基于多光谱和高光谱的干旱遥感监测研究进展
基于无人机遥感的作物表型参数获取和应用研究进展

㊀山东农业科学㊀2024ꎬ56(4):172~180ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2024.04.022收稿日期:2023-03-30基金项目:山东省自然科学基金项目(ZR2021M055)ꎻ国家重点研发计划课题(2021YFB3901303)作者简介:曾世伟(2000 )ꎬ男ꎬ硕士研究生ꎬ主要从事农业遥感研究ꎮE-mail:1422180426@qq.com通信作者:侯学会(1985 )ꎬ女ꎬ博士ꎬ助理研究员ꎬ主要从事农业遥感研究ꎮE-mail:sxhouxh@126.com王宗良(1986 )ꎬ男ꎬ博士ꎬ副教授ꎬ主要从事光纤传感研究ꎮE-mail:wangzongliang@lcu.edu.cn基于无人机遥感的作物表型参数获取和应用研究进展曾世伟1ꎬ2ꎬ侯学会2ꎬ王宗良1ꎬ骆秀斌2ꎬ巫志雄1ꎬ2ꎬ王宏军1(1.聊城大学物理科学与信息工程学院ꎬ山东聊城㊀252000ꎻ2.山东省农业科学院农业信息与经济研究所ꎬ山东济南㊀250100)㊀㊀摘要:作物表型参数是由基因和环境因素决定或影响的作物生理㊁生化特征和性状ꎮ通过获取不同环境㊁不同生长时期的作物表型信息ꎬ可直观了解作物生长状况ꎬ以及时调整栽培管理措施ꎬ保障作物高效生产ꎮ无人机搭载RGB相机㊁光谱相机㊁激光雷达等传感器ꎬ可充分发挥灵活性好㊁获取数据效率高㊁成本相对较低等优势ꎬ实现作物表型参数信息的高效获取ꎬ同时ꎬ快速发展的图像处理和识别分类技术又为无人机遥感获取的作物表型参数信息提供了有效的处理和分析方法ꎬ从而使得作物监测更加便捷㊁高效ꎮ本文总结了无人机遥感获取作物表型参数信息的流程与方法ꎬ概括了基于无人机遥感开展作物株高㊁冠层覆盖度㊁叶面积指数㊁水分胁迫㊁生物量㊁产量等表型参数研究的现状ꎬ并对无人机遥感技术在作物表型参数信息解析方面的应用前景进行了展望ꎬ以期为充分发挥该技术在农业生产中的作用提供参考ꎮ关键词:无人机遥感ꎻ作物表型参数ꎻ作物监测中图分类号:S127㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2024)04-0172-09ResearchProgressofObtainingandUtilizingCropPhenotypicParametersBasedonUAVRemoteSensingZengShiwei1ꎬ2ꎬHouXuehui2ꎬWangZongliang1ꎬLuoXiubin2ꎬWuZhixiong1ꎬ2ꎬWangHongjun1(1.SchoolofPhysicalScienceandInformationTechnologyꎬLiaochengUniversityꎬLiaocheng252000ꎬChinaꎻ2.InstituteofInformationandEconomicResearchꎬShandongAcademyofAgriculturalSciencesꎬJinan250100ꎬChina)Abstract㊀Cropphenotypicparametersrefertocropphysiologicalandbiochemicalcharacteristicsthataredeterminedorinfluencedbygeneticandenvironmentalfactors.Throughobtainingcropphenotypicinformationunderdifferentenvironmentsandgrowthperiodsꎬthegrowthstatusofcropscouldbeknownintuitivelysothatcultivationmanagementstrategiescouldbeadjustedintimetoensurehighcropproductivity.ThroughcarryingdifferentsensorssuchasRGBcameraꎬspectrumcameraandLIDARꎬUAVremotesensinghasadvantagesofgoodflexibilityꎬhighefficiencyandrelativelylowcostinacquiringdataꎬwhichprovidesanefficientwaytoobtaincropsphenotypicinformation.Atthesametimeꎬfastdevelopingimageprocessingandrecognitionandclassificationtechnologiesprovideseffectiveprocessingandanalysismethodsforcropphenotypicparameterin ̄formationobtainedbyUAVremotesensing.Allthesemakecropmonitoringmoreconvenientandefficient.InthispaperꎬprocessandmethodsofobtainingphenotypicparameterinformationwereintroducedꎬandresearchstatusofcropphenotypicparametersbasedonUAVremotesensingsuchasplantheightꎬcanopycoverageꎬleafareaindexꎬwaterstressꎬbiomassandyieldweresummarizedꎬandtheapplicationforegroundofUAVremotesensingtechnologyincropphenotypicinformationanalysiswasprospectedꎬhopingtoprovidereferencesforbetterapplicationofthetechnologyinagriculturalproduction.Keywords㊀UAVremotesensingꎻCropphenotypicparametersꎻCropmonitoring㊀㊀随着世界人口快速增长㊁可耕地面积越来越少㊁全球气候急剧变化和资源短缺加剧ꎬ农业生产面临着严峻的挑战ꎬ粮食安全问题日益突出[1]ꎮ因此ꎬ培育优良品种以达到稳产㊁增产的目的ꎬ成为目前作物研究的热点方向之一ꎮ作物表型信息如株高㊁叶面积指数㊁生物量等影响着后期产量的形成ꎬ是育种过程中的重要参考指标ꎮ传统的作物表型信息获取多采用人工地面抽样调查法ꎬ费时㊁费力且观测数量有限ꎬ不能满足大面积作物信息调查需求ꎮ近年来ꎬ低空无人机遥感技术快速发展ꎬ通过无人机搭载RGB相机㊁光谱相机㊁激光雷达等构建无人机遥感平台ꎬ能够快速㊁高效获取一定范围内作物冠层的株高㊁叶面积指数㊁生物量等的连续动态信息ꎬ从而实现作物产量的动态预测[2]ꎮ目前ꎬ在田间作物表型遥感监测研究中应用的无人飞行器有无人直升机㊁飞艇㊁固定翼无人机㊁多旋翼无人机等ꎬ其中对起降条件要求不高且可以满足任何飞行轨迹要求的多旋翼无人机应用较为广泛ꎬ获取作物表型信息更加方便㊁快捷[3]ꎮ但由于无人机负载能力有限ꎬ其搭载的传感器需要满足高精度㊁轻质量和小尺寸的要求ꎬ目前适合无人机搭载的主要传感器有RGB数码相机㊁红外热成像仪㊁多光谱相机㊁高光谱相机㊁多谱段激光雷达等ꎮ不同的传感器性能不同ꎬ获取的作物表型参数信息也不同ꎬ导致最终得到的遥感监测结果不同[4-5]ꎮRGB相机[6]㊁热红外成像仪[7]㊁多光谱相机[8-9]和高光谱相机[10-11]成像原理相同ꎬ都是通过感测光谱波段来捕获图像信息ꎬ但它们感测光谱波段的种类和能力存在差异[12]ꎬ因此可用于测量不同的表型参数[13]ꎬ其中ꎬRGB相机可用于测量作物的株高㊁冠层覆盖度等ꎻ热红外成像仪可实现在生物和非生物胁迫条件下对作物表型参数的间接测定ꎬ尤其在测量作物的冠层温度时效果较好ꎻ多光谱相机和高光谱相机都能测量作物的叶面积指数㊁生物量㊁产量等表型参数ꎬ但高光谱相机的光谱分辨率更高ꎬ能获得更多的波段数据ꎬ可测量更多的作物表型参数ꎬ然而同时也存在数据处理过程更加复杂㊁仪器价格较高的问题ꎮ多谱段激光雷达能够分析作物的光谱特性和空间目标方位㊁距离㊁三维形貌和状态特征[14]ꎬ常用于对作物株高和生物量的测量研究ꎮ本文综述了无人机遥感监测农作物表型参数的信息获取流程㊁方法及研究进展ꎬ并对今后的研究方向进行展望ꎬ以期为深入研究和应用该技术提供参考ꎮ1㊀无人机遥感监测图像数据的处理及信息提取流程和方法1.1㊀图像处理遥感图像处理是利用无人机遥感研究作物表型的基础ꎮ因遥感图像存在由大气㊁传感器㊁无人机飞行状态等因素引起的几何畸变和辐射畸变ꎬ在提取作物表型参数之前必须对图像进行预处理ꎬ以有效改善提取表型参数信息的精度[15]ꎮ图像处理过程包括辐射定标㊁几何校正㊁数据质量检查㊁图像特征点提取㊁图像特征匹配㊁空中三角测量与区域网平差㊁生成数字高程模型(DEM)㊁正射校正生成数字正射影像(DOM)和拼接镶嵌等[16]ꎮ需根据无人机搭载的传感器类型选择合适的图像处理方法ꎮ如戴建国等[17]获取可见光图像后ꎬ使用Pix4Dmapper软件进行图像快速拼接检查ꎬ然后通过正射校正获得高质量㊁高精度的正射影像图ꎻ程雪等[18]获取高光谱影像后ꎬ除了使用Pix4DMapper软件进行拼接镶嵌外ꎬ还采用辐射定标以及大气校正等对图像进行了处理ꎮNäsi等[19]将得到的光谱图像依次进行了辐射标定㊁几何校正㊁图像融合和图像增强ꎬ然后使用371㊀第4期㊀㊀㊀㊀㊀㊀曾世伟ꎬ等:基于无人机遥感的作物表型参数获取和应用研究进展ArcGIS㊁ENVI等软件提取光谱反射率ꎬ用于建立研究作物表型性状的植被指数ꎮ1.2㊀特征集的选取作物特征包括植被指数特征㊁纹理特征等ꎬ在实际应用时需根据研究目的选择合适的特征来构成特征集ꎮ植被指数是通过多个波段数据计算得出的ꎬ能够有效度量作物株高㊁生物量和覆盖度等表型信息[20]ꎮ常用的植被指数有归一化差值植被指数(NDVI)㊁绿色归一化植被指数(GNDVI)㊁比值植被指数(RVI)㊁红绿蓝植被指数(RGBVI)㊁红边归一化植被指数(rNDVI)㊁优化土壤调节植被指数(OSAVI)㊁修正归一化植被指数(mNDVI)㊁可见光大气阻抗植被指数(VARI)㊁蓝绿色素指数(BGI2)㊁增强植被指数(EVI2)等ꎮ其中ꎬNDVI能够突出植被在图像中的显示ꎬ可准确估测植被的覆盖度[12]ꎻVARI㊁NDVI㊁RVI㊁rNDVI㊁mNDVI㊁GNDVI能有效预测叶面积指数[18]ꎻNDVI㊁OSA ̄VI㊁BGI2等常被用于预测植物叶片的叶绿素含量[21]ꎻVARI能有效预测作物的水分胁迫ꎻRDVI㊁RGBVI在估测作物生物量方面效果较好[22]ꎮ图像的灰度分布及其重复性是纹理特征的表现形式ꎬ可以反映地物的视觉粗糙程度ꎮ不同地物表现出的纹理特征不同ꎬ因此可根据该特征描述和识别地物[16]ꎮ另外ꎬ同一波段的图像有相同种类的纹理特征ꎬ可通过最小噪声分离变换和基于主成分分析方法等提取纹理滤波特征ꎬ选择最佳波段ꎬ作为最终纹理滤波特征[23]ꎮ1.3㊀特征筛选用于遥感图像估测表型参数的属性特征很多ꎬ若不经过筛选ꎬ则分析特征和训练模型所需要的时间会很长ꎬ模型也会很复杂ꎬ从而导致模型的泛化能力下降ꎬ不利于在实际生产中推广应用ꎮ因此ꎬ需在保证估测精度的前提下ꎬ选用最少的特征来构建模型ꎬ以避免特征变量过多引起的 维数灾难 ꎮ常用的特征筛选方法大致分为三类ꎬ分别是过滤式㊁包裹式㊁嵌入式筛选法[24]ꎮ过滤式特征筛选法先选定特征再进行学习ꎬ具有较强通用性ꎬ其典型方法有ReliefF算法ꎻ包裹式特征筛选法利用学习算法的性能来评价自身优劣ꎬ筛选得到的特征集分类性能较好ꎬ其典型方法有SVM-RFE算法ꎻ嵌入式特征筛选法将特征选择过程作为学习过程的一部分ꎬ在学习过程中自动进行特征筛选ꎬ特征筛选效果最好㊁速度最快且模式单调ꎬ其典型方法有Lasso算法[25]ꎮ特征选定后ꎬ还要根据估测能力强弱对其进行权重赋值ꎬ最终构建出最佳特征集ꎬ用于建立估测模型ꎮ1.4㊀模型的构建及精度评价构建估测模型能够表征遥感数据与作物特征的相关性ꎬ可为定量反演作物的表型参数奠定基础[1]ꎮ1.4.1㊀数据集的划分㊀估测模型的构建及其精度与样本数量和质量紧密相关ꎬ因此确保田间采样质量是保证构建模型估测效果的重要前提[18]ꎮ采集到的样本首先要采用适当的方法合理地划分成训练样本集和验证样本集ꎮ常见的划分方法有留出法㊁交叉验证法和自助法ꎬ其中交叉验证法是无人机遥感监测作物表型参数研究中最常用的方法ꎮk折交叉验证是典型的交叉验证法ꎬ其原理是将数据集分成k个样本数相等的子集ꎬ任选其中1个子集作为测试集ꎬ另外k-1个子集作为训练集ꎬ然后无重复地执行k次ꎬ使得每个子集都能作为训练集和测试集来训练模型ꎮ1.4.2㊀模型构建㊀除数字高程模型能够有效且快速获取作物株高信息外ꎬ其他表型参数的估测模型一般采用机器学习算法构建ꎮ根据训练数据是否拥有标记信息ꎬ可将机器学习算法分为监督式和非监督式两种[26]ꎮ分类和回归算法是典型的监督式算法ꎬ包括支持向量回归(SVR)㊁随机森林回归(RFR)㊁人工神经网络(ANN)㊁多元线性回归(MLR)等ꎬ其中回归算法更适用于数据具有连续性的叶面积指数㊁生物量㊁产量㊁水分胁迫等的监测ꎬ而分类算法更适用于作物分类和冠层覆盖度等的监测ꎮ另外还有一些表型参数研究没有足够的先验知识ꎬ很难对其进行人工标注且标注成本较高ꎬ通常采用无监督算法训练被标记的样本ꎬ以解决模式识别过程中的各种问题ꎮ聚类算法是非监督学习算法的代表ꎬ依据相似度进行分471山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀类ꎬ典型的聚类算法有K均值(K-means)聚类算法和K-中心点(K-medoids)聚类算法ꎮ1.4.3㊀模型估测精度评价㊀估测模型的精度评价ꎬ通常用决定系数(R2)和均方根误差(RMSE)作为评判预测值与实测值拟合效果的指标ꎬ其中ꎬR2值越接近1ꎬ说明模型的参考价值越高ꎻRMSE值越小ꎬ说明模型精度越高[27]ꎮ2㊀无人机遥感监测作物表型参数的研究进展2.1㊀作物株高株高能够反映作物的群体结构状况ꎬ植株过高易导致倒伏ꎬ而过矮会降低群体中下部的通风和透光ꎬ导致光合效率下降ꎬ进而影响作物产量ꎬ因此株高监测在作物生产调控中具有重要意义ꎮ作物株高监测通常利用获取可见光数据来测量ꎮ张宏鸣等[28]用无人机搭载数码相机获取作物的可见光图像ꎬ采用高清数码正射影像(DOM)和数字表面模型(DSM)相结合的骨架算法提取植株骨架ꎬ估测作物株高的精度较高(R2=0.923ꎬRMSE=11.493cmꎬMAE=8.927cm)ꎮ牛庆林等[29]利用无人机拍摄玉米的高清数码影像ꎬ将其与地面控制点(GCP)结合进行图像拼接处理ꎬ生成相应的DSM和DOMꎬ得到的株高预测值与实测值拟合性较高(R2=0.93ꎬRMSE=28.69cmꎬnRMSE=17.90%)ꎮ刘治开等[30]用无人机拍摄冬小麦的高清数码影像ꎬ通过构建作物DSM及作物高度模型(CHM)来测量小麦株高ꎬ最终得到的估测结果较好(R2和RMSE分别为0.82和4.31cm)ꎮKhan等[31]使用无人机遥感平台拍摄小麦的RGB图像ꎬ采用Pix4Dmapper软件处理后用于估测小麦株高ꎬ精度较高(R2=0.85ꎬRMSE=6.64cm)ꎮ此外ꎬ有研究者利用多光谱和高光谱成像技术获得多个波段和空间特征来测量作物株高ꎮ边琳等[32]使用无人机搭载多光谱传感器获得烤烟的遥感信息ꎬ捕捉到多个波段的反射光ꎬ通过构建光谱反射率与烤烟株高的拟合模型ꎬ估测烤烟株高的效果最佳(R2=0.785)ꎮAasen等[33]利用无人机采集三维高光谱图像来建立三维表面高光谱模型ꎬ实现株高可视化ꎬ株高估算效果也较好(R2=0.7)ꎮ但总体来说ꎬ利用高光谱成像技术测量作物株高的效果并不理想ꎬ而在估测作物覆盖度[34]㊁生物量[35]㊁叶面积指数[36]㊁产量[37]等表型参数时的精确度则较好ꎮ2.2㊀作物冠层覆盖度冠层覆盖度是反映作物生长状况的重要因素ꎬ可通过提取冠层覆盖度监测作物长势[38]ꎮ通过无人机遥感平台获取可见光图像和多光谱图像ꎬ然后利用计算机视觉方法或植被指数和光谱反射率建模反演等方法可快速得到作物的冠层覆盖信息[39]ꎮJin等[40]利用无人机遥感搭载数码相机获取研究区域的可见光成像数据ꎬ采用原始颜色特征作为模型输入ꎬ选用支持向量机算法训练作物分类模型ꎬ并选用粒子群优化算法(PSO)训练SVM模型参数(惩罚系数c㊁不敏感损失系数ε以及核函数功能γ)ꎬ最终监测结果的RMSE和rRMSE分别为34.05株/m2和14.31%ꎬ偏差为9.01株/m2ꎮ万亮等[41]利用无人机搭载多光谱相机获取多光谱图像ꎬ将各个波段的光谱反射率作为特征输入到随机森林回归模型ꎬ最终得到的结果较好(R2=0.93ꎬrRMSE=9.47%)ꎮ武威等[42]采用图像处理技术分析小麦图像的颜色特征 绿光标准化值(NDIG)ꎬ并提出叶片盖度(LCD)参数ꎬ将NDIG和LCD相结合作为多元逐步回归模型的输入特征ꎬ估测效果较好(R2=0.896)ꎮ周在明等[43]使用四旋翼无人机搭载ADCAir多光谱相机ꎬ通过NDVI指数模型获取多光谱植被覆盖度信息ꎬ以高精度可见光影像为真值进行验证ꎬ结果表明NDVI模型估算值与真实值之间的决定系数为0.92ꎬ具有较好的一致性ꎮ相比广泛应用的无人机可见光图像[23ꎬ44-46]ꎬ利用无人机多光谱图像反演植被覆盖度时图像的空间分辨率要求较低[47]ꎮ目前ꎬ主要通过计算机视觉方法或植被指数建模反演等手段获取作物的冠层覆盖度信息ꎮ然而ꎬ这些方法存在一定的局限性ꎮ今后还需寻找一种普遍适用的方法ꎬ以实现对不同作物冠层覆盖度的精确获取ꎬ从而完善作物冠层覆盖度提取技术[48]ꎮ571㊀第4期㊀㊀㊀㊀㊀㊀曾世伟ꎬ等:基于无人机遥感的作物表型参数获取和应用研究进展2.3㊀作物叶面积指数叶面积指数(LAI)是指单位面积内作物叶片面积的总和ꎮLAI是表征作物光合作用㊁呼吸作用以及蒸腾作用的重要指示因子ꎬ也是评价作物长势和产量的重要依据ꎬ因此快速且高效地获取作物LAI对于估测作物产量具有重要意义[36]ꎮ陶惠林等[35]利用无人机搭载高光谱仪获取高光谱图像ꎬ通过线性回归和指数回归挑选出最佳估测参数NDVIˑSR作为模型的输入特征ꎬ然后采用多元线性回归构建模型ꎬLAI估测精度较高(建模和验证的R2㊁RMSE㊁NRMSE分别为0.6788㊁0.69㊁19.79%及0.8462㊁0.47㊁16.04%)ꎮ杨雨薇等[49]使用无人机遥感平台获取作物的高光谱影像ꎬ对光谱数据预处理后计算出植被指数NDVIꎬ然后构建出三种类型的模型 线性回归模型㊁物理模型㊁回归模型与物理模型相结合的半经验模型ꎬ用来反演作物LAIꎬ其中半经验模型的反演精度最好(R2=0.89)ꎮ孙诗睿等[50]利用无人机搭载多光谱传感器获取冬小麦多光谱影像ꎬ通过多个植被指数构建随机森林模型对冬小麦的LAI进行反演ꎬ反演值与真实值之间的R2=0.822ꎬRMSE=1.218ꎮ李剑剑等[51]利用无人机遥感平台获取地表作物的高光谱数据ꎬ然后结合PROSPECT叶片光学模型和SAIL冠层二向性反射模型相耦合后生成的模型(PROSPECT+SAIL)来反演作物的LAIꎬR2=0.82ꎬRMSE=0.43m2/m2)ꎮ傅银贞等[52]利用IRS-P6(LISS-Ⅲ)获取多光谱数据并计算出DVI㊁EVI2㊁MSAVI㊁NDVI㊁RDVI㊁RVI㊁TNDVI共7种植被指数ꎬ建立了LAI与各植被指数的统计模型ꎬ其中NDVI㊁RDVI㊁TNDVI反演LAI的效果较好ꎬ决定系数R2均能够达到0.76以上ꎮ2.4㊀作物水分胁迫测量作物水分胁迫对于发展节水灌溉农业及提高水分利用效率有重要意义[53]ꎮ气孔导度和叶片水势是表征作物水分胁迫的重要指标ꎮ冠层温度可反映气孔导度ꎬ而作物水分胁迫指数(CW ̄SI)与气孔导度相关ꎬ因此可以基于冠层温度测量监测作物水分胁迫状况[54]ꎮ张智韬等[55]基于无人机搭载RGB相机和近红外相机采集的图像ꎬ采用Otsu-EXG-Kmeans算法对玉米冠层温度进行提取ꎬ用户精度为95.9%ꎬ精度较高ꎬ提取的冠层温度与实测温度更接近(r=0.788)ꎬ将冠层温度代入水分胁迫公式计算出CWSIꎬCWSI与土壤含水率的相关性较高(r=-0.738)ꎮBellvert等[56]基于无人机搭载热成像仪获取热成像图片ꎬ得到葡萄的冠层温度ꎬ并计算出相应的CWSIꎬ发现CWSI与叶片水势的相关性较高(R2=0.83)ꎮ除了利用可见光㊁近红外和热红外传感器监测作物水分胁迫的方法外ꎬ利用多光谱㊁高光谱遥感以及多种传感器获取单一或多个波段建立植被指数模型也是常用的方法[57]ꎮ王敬哲等[58]采用无人机搭载高光谱传感器获取影像数据ꎬ经过5种不同的预处理后ꎬ构建了干旱区绿洲农田土壤含水量(SMC)高光谱定量估算模型ꎬ其中通过吸光度(Abs)预处理得到的模型预测精度最好ꎬ其建模集Rc2和RMSE分别为0.84㊁2.16%ꎬ验证集Rp2与RMSE分别为0.91㊁1.71%ꎬ相对分析误差(RPD)为2.41ꎮ张智韬等[54]利用无人机遥感系统获得玉米冠层多光谱正射影像ꎬ并同步采集玉米根域不同深度土壤含水量(SMC)ꎬ通过灰度关联法筛选出对SMC敏感的植被指数ꎬ采用多元线性回归㊁反向传播神经网络(BPNN)㊁支持向量回归(SVR)等机器学习方法构建不同生育时期的敏感植被指数与SMC的关系模型ꎬ结果表明SVR模型在各生育期的建模与预测精度均最优(建模集R2=0.851ꎬRMSE=0.7%ꎬNRMSE=8.17%ꎻ验证集R2=0.875ꎬRMSE=0.7%ꎬNRMSE=8.32%)ꎮ2.5㊀作物生物量生物量是作物产量形成的重要基础ꎬ准确快速获取作物生物量对预测其产量意义重大[59]ꎬ同时ꎬ生物量的定量估算也可为碳循环研究提供重要参考[48]ꎮ根据传感器收集到的数据信息ꎬ将能够反映作物生物量的不同特征数据相结合ꎬ构建更有效且不相关的特征ꎬ然后将该特征输入到回归模型中ꎬ能够提高作物生物量估测的准确性[60]ꎮ万亮等[41]利用无人机同时搭载数码相机和多光谱相机获取研究区域的可见光和多光谱成像数据ꎬ将671山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀可见光图像的颜色特征和纹理特征与多光谱图像的光谱反射率融合后输入到随机森林回归模型(RFR)中ꎬ有效改善了穗生物量的评估精度(R2=0.84ꎬrRMSE=8.68%)ꎮWang等[61]评估了高光谱和激光雷达数据融合在玉米生物量估算中的应用ꎬ结果表明ꎬ与单独使用LiDAR或高光谱数据相比ꎬ高光谱和LiDAR数据相融合能够更好地估测玉米的生物量(R2=0.883ꎬRMSE=321.092g/m2ꎬRMSECV=337.653g/m2)ꎮ刘畅等[62]结合纹理特征与植被指数构建了一种 图-谱 融合指标ꎬ用该指标构建的生物量模型精度较高(R2=0.81ꎬRMSE=826.02kg hm-2)ꎬ明显高于用单一植被指数(R2=0.69)和单一纹理特征(R2=0.71)构建的生物量模型ꎮ综上所述ꎬ不同的作物具有不同的特征ꎬ即使同一作物在不同的生长条件下也会表现出不同的特征[63]ꎬ这就需要使用不同的传感器来全面收集作物信息ꎬ并筛选出一些与生物量相关性最好的特征ꎬ将其融合后输入到回归模型中ꎬ从而实现精准估测作物生物量和提高估算模型精度ꎮ当研究的作物生物量较大时ꎬ用常规的植被指数来估测生物量往往会受到饱和问题的限制ꎬ导致不能较好地估算作物生物量ꎮ付元元等[64]研究证实ꎬ将波段深度分析和偏最小二乘回归(PLSR)相结合ꎬ能够有效解决作物生物量过大导致的问题ꎬ并提高冬小麦生物量的估算精度ꎬ其中波段深度比(BDR)与PLSR结合的模型的估算精度较好(R2=0.792ꎬRMSE=0.164kg/m2)ꎮ2.6㊀作物产量作物产量关乎国家粮食安全ꎬ早期准确地监测预报作物产量对于后期田间管理及灾害评估等具有重要意义ꎮ通过无人机遥感提取作物产量的常规方法如下:使用无人机搭载多种传感器获取可见光㊁光谱数据ꎬ基于可见光图像提取纹理特征ꎬ根据光谱数据提取特征波段并计算植被指数ꎻ然后将纹理特征㊁植被指数等特征作为模型输入ꎬ使用机器学习算法构建产量估测模型ꎻ最后引入R2和RMSE评价产量估测模型ꎮ模型构建时ꎬ将多种特征变量相结合往往能够改善作物估测模型的精度ꎮElsayed等[65]利用偏最小二乘法将光谱指数㊁温度参数和植株含水量等数据融合ꎬ使得小麦产量的估测效果得到进一步改善(R2=0.97ꎬRMSE=26.48g/m2)ꎮMaim ̄aitijiang等[66]利用RGB信息㊁光谱反射率及温度参数等多模态数据ꎬ基于中间级特征融合的DNN(DNN-F2)方法ꎬ准确估测了大豆产量(R2=0.720ꎬrRMSE=15.9%)ꎮ严海军等[67]使用无人机搭载多光谱相机在苜蓿的分枝期㊁现蕾期和初花期进行遥感监测ꎬ将植被指数与株高组合作为输入变量并采用支持向量回归算法构建模型ꎬ产量估测精度最高(R2=0.90ꎬRMSE=500kg/hm2ꎬNRMSE=14.3%)ꎮ可见ꎬ选用多源数据融合构建模型的效果较好ꎮ另外ꎬ在构建模型时ꎬ使用的算法不同也会影响作物产量估测的精度ꎮ张少华等[68]利用低空无人机遥感平台搭载多光谱相机㊁热红外相机和RGB相机ꎬ同步获取小麦关键生育时期的无人机遥感影像ꎬ并提取光谱反射率㊁热红外温度和数字高程信息ꎬ选取并计算出相应的特征集ꎬ然后利用支持向量回归(SVR)㊁多元线性回归(MLR)㊁随机森林回归(RFR)㊁偏最小二乘回归(PLSR)等机器学习算法建立小麦产量的估测模型ꎬ最终结果表明采用RFR算法建立的模型效果最好(R2=0.724ꎬRMSE=614.72kg/hm2ꎬMAE=478.08kg/hm2)ꎮ申洋洋等[69]采集冬小麦多光谱数据ꎬ选取多光谱相机的5个特征波段计算各生育时期的72个植被指数ꎬ分别通过逐步多元线性回归㊁偏最小二乘回归㊁BP神经网络㊁支持向量机㊁随机森林构建不同生育时期的产量估算模型ꎬ其中基于随机森林算法建立的模型估算效果最优(R2=0.94ꎬRMSE=0.32ꎬRE=9%)ꎮ赵鑫[70]利用多旋翼无人机搭载数码相机拍摄小麦的可见光图像ꎬ经预处理后计算出植被指数和颜色特征ꎬ然后结合多种机器学习算法建立产量估测模型ꎬ其中随机森林算法模型精度最高(R2=0.74)ꎮ作物发育时期也会影响模型精度ꎮ刘昌华等[71]以无人机多光谱影像为基础ꎬ提取冬小麦在几个生长阶段下的冠层多光谱数据并建立产量估算模型ꎬ其中返青期估算效果较差ꎬ拔节期㊁孕穗期㊁扬花期估算效果相近且较好(R2分别为0.93㊁771㊀第4期㊀㊀㊀㊀㊀㊀曾世伟ꎬ等:基于无人机遥感的作物表型参数获取和应用研究进展0.96㊁0.94)ꎮ申洋洋等[69]以冬小麦拔节期㊁孕穗期㊁抽穗期㊁灌浆期㊁成熟期的无人机多光谱影像为数据源ꎬ利用随机森林算法构建模型的R2㊁RMSE㊁RE分别为拔节期0.92㊁0.35㊁11%ꎬ孕穗期0.93㊁0.33㊁10%ꎬ抽穗期0.94㊁0.32㊁9%ꎬ灌浆期0.92㊁0.36㊁9%ꎬ成熟期0.77㊁0.67㊁33%ꎬ可见ꎬ抽穗期的估算效果最好ꎬ拔节期㊁孕穗期㊁灌浆期估算效果接近㊁也较好ꎬ成熟期的估算精度最差ꎮ3㊀总结与展望本文综述了基于无人机遥感开展作物表型参数研究的过程和方法㊁无人机遥感平台及其在作物表型参数估测上的应用研究进展ꎮ无人机遥感平台凭借着工作效率高㊁灵活性好㊁成本低㊁分辨率高㊁适用于复杂野外环境等优点ꎬ成为研究作物表型参数的有利工具ꎬ为农业精细化管理及农田生态系统建模提供了技术支持ꎮ由于外界环境和作物自身因素影响以及研究方法的局限性ꎬ目前多数研究构建的表型参数模型的精确性㊁鲁棒性㊁泛化性等性能较差ꎬ缺乏能够较好估测不同作物类型的表型参数的通用模型和方法ꎬ而且目前无人机遥感监测表型参数信息的研究多集中于玉米㊁小麦㊁水稻㊁大豆等少数作物ꎬ其他作物类型鲜有研究ꎬ因此该技术研究在深度与广度上还有很大的发展空间ꎮ参㊀考㊀文㊀献:[1]㊀仇瑞承ꎬ魏爽ꎬ张漫ꎬ等.作物表型组学测量方法综述[J].中国农业文摘-农业工程ꎬ2019ꎬ31(1):23-36ꎬ55. [2]㊀周济ꎬTardieuFꎬPridmoreTꎬ等.植物表型组学:发展㊁现状与挑战[J].南京农业大学学报ꎬ2018ꎬ41(4):580-588. [3]㊀TothCꎬJóz'kówG.Remotesensingplatformsandsensors:asur ̄vey[J].ISPRSJournalofPhotogrammetryandRemoteSens ̄ingꎬ2016ꎬ115:22-36.[4]㊀WeiXJꎬXuJFꎬGuoHNꎬetal.DTH8suppressesfloweringinriceꎬinfluencingplantheightandyieldpotentialsimultaneously[J].PlantPhysiologyꎬ2010ꎬ153(4):1747-1758. [5]㊀AlheitKVꎬBusemeyerLꎬLiuWXꎬetal.Multiple ̄linecrossQTLmappingforbiomassyieldandplantheightintriticale(ˑTriticosecaleWittmack)[J].TheoreticalandAppliedGenet ̄icsꎬ2014ꎬ127:251-260.[6]㊀GuoWꎬFukatsuTꎬNinomiyaS.Automatedcharacterizationoffloweringdynamicsinriceusingfield ̄acquiredtime ̄seriesRGBimages[J].PlantMethodsꎬ2015ꎬ11:1-15.[7]㊀SiebertSꎬEwertFꎬRezaeiEEꎬetal.Impactofheatstressoncropyield ontheimportanceofconsideringcanopytempera ̄ture[J].EnvironmentalResearchLettersꎬ2014ꎬ9(4):044012. [8]㊀张芳毓ꎬ谭永毅ꎬ聂婧ꎬ等.无人机多光谱在农业中的应用[J].智慧农业导刊ꎬ2022ꎬ2(24):11-13.[9]㊀HussainS.基于无人机载多光谱相机的油菜表观参数反演及早期草害检测[D].武汉:华中农业大学ꎬ2021. [10]ColominaIꎬMolinaP.Unmannedaerialsystemsforphotogram ̄metryandremotesensing:areview[J].ISPRSJournalofPho ̄togrammetryandRemoteSensingꎬ2014ꎬ92:79-97. [11]ZhongYFꎬWangXYꎬXuYꎬetal.Mini ̄UAV ̄bornehyper ̄spectralremotesensing:fromobservationandprocessingtoap ̄plications[J].IEEEGeoscienceandRemoteSensingMaga ̄zineꎬ2018ꎬ6(4):46-62.[12]WangTHꎬLiuYDꎬWangMHꎬetal.ApplicationsofUASincropbiomassmonitoring:areview[J].FrontiersinPlantSci ̄enceꎬ2021ꎬ12:616689.[13]XuRꎬLiCYꎬPatersonAH.Multispectralimagingandun ̄mannedaerialsystemsforcottonplantphenotyping[J].PLoSONEꎬ2019ꎬ14(2):e0205083.[14]李晶ꎬ车英ꎬ王加安ꎬ等.折反射共光路多谱段激光雷达光学系统设计[J].中国激光ꎬ2018ꎬ45(5):273-278. [15]YangGJꎬLiuJGꎬZhaoCJꎬetal.Unmannedaerialvehiclere ̄motesensingforfield ̄basedcropphenotyping:currentstatusandperspectives[J].FrontiersinPlantScienceꎬ2017ꎬ8:1111. [16]朱秀芳ꎬ李石波ꎬ肖国峰.基于无人机遥感影像的覆膜农田面积及分布提取方法[J].农业工程学报ꎬ2019ꎬ35(4):106-113.[17]戴建国ꎬ张国顺ꎬ郭鹏ꎬ等.基于无人机遥感可见光影像的北疆主要农作物分类方法[J].农业工程学报ꎬ2018ꎬ34(18):122-129.[18]程雪ꎬ贺炳彦ꎬ黄耀欢ꎬ等.基于无人机高光谱数据的玉米叶面积指数估算[J].遥感技术与应用ꎬ2019ꎬ34(4):775-784.[19]NäsiRꎬHonkavaaraEꎬLyytikäinen ̄SaarenmaaPꎬetal.UsingUAV ̄basedphotogrammetryandhyperspectralimagingformappingbarkbeetledamageattree ̄level[J].RemoteSensingꎬ2015ꎬ7(11):15467-15493.[20]姚雄ꎬ余坤勇ꎬ刘健.基于无人机多光谱遥感的马尾松林叶面积指数估测[J].农业机械学报ꎬ2021ꎬ52(7):213-221. [21]朱红艳.基于无人机低空遥感的油菜表型信息获取方法研究[D].杭州:浙江大学ꎬ2019.[22]刘建刚ꎬ赵春江ꎬ杨贵军ꎬ等.无人机遥感解析田间作物表型信息研究进展[J].农业工程学报ꎬ2016ꎬ32(24):98-106.[23]赵静ꎬ杨焕波ꎬ兰玉彬ꎬ等.基于无人机可见光图像的夏季玉米植被覆盖度提取方法[J].农业机械学报ꎬ2019ꎬ50871山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀。
干旱区landsat8全色与多光谱数据融合算法评价

评估的问题ꎬ基于居延泽地区的 Landsat8 影像ꎬ采用 11 种单因素指标和面向对象分类方法ꎬ从空间信息量、光谱特
征及地物分类精度 3 个方面综合评价了主成分变换法( principle component transformꎬPC) 、比值变换法( brovey trans ̄
formꎬBT) 、HSV( hue - saturation - value) 变换法、相位恢复变换法( Gram - Schmidt pan sharpeningꎬG - S) 、高通滤波
算法( high pass filteringꎬHPF) 和小波变换法( wavelet transformꎬWT) 等 6 种融合算法的融合效果ꎮ 结果表明ꎬ各融合
算法的空间分辨率及纹理特征相较于原始影像均得到增强ꎮ HSV 法表达空间细节的能力最佳ꎬ但其光谱保真度较
差ꎻ WT 法可最大程度地保持光谱特征ꎬ且空间细节表达能力仅次于 HSV 法ꎬ最适用于 Landsat 8 的影像融合ꎻ 综合
而ꎬ特殊的地理位置和地理环境使区域内部地物类别
空间分辨率、保持多光谱特征及识别目标地物的目
较为单调、地物之间界限模糊ꎬ因而特征提取和地物
的ꎬ融合之 后 影 像 的 视 觉 效 果 和 清 晰 度 均 有 所 提
分类难度较大ꎮ 基于传统像元分类的方法不能较好
高
[2]
ꎮ
国内外学者对不同传感器影像数据的融合算法
专题图制作和矿藏探测等方面 [4ꎬ 10 - 11] ꎬ在干旱区特
征地物识别及土地利用分类适用性评价方面的工作
遥感影像自动解译过程中存在的单一数据源的不
尚不多见ꎮ 居延泽古湖盆区深居欧亚大陆腹地ꎬ是
足ꎬ遥感数据融合技术应运而生并成为遥感研究的
遥感影像处理技术的最新进展

遥感影像处理技术的最新进展遥感技术作为一种非接触式的对地观测手段,已经在众多领域得到了广泛应用,如国土资源调查、环境监测、城市规划等。
而遥感影像处理技术则是从海量的遥感数据中提取有用信息的关键环节。
近年来,随着计算机技术、传感器技术等的不断发展,遥感影像处理技术也取得了显著的进展。
一、高分辨率遥感影像的获取与处理随着卫星技术的不断进步,高分辨率遥感影像的获取变得越来越容易。
高分辨率意味着能够捕捉到更细微的地物特征,为更精确的分析和应用提供了可能。
然而,高分辨率影像也带来了数据量巨大、处理难度增加等问题。
在处理高分辨率遥感影像时,图像配准和融合技术显得尤为重要。
图像配准是将不同时间、不同传感器获取的影像进行精确对齐,以实现信息的综合利用。
而图像融合则是将多源影像的优势结合起来,生成一幅更具信息量和准确性的影像。
为了提高配准和融合的精度,研究人员提出了许多新的算法和模型,如基于特征点的配准方法、多尺度融合算法等。
二、多光谱和高光谱遥感影像分析多光谱遥感影像包含了多个波段的信息,能够反映地物在不同波长下的反射特性。
高光谱遥感影像则具有更高的光谱分辨率,可以提供更详细的地物光谱特征。
在多光谱和高光谱遥感影像分析中,光谱特征提取和分类是重要的研究方向。
传统的基于像素的分类方法往往忽略了地物的空间相关性,导致分类精度不高。
近年来,基于对象的分类方法逐渐兴起,它将影像分割成具有相似特征的对象,然后对对象进行分类,有效地提高了分类精度。
此外,深度学习技术也被应用于光谱特征提取和分类中,取得了较好的效果。
三、雷达遥感影像处理技术雷达遥感具有全天时、全天候的观测能力,在灾害监测、地形测绘等领域发挥着重要作用。
雷达遥感影像的处理面临着斑点噪声去除、几何校正、目标检测等挑战。
针对斑点噪声问题,研究人员提出了多种滤波算法,如均值滤波、中值滤波、小波滤波等。
在几何校正方面,精确的轨道模型和地面控制点的选取是提高校正精度的关键。
农作物病虫害的遥感监测与防控

农作物病虫害的遥感监测与防控农作物病虫害是农业生产中一个严重影响农作物产量和质量的问题。
传统的病虫害监测与防控方法存在着时间、人力和空间限制,难以实现及时、准确的预警与防控措施。
然而,随着遥感技术的不断发展和应用,农作物病虫害的遥感监测与防控成为一种新的手段和解决方案。
本文将深入探讨农作物病虫害的遥感监测与防控的技术原理和应用前景。
一、遥感技术在农作物病虫害监测中的应用遥感技术是通过获取地球表面的电磁波信号并进行分析处理,获取地表的信息和数据。
在农作物病虫害监测中,遥感技术可以通过多光谱、高光谱和雷达等遥感数据获取方法获取农田的图片、光谱数据和高程数据,进而提供病虫害的信息和数据基础。
与传统的人工巡查相比,遥感监测具有以下优势:1.广覆盖性:遥感技术可以实现对大范围地区的监测,同时可以通过多源遥感数据的融合进行全面、准确的监测和分析。
2.实时性:遥感技术可以实现对农田的实时监测,及时获取农作物的生长状态和病虫害的发展情况。
3.精准性:通过遥感数据的分析处理,可以获取各个光谱波段下的农田信息,从而实现对病虫害的准确识别和定量分析。
二、农作物病虫害的遥感监测方法1.农作物健康指数测算农作物的健康指数是通过遥感图像分析农田的植被指数信息,反映农作物的生长状况和病虫害的影响程度。
常用的健康指数包括归一化植被指数(NDVI)和差异植被指数(DVI)。
通过对农田遥感图像进行灰度拉伸、反射率转换和波段选择等处理,可以获得植被指数的信息,进而分析农作物的健康状态和病虫害的发生情况。
2.农作物病虫害的遥感识别通过对农田遥感图像进行目标检测和分类,可以实现农作物病虫害的遥感识别。
目标检测主要包括基于特征的检测方法和基于机器学习的检测方法。
特征检测方法通过提取图像中的纹理、色彩和形状等特征,结合农作物病虫害的特点进行识别。
机器学习方法则通过训练和学习遥感图像的特征和目标信息,实现对农作物病虫害的自动识别。
三、农作物病虫害的遥感防控措施1.定点喷洒与精准施药通过遥感技术获取农田的病虫害分布和密度信息,结合农作物的生长状态和气象数据,可以实现定点喷洒和精准施药。
高光谱与多光谱融合方法

高光谱与多光谱融合方法一、引言高光谱图像(Hyperspectral Images,HSI)与多光谱图像(Multispectral Images,MSI)已经成为遥感领域的重要工具。
高光谱图像能够提供丰富的光谱信息,而多光谱图像则更注重空间分辨率。
将这两种图像融合,可以同时利用它们的光谱和空间信息,提高遥感的精度和效率。
本文将详细介绍高光谱与多光谱融合的方法,包括数据预处理、特征提取、特征选择、分类器设计、融合方法选择、模型优化与评估以及决策支持与应用等方面。
二、数据预处理数据预处理是高光谱与多光谱融合的第一步,包括图像的校正、定标、去噪等操作。
这些操作能够提高图像的质量,为后续的特征提取和分类器设计提供更好的基础。
三、特征提取特征提取是从原始数据中提取有用信息的步骤。
对于高光谱图像,特征可以包括光谱特征、空间特征等。
而对于多光谱图像,特征则可以包括色彩特征、纹理特征等。
这些特征可以为分类器提供更好的输入,提高分类精度。
四、特征选择特征选择是在特征提取后的重要步骤,其目的是选择出最相关的特征,降低数据的维度,同时保持数据的结构。
常用的特征选择方法包括过滤式、包裹式和嵌入式等。
这些方法可以根据数据的特性和应用的需求进行选择。
五、分类器设计分类器设计是利用提取的特征进行分类的步骤。
常用的分类器包括支持向量机(SVM)、决策树(DT)、随机森林(RF)等。
这些分类器可以根据数据的特性和应用的需求进行选择和优化。
六、融合方法选择在将高光谱图像和多光谱图像融合时,需要选择合适的融合方法。
常用的融合方法包括基于像素的融合、基于区域的融合和基于决策层的融合等。
选择合适的融合方法需要考虑数据的特性和应用的需求。
此外,还需要考虑融合后的图像质量和精度等因素。
七、模型优化与评估在完成融合后,需要对模型进行优化和评估。
常用的优化方法包括交叉验证、网格搜索等。
评估指标则可以根据应用的需求进行选择,包括精度、召回率、F1分数等。
多光谱图像分析及其在农业中的应用研究

多光谱图像分析及其在农业中的应用研究第一章:多光谱图像分析概述多光谱图像分析(Multispectral Image Analysis)是指通过多光谱图像数据来获取有关物体的信息和特征。
它是目前遥感图像分析领域中的一种重要技术,可以用于地球资源调查、环境管理、农业生产等领域。
多光谱图像分析技术基于光电子技术,通过对物体反射和吸收不同波长的光线的特征进行分析,可以获得一些常规遥感数据无法检测到的信息与数据特征。
常见的多光谱图像数据有高光谱、超光谱和多光束等。
其中,高光谱图像数据是将波段数增加到200以上,每个波段宽度大致在10纳米左右,可以提取出更为详细的信息,特别适合于分析物体的光谱特性。
超光谱图像数据则是在有限的频谱范围内,采集高空间和光谱分辨率的遥感数据。
多光束则是将传感器从一个角度改变为多个角度,以获得更多的信息。
应用多光谱图像分析可以提取出对象的空间、物质、形态等特征,为多个行业提供丰富的信息和保障。
本文将重点探讨多光谱图像分析在农业领域的应用。
第二章:多光谱图像分析在农业领域中的应用2.1 土地利用分类土地利用类型的分类是一项具有挑战性的任务。
农业生产对土地利用的原始水平高度依赖,如何精准模拟农业场景、识别农业区域,成为农业生产的首要问题,也成为多光谱图像分析在农业中的重要应用方向之一。
多光谱图像分析技术可以帮助农业工作者区分出不同的土地利用类型。
比如,我们可以使用遥感图像来区分国有林地、农村养殖区域、耕地、城市市区等类型的土地。
利用多光谱图像的特征分析,可以更精准地划分该地区哪些土地可用于农业生产以及其他用途。
通过这样的技术,农业工作者可以更好地规划农田的分布和生产布局,从而提高农业生产的效率。
2.2 农作物识别与分类农作物识别与分类是确定农耕地的关键任务之一。
多光谱图像分析可以有效地对农田进行分类,提高对农作物的识别率。
农作物分类可根据农作物类型确认病虫害发生的风险和农业生产的先决条件。
基于多光谱数据的植被水分反演及其在旱情评估中的应用分析

个滞后的过程 ,因而降水 的变化对植被水 的影响也存在一定滞后效应 。 在上述分析基础之 , 时间和空 从
问尺度对植被水分在旱情监测和评估中的应用进行了评价 。通过时 间合 成以及与 其他数据 ( 如历 史数据 ) 的 结合 ,呵克服多光谱 数据的 自身不足 , 提高多光谱 遥感 数据在旱情 监测 和评估 的应用性 。 关键词 多光谱遥感 ; 植被水分 ;旱情监测
存在着时效性 差、代 表 范 围有 限 、需要 大 量 人力 物 力 的缺
点 ,难 以 实 现 实 时 、 范 的 动 态 监 测 。随 着 遥 感 技 术 的 不 大
断发展 ,利用遥感手段进 行植 被水分 监测 , 弥补 了传 统方法 的不足 ,为实时 、 快速 、大范 围的动态监测 和 区域 评估 提供
源。
干旱是影 响我 闲工农业生产和社会经济发展的 主要 自然 灾 害之一 。遥感数据 困其 自身特点 ,在 旱灾监测 、旱情 评估 中发挥 _ 『重要作用 , 为抗旱救灾提供 了实时 、动态 的旱情评
估 数 据 。目 前 , 用 较 为 J 的 旱情 遥 感 监 测 评 估 方 法 ,主 应 泛
传感器之一 , 拥有 3 6个波段的光谱观测数据 , 这些数据有 助 于深入理解全球陆地 、海洋 和低层 大气 内的动 态变化 过程 。 MOD S50m数据集 中有 7个波 段 ( 1 ,包括 r植 被状 I 0 图 )
践 ,同时 在 灾 评 估 、火 险评 价 等 方 面 也 得 到 了 一 定 应
作为重要的植被状态指数 , 早情监测 与评估 中得到 了一定 在 本文以 2 1 0 0年初西 南地 发牛 的大旱 为案例 , 用 多 利 光谱遥感数据进 行植 被含水量的提取 和时序分析 , 结合 台 并 站的气象数据 , 对植被含水量在旱情监测 中的应 用进行 分
多光谱无人机在林业有害生物监测中的应用探讨

752023.6多光谱无人机在林业有害生物监测中的应用探讨章武英1,赵 强2(1.甘肃林业职业技术学院,甘肃 天水 741020;2.甘肃省天水市麦积区林业和草原局,甘肃 天水 741020)摘要:本文基于无人机搭载的多光谱传感器获取多时态、多角度、多光谱和高精度的遥感图像,综合GIS技术及Pix4D软件对数据实施配准、拼接与辐射定标,判定林区松材线虫病疫树木情况与位置信息,进而判定疑似疫木,并结合人工实地勘察对无人机技术在林业有害生物监测中的实际应用效果进行全面探讨,为提升我国林业地区疫木疑似的选择和林业有害生物监测等工作提供参考。
关键词:无人机;有害生物;林业监测;技术应用在传统的林业有害生物防治模式中,主要是通过建立人工监测点,并进行定期地巡查。
但是在2018年机构改革之后,由于林地面积较大,且缺乏专业技术人员,这些因素加大林业有害生物防治机构工作人员的工作量和工作难度,从而使监测结果的准确度大大下降。
松材线虫病是世界上全森林生态系统中最严重的病害之一,又叫作松树的“癌症”。
我国19个省(区、市)731个县级行政区发生疫情,面积超过180万公顷,致死松树数十亿株,发生区域已突破年均温10℃的理论生理环境,同时危害松树种类和威胁我国松林资源的安全。
松材线虫病具有蔓延速度快、影响面积广、治理窗口期有限等特点,严重制约着松材线虫病害的快速治理,低成本、高精度、高效率的监管巡查方式是松林监管的迫切需求。
随着无人机制造技术的迅速升级,加速无人机在森林有害生物防控工作中的推广与应用。
在森林面积较大、分散度较高的情况下,当树木上出现有害生物时,如果仅依靠人工进行防控,防控工作就会变得很困难。
而使用无人机进行药物喷洒则会极大地提升林地工作效率,同时也能通过无人机每天巡逻,及时发现害虫的同时防止害虫的扩散。
1 传统林业有害生物调查与监测方法分析1.1 直接观察法选择一定树龄的单一树种为研究对象,对其发生的危害程度、发生数量等进行了直接观测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第34卷第1期2019年1月灾害学JOURNAL OF CATASTROPHOLOGYV 〇l . 34 No . 1Ja < 之。
}'冯锐,张玉书,武晋雯,等.基于多光谱和高光谱的干旱遥感监测研究进展[J ].灾害学,2019, 34(1): 1U 2-166. [FEN GRui ,Z H A N G Yushu ,W U Jin w e n ,e t al . A d v a n c e s in d r o u g h t r e m o t e s e n s in g m o n it o r in g b a s e d o n m u lt is p e c t r a l a n d h y p e r s p e c t r a l d a t a [J ]. J o u r n a l o f C a t a s t r o p h o lo g y , 2019, 34(1): 162 -166.d o i : 10. 3969/j . issn . 1000 - 811X . 2019. 01. 030.]基于多光谱和高光谱的干旱遥感监测研究进展!冯锐\张玉书\武晋雯\纪瑞鹏\于文颖\王培娟2(1.中国气象局沈阳大气环境研究所,辽宁沈阳110166; 2.中国气象科学研究院,北京100081)摘要:对近年来国内外利用多光谱卫星数据和近地面高光谱数据进行干旱监测研究进展及其适用性进行了归纳总结,得出以下结论:基于地表土壤水分和能量平衡理论、基于特征空间的干旱监测模型更适用于低植被或 裸土地区;基于作物植被指数的干旱监测模型更适用于高植被覆盖区,并且需要长时间的序列数据;基于近地 面高光谱数据的干旱监测光谱敏感波段在不同作物不同发育期存在着差异,为有效利用多光谱和高光谱卫星数 据进行干旱监测提供借鉴。
关键词!干旱;多光谱;高光谱'遥感监测;研究进展中图分类号! X 43; TP 9; S 127 文献标志码:A 文章编号:1000 - 811X #2019$01 -0162-05d o i : 10. 3969/j . issn . 1000 -811X . 2019. 01. 030随着气候与环境的变化,未来中国的极端天 气气候事件如极端高温、热浪、干旱等愈发频 繁[1_2],中国华北和东北地区干旱趋势严重,中国 西北部、华北大部和东北南部干旱面积呈增加趋 势[3-4]。
同时,随着工业化提高、经济发展和人口 增长,水资源显得日益短缺,干旱化程度越来越 严重,干旱发生区域不断扩大。
1970年代,我国每年有1 133万hm 2农田受旱,到1990年代,增加到2 667万hm 2,近年来,每年干旱灾害的发生频率在49%左右[5],已成为我国面临的最为严峻 的环境问题之一。
遥感技术为作物长势、地物分类等提供了有 效、可靠手段,可快速实现大面积下垫面状况动 态变化的定量化监测,是进行大面积干旱监测的 有利手段[6^]。
而地物光谱特征是遥感技术应用的 物理基础,是利用遥感信号识别地物、提取地表 信息的重要参考数据[10],1980年代已有研究者指 出作物的水分胁迫状况能够在光谱反射率数据中 有所体现[11-12]。
本文基于地表土壤水分和能量平 衡理论、基于作物植被指数、基于特征空间、基 于地面光谱数据等方面进行了干旱遥感监测梳理 总结,对有效利用多光谱和高光谱卫星数据进行!收稿日期& 2018 -05 -31 修回日期& 2018 -08 -01基金项目:中央级基本科研事业费项目(2018SYIA EZD 1,2018SYIA EH Z 1);国家自然科学基金项目(31771672);辽宁省农业攻关及产业化项目(2017210001)第一作者简介:冯锐(1972-),女,辽宁凌海人,硕士,研究员级高级工程师,主要从事农业定量遥感.E -m ail : fe n g m i _k @干旱监测提供借鉴。
1基于多光谱数据的干旱监测1. 1基于地表土壤水分和能量平衡理论研究基于地表土壤水分平衡的方法应用最为广泛、理论比较成熟的是热惯量方法,由于土壤热惯量 是引起土壤温度变化的内在因素,与土壤水分有 着密切的关系[13],早在1970年代初就开始出现热 惯量方法研究,该方法是基于能量平衡方程,通 过地表温度的日变化计算热惯量,从而获得土壤 表层水分定量反演[14_15]。
由于热惯量模型计算参 数复杂,Price "16#提出了表观热惯量的概念,因其 计算简单易行,很多学者利用表观热惯量替代热 惯量来进行土壤含水量的计算。
张仁华[17]利用地 面观测数据分别对模型中的显热通量和潜热通量 进行计算订正,优化了热惯量计算模型。
杨树聪 等[18]利用地表净辐射替代全波段反射率改进了表 观热惯量模型,并对其适用性进行了分析,得到 .X # = 0. 35是模型适用的阈值,当.X # > 0. 35 时,模型失效[19]。
但表观热惯量受蒸发影响较大, 当下垫面植被覆盖情况复杂、湿度变化较大时,1期冯锐,等:基于多光谱和高光谱的干旱遥感监测研究进展163表观热惯量的可用性大大降低[%°]。
近年来,利用 日落和日出间的夜晚地表温度差异[21]、模型反演 法[22]、引入地球旋转角速度的4次过境PSK平 均[23]等方法来改进地表温度计算,通过减少模型 的输入参数[24],或者通过增强空间分辨率[25]和时 间分辨率[26]来提高热惯量反演精度,同时,将植 被因子引入热惯量模型中[27-28],增加热惯量模型 在中高植被覆盖区域的监测精度。
基于蒸散的干旱监测也是以地表能量平衡方 程为基础的监测方法,包括单层模型和双层模型[2']。
单层模型常用的有BEBAL模型[3&]、BEBS 模型[31]、SSEB〇P模型[32]等,由于单层模型将下垫面看做均一过程来描述,因此在地表植被部分 覆盖时,模拟结果不理想[33>34]。
为解决这一问题,将冠层蒸腾与土壤蒸发分开,Shuttlew〇rth[35]提出 了双层模型,为蒸散量估算精度的提高奠定了理 论基础,随后对该模型进行了简化和改进[36_38]。
考虑到双层模型部分参数遥感获取较难,将地面 实测数据引入模型中[39>41],从而提高模型监测精度。
1.2基于作物植被指数的土壤含水量监测研究植被指数是遥感数据对地表绿色植被生长信 息的有效表达[42]可以动态监测作物长势信息,与 植被蒸散量、土壤水分是密切相关的[43],当作物 缺水时,生长受到影响,植被指数也会随之变化,因此,可以用来间接反映旱情[44>45]。
这种类型方 法一般适合植被覆盖区或植被覆盖度较好的地区。
利用作物植被指数来进行干旱监测主要包括 距平方法和归一化方法[13],距平植被指数是用于 干旱监测比较早的一种方法[46>47],通过对旬、月植被指数求取最大值,并将其与同时段的旬、月多年平均值进行比较,判断作物是否遭到干旱灾 害,比只用.X#的瞬时值优越[48]。
归一化方法即 植被状态指数方法[4'],是利用同时段多年最大最 小植被指数与当前植被指数进行归一化计算得到 的,可以进行宏观动态干旱监测[5°-51],与气象干 旱指数存在着较高的相关性[52],同时,在进行干 旱监测时,也存在着一定的滞后性[43,53]。
利用植被指数方法进行干旱监测时最初使用 的是归一化植被指数,后期发展了增强植被指数 "#、土壤调节植被指数&4#、比值植被指数M#等植被绿度指数,.XL! .QX!MX76、.X/!等植被水分指数,以及"LK等植被水含量指数[54],在干旱监测敏感性方面,植被水分指数明显要优 于植被绿度指数[55],植被水含量指数与植被覆盖、地表温度和蒸发蒸腾有密切关系,在中度至重度 干旱监测中效果不佳[56]。
1.3基于特征空间的土壤含水量监测研究近年来,综合考虑陆地表面温度、地表植被 和光谱反射率等反映地表多种参数信息,通过构 建特征空间来监测地表水分状况的研究越来越多,主要包括PCK- .X#特征空间法、- M G特征 空间法和- CL!特征空间法等[57]。
M〇r a n[58]从理论角度分析,发现Pri〇[59]提出以.X#和PSK 为横纵坐标轴的PCK- .X#特征空间散点图呈梯 形,存在着干湿边,能够监测地表植被和其水分 变化状态[6&]。
Sandh〇lt[61]对PSK- .X#空间进行 简化,构建温度植被干旱指数(7TX/),仅利用遥 感数据即可实现大范围农田、湖区、流域等不同 下垫面的土壤水分监测[62_64],也可以实现长时间 序列的干旱时空变化监测[65]。
在PCK- .X#空间 基础上,利用植被条件指数和温度条件指数取二 者最大值构建QK#指数[66],将PSK归一化处理后 与多年平均值进行比较构建CLX/指数[67],结合 降水等气象数据构建指数[68]或者经验模型[6'],实现从空间和时间尺度上进行干旱监测,反映干旱分布范围与受灾程度。
利用NIR- Red特 征空间中任意一点到土壤基线的垂直距离可以表 征干旱状况[7&],用"#替代.X#对NIR- Red空 间进行改进,精测精度提高30%左右[71]。
NIR- SWIR特征空间模型适合用于植被冠层叶片含水量 遥感监测,对干旱灾害的反映存在滞后情况[?2]。
2基于高光谱数据的干旱监测地物波谱特征是遥感技术应用的物理基础,是利用遥感信号识别地物、提取地表信息的重要 参考数据[10],作物冠层光谱是农业干旱遥感监测 的基础,针对小麦、水稻、玉米等作物[73-76]研究 表明,不同植被冠层光谱对于水分的存在着敏感 性[77-78],利用不同光谱反射率可以反映作物水分 状况[?'_x〇],不同地物在水分胁迫下,在可见光一 近红外均有光谱反射率变化,1 400 nm -2 500波段的光谱特别是1 530 和1 720 nm的SWIR 波段非常适于对作物水分的估测[81]。
FBella等 人[82]对400 nm波段处,红边位置700 nm处,以及.X#等植被指数的研究也发现了水分含量对叶 片反射率的间接影响。
田庆久等[83]、王纪华等[84]、谷艳芳等[85]、丛建鸥等[86]对干旱胁迫下 的冬小麦进行了光谱分析,结果表明通过光谱反 射率可以诊断小麦缺水状况,此外,针对玉米生 长过程中的光谱变化及特征参数诊断开展的研究[87^9],或者针对玉米生长中后期开展遥感作物 水分识别研究[9041]也表明,不同作物发育期干旱 胁迫的光谱敏感波段也存在着差异[92-95]。