文从分析我国风力发电的现状出发,在总结分析风力发电技术发展的基础上,对我国风电发展过程中存在的主要问题进行了探讨分析,提出了相关建议。 关键词:风力发电;现状;技术发展 能源、环境是当今人类生存和发展所要解决的紧迫问题。常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。我国风能储量很大、分布面广,开发利用潜力巨大。近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。 1我国风力发电的现状 2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。2009年12月,我国政府向世界承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到2020年非化石能源占一次能源消费比重达到15%左右。 随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。 我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。到2009年底,我国风电总装机容量达到2601万kW,位居世界第二,2009年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。可以看出,我国风电产业正步入一个跨越式发展的阶段,预计2010年我国累计装机容量有望突破4000万kW。 从技术发展上来说,我国风电企业经过“引进技术—消化吸收—自主创新”的三步策略也日益发展壮大。随着国内5WM容量等级风电产品的相继下线,以及国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。目前我国风电机组整机制造业和关键零部件配套企业已能已能基本满足国内风电发展需求,但是像变流器、主轴轴承等一些技术要求较高的部件仍需大量进口。因此,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。 2风力发电的技术发展 风力发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。 2.1风力发电机组机型及容量的发展 现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即

风力发电机组的分类及各自特点

风力发电机组的分类及各自特点 风力发电机组的分类及各自特点 风力发电机组主要由两大部分组成: 风力机部分――它将风能转换为机械能; 发电机部分――它将机械能转换为电能。 根据风机这两大部分采用的不同结构类型、以及它们分别采用的技术方案的不同特征,再加上它们的不同组 合,风力发电机组可以有多种多样的分类。 (1) 如依风机旋转主轴的方向(即主轴与地面相对位置)分类,可分为: “水平轴式风机”――转动轴与地面平行,叶轮需随风向变化而调整位置; “垂直轴式风机”――转动轴与地面垂直,设计较简单,叶轮不必随风向改变而调整方向。 (2) 按照桨叶受力方式可分成“升力型风机”或“阻力型风机”。 (3) 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机;叶片的数目由很 多因素决定,其中包括空气动力效率、复杂度、成本、噪音、美学要求等等。 大型风力发电机可由1、2 或者3 片叶片构成。 叶片较少的风力发电机通常需要更高的转速以提取风中的能量,因此噪音比较大。而如果叶片太多,它们之 间会相互作用而降低系统效率。目前3 叶片风电机是主流。从美学角度上看,3 叶片的风电机看上去较为平衡和美观。 (4) 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向(即在塔架的前面迎风旋转)和 “下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 (5) 按照功率传递的机械连接方式的不同,可分为“有齿轮箱型风机”和无齿轮箱的“直驱型风机”。 有齿轮箱型风机的桨叶通过齿轮箱及其高速轴及万能弹性联轴节将转矩传递到发电机的传动轴,联轴节具有很 好的吸收阻尼和震动的特性,可吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。 而直驱型风机则另辟蹊径,配合采用了多项先进技术,桨叶的转矩可以不通过齿轮箱增速而直接传递到发电 机的传动轴,使风机发出的电能同样能并网输出。这样的设计简化了装置的结构,减少了故障几率,优点很多,现多用于大型机组上。 (6) 根据按桨叶接受风能的功率调节方式可分为: “定桨距(失速型)机组”――桨叶与轮毂的连接是固定的。当风速变化时,桨叶的迎风角度不能随之变化 。由于定桨距(失速型)机组结构简单、性能可靠,在20 年来的风能开发利用中一直占据主导地位。 “变桨距机组”――叶片可以绕叶片中心轴旋转,使叶片攻角可在一定范围内(一般0-90度)调节变化,其

风力发电机组的运行维护技术

编订:__________________ 单位:__________________ 时间:__________________ 风力发电机组的运行维护 技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6351-59 风力发电机组的运行维护技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着科技的进步,风电事业的不断发展。风能公司下属的达坂城风力发电场的规模也日益扩大,单机容量从30kW逐渐升至600kW,风机也由原来的引进进口设备,发展到了如今自己生产、设计的国产化风机。伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也是越来越重要。现在就风机的运行维护作一下探讨。 一.运行 风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行远程控制,这大大降低了运行的工作量。所以风机的

运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。 1.远程故障排除 风机的大部分故障都可以进行远程复位控制和自动复位控制。风机的运行和电网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护故障,如电网电压高、低,电网频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动复位,如发电机温度高,齿轮箱温度高、低,环境温度低等。风机的过负荷故障也是可自动复位的。 除了自动复位的故障以外,其它可远程复位控制故障引起的原因有以下几种: (1)风机控制器误报故障;

探究大型风力发电机组变桨后备电源管理系统设计120

探究大型风力发电机组变桨后备电源管理系统设计 摘要:当今我国风力发电技术变得愈加成熟,在大型风力发电机组变桨系统当中,为了保障整个系统的安全性与可靠性,通常都要配置变桨后备电源,这就需 要做好后备电源管理系统设计工作,提高风力发电机组运行的有效性。基于此, 本文首先提出蓄电池在变桨控制系统中的应用,进而从软硬件两个方面提出后备 电源管理系统设计。 关键词:大型风力发电机组;后备电源;管理系统;变桨;设计 引言 工业的不断发展,虽然经济有所提升,但是资源、能源紧缺问题却愈加严重。为了能够实现可持续发展道路的战略,加强可再生能源的研究与研究已经成为了 必然趋势,降低对传统能源的依赖性。风力发电是继火力发电、水利发电的又一 大发展体系,是当今电力领域研究的热点话题。风力发电技术作为当今能源领域 的新研究方向,已经从最初的几十千瓦逐渐升到了兆瓦级。但总体上来说,我国 风力发展技术还有很大的发展空间,特别是对于大型风力发电机组变桨问题来说,为了保证风力发电系统运行安全,需要全面加强后备电源管理工作,因此加强后 备电源管理系统设计尤为重要。 1蓄电池在变桨控制系统中的应用原理 结合能量守恒的原理,在能源转化当中,会在数量、时间、物质形态产生一 定差异。储能技术就是一种能量转化的“中介”,通过能量存储与释放,从而提高 能量转化与应用的灵活性。蓄电池作为化学储能的一种,具有易存储、易运输的 优势,在当今风电领域中的应用十分广泛。 为了可以提高大型风力发电系统的可靠性,变桨控制系统电源通常要设置备 用方案。后备电源主要是起到了紧急收浆的作用。如果大型风力发电机组产生了 故障问题,一组蓄电池可以为紧急变桨控制提供动力,在直流母线上并联电池组,之后统一安装到变频器上,在风电机正常运行当中,只需要通过浮点来保持电压 即可,假如在运行当中因为故障断电,系统会自动将直流电传输给变频器,变频 器通电之后即可实现相应功能,带动伺服电机运行实现收浆。 2硬件系统设计 2.1电源电路设计 (1)电池组串充电源 电源作为风电机的重要驱动装置,保证电源运行质量可以确保设备运行效率 以及运行安全性。这就需要保证电源电路设计的科学性。大部分电源管理系统都 是采用了4节电池组串充方法,电压为52VDC,因此主要的电源电路中需要融入 +52V电源电路。在实践应用当中需要采用MC34063芯片,包含了DC/DC变换器 各种功能,由单片机统一控制电路。 (2)其他电源 +15V电源,电路由MC34063芯片产生+15V电源,相比+52V电源,+15V电 源主要是采用了MC34063降压变换器形式;+5V电源,主要是采用了稳压块 7808芯片,之后通过+15V电源转化而来;+12V电源当中,主要是通过VOLTREG7812稳压块来实现相关功能,由+15V电源驱动。运行稳压7812模块过 程中,输入电源要比输出电源更大一些,通常为2V以上。 2.2 LED显示系统 LED驱动系统应用DIP-8开关和单片机I/O输出端口连接,个女警单片机实际

风力发电机变桨系统

风力发电机变桨系统 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳1.5s/se机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 MY1.5s/se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw

大型风力发电机组安装

大型风力发电机组安装 摘要:《可再生能源法》的正式实施,为我国风力发电创造了良好的发展环境,依据现有政策,中国风电装机容量到2020年底可达到5000万千瓦。目前风力发电机组趋向大型化,目前全国安装风力发电机组平均功率达到1.5mw以上。大型机组的吊装给风机安装带来新的课题。本文结合工程实例介绍了风力发电机组安装过程。关键词:风力发电机组;安装;塔架基础;接地系统 1 风力发电机组组成 一套完整的大型风力发电机组由塔架基础、接地系统、塔架、机舱、轮毂、叶片、箱式变压器、及电气等部分组成。 风机基础为整台风力发电机组提供各种受力支撑,将风力所受力均匀合理的传递到大地,是整个风力发电机组的根本。基础一般采用八边型或圆形钢筋混凝土设计,部分采用退台。接地系统一般与基础施工同时进行,根据设备型号不同,接地电阻值为2~8ω不等。风机塔架现在全部采用圆筒钢材式,分节安装组合,而塔筒的高度一般是随风力高度分布情况而确定。风机机舱是整个风力发电机组的大脑,除直驱型机组外,其他型号风机机舱内集成了发电机系统、齿轮变速系统、制动系统、偏航系统、冷却系统等。直驱式发电机组机舱里面取消了发电机、齿轮变速系统,将发电机直接外置至与轮毂连接部分。风机轮毂是叶片与机舱或发电机的连接部件,采用椭圆或平顶型。叶片是机组吸收风能的部件,采用特殊材料制作。机组常见的采用两叶和三叶式,有一叶或多叶式。

2风力发电机组安装 2.1安装场地要求 目前国内风电场施工及设备存放场地主要有两种类型,一种是在现场设立临时存放场地,风机设备到货后集中存放在临时仓库,安装时再二次运输到吊装点。另一种是直接将风机设备运输到吊装现场存放不再二次运输。为了节约运输的成本,越来越多的风电场采用风机设备一次到位的方式,在设备到达现场前须要对进行场地策划,让场地符合风机设备安装的要求。 2.2 设备卸车 风电场设备卸车主要是指塔筒、机舱等大件设备的卸车。机舱是风机最重要的部件,也是最重的设备。根据设备的技术参数以及现场机械的实际情况,可以采用单机卸车或双机卸车。 2.3 风机设备吊装 风机设备吊装主要指塔筒、机舱、叶轮等大件设备吊装,其中最重要的环节是吊装机舱、叶轮或发电机(直驱式)。机舱或发电机最重则吊机受力也最大;叶片的受风面积最大,因此对风速要求严格,一般要求风速不大于8m/s。为了考虑叶片吊装的方便和容易操作,机舱或发电机吊装时吊机的位置既要考虑满足机舱的要求也要满足叶轮的吊装要求。 叶轮吊装时,要求随时注意风速的变化,上面2个叶片溜绳按技术要求绑扎。每条溜绳需要5~6人,配合指挥人员进行松紧调整。叶轮与机舱对接时,需要2~4根尺寸适当的定位销进行定位,然

相关文档
最新文档