固相微萃取原理介绍
固相微萃取的原理

固相微萃取的原理固相微萃取,是一种常见的富集分离技术。
其原理主要基于化学分配平衡的基础,利用固定于吸附材料上的萃取溶剂,对待分析物进行选择性吸附,实现分离富集的目的。
下面,我们将系统地介绍固相微萃取的原理及其相关知识点。
一、基本原理固相微萃取的基本原理是化学分配平衡条件下,利用吸附材料上的萃取液物质与样品中待分析物发生相互作用,使待分析物在吸附剂上发生富集,并去除杂质,达到提高检测灵敏度和准确性的作用。
二、吸附材料的选择在固相微萃取中,吸附材料的种类与性质非常重要。
常用的吸附材料主要有有机硅胶、壳聚糖、活性炭、分子筛等。
这些吸附材料可以按照待分析物的物理化学特性进行选择,使其能够对待分析物具有良好的选择性和吸附能力。
三、萃取溶剂的选择萃取溶剂是固相微萃取中一个非常重要的环节,它可以对样品的萃取效果产生直接影响。
合适的萃取溶剂需要具备良好的选择性、稳定性和良好的萃取能力等特点。
通常情况下,萃取溶剂主要分为两种,即极性萃取剂和非极性萃取剂。
极性萃取剂(如甲醇、乙酸乙酯等)常用于富集极性化合物,而非极性萃取剂(如正己烷、苯等)则常用于富集非极性化合物。
四、固相微萃取操作步骤固相微萃取主要分为样品准备和固相微萃取两大步骤。
其中样品准备主要包括取样和前处理步骤,而固相微萃取实际上是将准备好的样品溶液通过化合物分配平衡的原理,沿着一个预定方向通过萃取剂实现分离富集的过程。
五、几个需要注意的问题固相微萃取在实际操作中常常会出现一些问题,需要注意以下几点:1. 固相微萃取时间的长短会影响样品中的待分析物的富集程度,同时也会影响识别待分析物的基峰。
2. 固相微萃取温度的变化也会影响到样品中化合物的富集能力,通常情况下较高的温度可以加速富集的速度,但是也会带来不必要的扰动和不良后果。
3. 固相微萃取过程中,需要小心避免草率决定萃取液的浓度。
浓度选择不当或萃取时间过长或过短都有可能引起分析误差。
综上所述,固相微萃取是一种基于化学分配平衡原理的分离富集技术,其有效性和精度取决于吸附材料、萃取液的选择以及操作方法的正确使用。
色谱科supelco 固相微萃取

色谱科Supelco固相微萃取一、概述色谱科(Supelco)是美国Sigma-Aldrich公司旗下的一个部门,主要致力于提供高质量的色谱产品和技术解决方案。
在色谱科的产品线中,固相微萃取(Solid Phase Microextraction, SPME)是一项重要的技术。
本文将对色谱科Supelco固相微萃取技术进行介绍,以及其在实际应用中的优势和发展前景。
二、固相微萃取概述1. 定义:固相微萃取是一种基于吸附分离原理的前处理技术,利用固相微萃取针(SPME fiber)将目标物质浓缩在针端上,达到富集和分离的作用。
2. 原理:SPME技术主要依赖于固相萃取材料对目标化合物的亲和力,通过吸附和解吸过程实现分析物质的富集和提取。
3. 类型:根据不同的固相材料和萃取方式,固相微萃取可分为直接固相微萃取、头空间固相微萃取、固相柱微萃取等不同类型。
三、色谱科Supelco固相微萃取技术1. 产品线:色谱科Supelco在固相微萃取领域拥有多种产品,包括SPME fiber、SPME针、SPME萃取仪等,涵盖了不同应用需求。
2. 技术优势:a. 高选择性:SPME fiber材料具有不同的亲和性,可选择性地提取目标化合物,减少干扰物质的干扰。
b. 高灵敏度:SPME技术能够将目标物质集中在针端,使样品预处理更为简化,提高了后续分析的灵敏度。
c. 环保节能:SPME技术可以在无需有机溶剂的情况下完成萃取和浓缩,符合绿色分析化学的发展理念。
3. 应用领域:色谱科Supelco固相微萃取技术在环境监测、食品安全、生物医学、药物分析等领域得到了广泛的应用,并取得了显著的效果。
四、色谱科Supelco固相微萃取技术的发展前景1. 技术改进:随着色谱科Supelco在固相微萃取领域的持续投入,技术不断改进,产品性能和稳定性得到了提升。
2. 专业定制:色谱科Supelco可以根据客户的具体需求,提供个性化的固相微萃取解决方案,满足复杂样品分析的要求。
固相微萃取

固相微萃取8.1.4.1 固相微萃取的原理固相微萃取(solid—phase microextraction,SPME)技术是20世纪90年代初期兴起的一项样品前处理与富集技术,它最先由加拿大Waterloo大学Pawliszyn教授的研究小组于1989年首次研制成功,属于非溶剂型选择性萃取法,是一种集采样、萃取、浓缩、进样于一体的分析技术。
SPME装置略似进样器,在特制注射器筒内的不锈钢细管顶端分别连接一根穿透针和纤维固定针,针头上连接一根熔融石英纤维,上面涂布一层多聚物固定相,注射器的柱塞控制纤维的进退。
当纤维暴露在样品中时,涂层可从液态/气态基质中吸附萃取待测物,经过一段时间后,已富集了待测物的纤维可直接转移到仪器(通常是气相色谱仪,即SPME—GC) 中,通过一定的方式解吸附,然后进行分离分析。
典型的SPME装置如图8一12所示。
SPME熔融石英纤维涂布固定相与样品或其顶空充分接触,待测物在两相间分配达到平衡后,两相中待测物浓度关系如下式:N。
一KⅥV。
C。
/(KU+V。
) (8—2)式中,N。
为固定相中待测物的分子数;K为两相间待测物的分配系数;V。
为固定液体积;U为样品体积;c。
为样品中待测物浓度。
因为U》V。
,故式(8—2)可简化为:N。
=Ku%(8-3)由式(8-3)可知,固定液吸附待测物分子数与样品中待测物浓度呈线性关系,即样品中待测物浓度越高,SPME吸附萃取的分子数越多。
当样品中待测物浓度一定时,萃取分子数主要取决于固定液体积和分配系数。
同时,方法的灵敏度和线性范围的大小也取决于这两个参数。
固定液厚度越大(即y。
越大),萃取选择性越高(K越大),则方法的灵敏度越高。
由此可见,选择合适的固定液对于萃取结果是很重要的。
目前,SPME装置已实现商品化。
该装置主要由两部分组成:一部分是作为支撑用的微量注射器底座;另一部分是类似于注射针头形状的熔融石英纤维,其半径一般为15mm,上面涂布着固定体积(/g 度为10~100ttm)的聚合物固定液。
药物分析中固相微萃取法的应用

药物分析中固相微萃取法的应用药物分析中,固相微萃取法(Solid-Phase Microextraction,SPME)是一种灵敏、快速、有效的样品前处理技术。
它的原理是利用特殊的固相萃取纤维,在样品中吸附目标分析物,然后在热解仪或气相色谱仪中进行分离和检测。
本文将探讨固相微萃取法在药物分析中的应用。
一、固相微萃取原理固相微萃取是基于分子扩散和吸附原理。
它使用特定材料的固相萃取纤维作为吸附剂,将目标分析物从样品中吸附到纤维表面上。
固相纤维通常包括聚二甲基硅氧烷(PDMS)和聚酰胺(PA)等材料。
在吸附平衡达到后,纤维上的吸附物质可以通过热解仪或气相色谱仪进行分析。
二、固相微萃取的优点1. 灵敏度高:固相微萃取能够集中目标分析物,提高检测灵敏度。
2. 快速:相比传统的样品前处理方法,固相微萃取不需要繁琐的提取步骤,缩短了分析时间。
3. 低成本:固相纤维的制备和使用成本相对较低。
4. 高选择性:通过选择不同类型的固相纤维,可以实现对不同化合物的选择性吸附和富集。
三、固相微萃取在药物分析中的应用1. 药物残留分析:固相微萃取常用于食品和环境样品中药物残留的提取与测定。
例如,可以用于蔬菜中农药残留的分析,以及水体中抗生素和激素残留的检测。
2. 药物药代动力学研究:固相微萃取可以用于药物在生物样品(如血液、尿液)中的提取和浓缩,从而实现对药物的药代动力学研究。
这对于了解药物在体内的分布和代谢过程具有重要意义。
3. 药物质量控制:固相微萃取可用于药物质量控制中的固定和有机污染物的检测。
例如,可用于药物片剂中批号不合格或有疑问的成分的提取和分析。
4. 药物研发:固相微萃取可以用于药物研发过程中各阶段的样品前处理。
通过对合成中间体和产物等样品的分析,可以帮助研发人员快速了解反应过程和产物纯度。
5. 药物安全性评价:固相微萃取可以用于药物安全性评价中的药物代谢产物的提取和分析。
对于了解药物代谢途径、副作用等有重要作用。
固相萃取和固相微萃取

固相萃取和固相微萃取一、概述固相萃取(SPE)和固相微萃取(SPME)是两种常见的样品前处理技术,它们可以用于分离和富集目标化合物。
SPE通常用于大样品量的分析,而SPME则适用于小样品量的分析。
二、固相萃取1. 原理固相萃取是一种样品前处理技术,通过将目标化合物从复杂的混合物中吸附到特定的固相材料上,然后再用洗脱剂将其洗脱出来。
这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。
2. 步骤(1)选择适当的固相材料;(2)将样品加入到固相柱中;(3)用洗脱剂洗脱目标化合物;(4)将洗脱液收集并进行进一步分析。
3. 固相材料常见的固相材料包括C18、C8、Silica gel等。
不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。
4. 应用领域SPE广泛应用于环境、食品、药物等领域的样品前处理中。
例如,可以用SPE技术来富集水中的有机污染物、食品中的农药残留等。
三、固相微萃取1. 原理固相微萃取是一种无机溶剂的萃取技术,通过将特定的固相材料包裹在针头上,然后将其插入样品中进行吸附和富集目标化合物。
这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。
2. 步骤(1)选择适当的固相材料;(2)将固相材料包裹在针头上;(3)将针头插入样品中进行吸附和富集目标化合物;(4)用洗脱剂洗脱目标化合物;(5)将洗脱液收集并进行进一步分析。
3. 固相材料常见的固相材料包括PDMS、CAR等。
不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。
4. 应用领域SPME广泛应用于环境、食品、药物等领域的样品前处理中。
例如,可以用SPME技术来富集水中的有机污染物、食品中的农药残留等。
四、比较1. 样品量SPE适用于大样品量的分析,而SPME则适用于小样品量的分析。
2. 富集效率SPE和SPME都可以有效地去除其他干扰物质,并提高目标化合物的浓度。
固相微萃取法

固相微萃取法固相微萃取法是一种新型的样品前处理技术,它将传统的液液萃取方法简化为一步操作,具有操作简便、时间短、灵敏度高、选择性好等优点。
本文将从以下几个方面详细介绍固相微萃取法。
一、固相微萃取法的基本原理固相微萃取法是利用固定在小柱或膜上的吸附剂对样品中的目标物进行富集和分离。
其基本原理是,将样品溶解于适当的溶剂中,通过注射器或自动进样器将样品进入吸附柱或吸附膜中,在适当条件下使目标物质被吸附在柱或膜上,然后用洗脱剂将目标物质洗出,并进行分析。
二、固相微萃取法的优点1. 操作简便:只需将样品加入到吸附柱或膜中即可完成富集和分离过程,省去了传统液液萃取方法复杂的步骤。
2. 时间短:整个富集和分离过程只需几分钟至几十分钟不等。
3. 灵敏度高:由于富集的目标物质被高度净化和富集,所以检测灵敏度得到大幅提高。
4. 选择性好:通过选择不同的吸附剂,可以实现对不同化合物的选择性富集和分离。
5. 可靠性高:固相微萃取法不受样品矩阵的影响,因此在复杂矩阵中也能实现目标物质的富集和分离。
三、固相微萃取法的应用1. 环境监测:固相微萃取法可用于水、土壤、空气等环境样品中有机污染物的富集和分离。
2. 食品安全:固相微萃取法可用于食品中农药、兽药、食品添加剂等有害物质的检测。
3. 药物分析:固相微萃取法可用于药物血浆、尿液等生物样品中药物代谢产物的富集和分离。
4. 化学分析:固相微萃取法可用于化学反应体系中产生的有机产物或催化剂残留等有害成分的富集和分离。
四、固相微萃取法与其他技术的比较1. 与传统液液萃取法相比,固相微萃取法操作简便、时间短、灵敏度高、选择性好。
2. 与固相萃取法相比,固相微萃取法使用的吸附剂量更少,富集时间更短,且不需要使用大量有机溶剂。
3. 与固相微萃取法相比,固相微萃取-气相色谱/质谱联用技术具有更高的灵敏度和更好的分离效果。
五、总结固相微萃取法作为一种新型的样品前处理技术,在环境监测、食品安全、药物分析、化学分析等领域得到了广泛应用。
固相萃取的原理方法等

固相萃取的原理方法等固相萃取(Solid-Phase Extraction,SPE)是一种常用的样品预处理技术,用于富集和净化待分析物。
它的原理是通过在固相吸附剂上选择性地吸附待分析物,然后洗脱和收集目标化合物,最后完成富集和净化过程。
下面将详细介绍固相萃取的原理、方法和应用。
1.固相萃取的原理固相萃取的原理基于化学吸附的原理,即待分析物与固相吸附剂之间的相互作用。
固相吸附剂通常是具有较大的比表面积和可控的孔结构的材料,例如吸附树脂、硅胶和炭素。
待分析物与固相吸附剂之间的吸附是非极性或极性相互作用,例如范德华力、静电作用、氢键和π-π相互作用。
吸附树脂是最常用的固相吸附剂,它可以通过表面与待分析物之间的相互作用选择性地吸附目标化合物。
2.固相萃取的方法(1)固相萃取的吸附剂常用的固相萃取吸附剂包括固相萃取柱和固相微粒。
固相萃取柱是一种采用成列式固相吸附剂填充柱状材料的设备,样品依次在固相柱上吸附、洗脱和收集。
固相微粒是具有很小粒径的固体颗粒,通常用于制备固相微萃阱。
这些固相微粒可以喷涂或填充到试管或器皿中,并通过离心、过滤或吸入的方式用于固相萃取。
(2)固相萃取的洗脱剂3.固相萃取的应用固相萃取广泛应用于环境、食品、药物和生物分析等领域。
它具有简单、快速、高效的特点,可以对大量样品进行平行处理。
(1)环境分析固相萃取在环境样品的净化和富集中起到重要作用,如水样中有机污染物的分析、土壤样品中的有机污染物分析和大气颗粒物中有机污染物分析等。
(2)食品分析固相萃取在食品样品的预处理中广泛应用,如食品中农药、兽药、残留物、食品中的重金属和毒素等的提取和富集等。
(3)药物分析固相萃取在药物样品的提取和净化中得到了广泛应用,如血液、尿液、生物组织和药物代谢产物等的分析。
(4)生物分析固相萃取在生物样品的净化和富集中得到了广泛应用,如血清、尿液、唾液和细胞培养基等样品中蛋白质、肽类和核酸的富集和净化。
总之,固相萃取作为一种有效的样品预处理方法,可以在分析前富集和净化目标物质,提高分析的灵敏度和准确性,广泛应用于环境、食品、药物和生物分析等领域。
固相微萃取原理及使用

固相微萃取原理及使用固相微萃取(SPME,Solid-Phase Microextraction)是一种新型的样品前处理技术,通过固定在纤维上的固相吸附剂从气态、液态或固态样品中萃取目标分析物,并将其直接转移到气相色谱仪(GC)或液相色谱仪(LC)进行定性和定量分析。
固相微萃取的原理基于固相吸附剂对目标分析物的亲合性。
通常使用的固相吸附剂是聚二甲基硅氧烷(PDMS)或其他官能化的聚合物。
PDMS 纤维富含非极性表面,能够吸附疏水性的目标分析物。
在样品中,目标分析物与固相吸附剂表面发生吸附作用,达到平衡后,可以将纤维直接放入分析仪器进行进一步分析。
固相微萃取的使用步骤包括样品处理、纤维曝气和分析步骤。
样品处理通常涉及样品的预处理,如溶解、稀释、搅拌等,以便将目标分析物从样品基质中释放出来。
然后将固相吸附剂纤维插入样品中,使其与目标分析物接触,并允许吸附达到平衡。
曝气步骤是将纤维暴露在空气或惰性气体中,以去除吸附在纤维上的水分和挥发性杂质。
最后,将纤维放入色谱仪进行分析。
固相微萃取的优点包括简便、快速、高效、灵敏、环境友好以及无需有机溶剂等。
相比于传统的样品前处理方法,如液-液萃取和固相萃取,固相微萃取不需要大量的溶剂、操作步骤和设备,大大简化了样品前处理的流程。
此外,由于固相微萃取仅使用微量吸附剂,其分析结果更具可重复性和可比性。
同时,固相微萃取可以在不破坏或减少样品中目标分析物含量的情况下实现富集,避免了样品基质对分析结果的干扰。
固相微萃取在环境、食品、生物、医药等领域中得到了广泛应用。
例如,可以用于食品和饮料中残留农药和有害物质的分析,环境水样中的挥发性有机物的监测,空气中的挥发性有机物的测定,以及生物样品中药物或代谢物的分析等。
此外,固相微萃取还可以与其他技术结合,如气相色谱质谱联用、高效液相色谱质谱联用等,以实现更高的分析灵敏度和选择性。
总之,固相微萃取是一种新颖的样品前处理技术,具有简便、高效、灵敏且环境友好的特点,被广泛应用于各种样品的分析和监测,并为分析化学领域带来了极大的便利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固相微萃取技术(SPME)及其应用摘要:固相微萃取(SPME)是一种应现代仪器要求而产生的样品前处理新技术。
随着人们对其原理和技术发展的深入理解,新型SPME装置的不断应用和发展,SPME已广泛应用于环保及水质处理、临床医药、公安案件处理、国防等。
本文对其原理、萃取条件、联用技术的现状进行了综述。
关键词:固相微萃取; 萃取条件; 联用技术; 应用; 综述The Solid Phase Micro Extraction (SPME) And It’s ApplicationAbstract: The solid phase micro extraction (SPME) is a new kind of modern instrument method before output sample. Along with people as to it's the princ iple develop deep with the technique into the comprehension, the new SPME e quip continuously applied with the development, SPME already extensive and a pplied handle in the environmental protection and fluid matter, the clinical med icine, public security official's case handle, national defense etc.. Present this te xt as to it's principle, the conditions of extraction, coupling with other analytic al technologies to proceeds the overviewed.Keywords: solid-phase micro extraction; the conditions of extraction; coupling with analytical technologies; application; review固相微萃取(Solid-Phase Microextraction,简写为SPME)是近年来国际上兴起的一项试样分析前处理新技术。
1990年由加拿大Waterloo大学的Arhturhe和Pa wliszyn首创,1993年由美国Supelco公司推出商品化固相微萃取装置,1994年获美国匹兹堡分析仪器会议大奖。
固相萃取是目前最好的试样前处理方法之一,具有简单、费用少、易于自动化等一系列优点。
而固相微萃取是在固相萃取基础上发展起来的,保留了其所有的优点,摒弃了其需要柱填充物和使用溶剂进行解吸的弊病,它只要一支类似进样器的固相微萃取装置即可完成全部前处理和进样工作。
该装置针头内有一伸缩杆,上连有一根熔融石英纤维,其表面涂有色谱固定相,一般情况下熔融石英纤维隐藏于针头内,需要时可推动进样器推杆使石英纤维从针头内伸出。
分析时先将试样放入带隔膜塞的固相微萃取专用容器中,如需要同时加入无机盐、衍生剂或对pH值进行调节,还可加热或磁力转子搅拌。
固相微萃取分为两步,第一步是萃取,将针头插入试样容器中,推出石英纤维对试样中的分析组分进行萃取;第二步是在进样过程中将针头插入色谱进样器,推出石英纤维中完成解吸、色谱分析等步骤。
固相微萃取的萃取方式有两种:一种是石英纤维直接插入试样中进行萃取,适用于气体与液体中的分析组分;另一种是顶空萃取,适用于所有基质的试样中挥发性、半挥发性分析组分。
由于以上优点,SPME迅速在药品和生物样品分析、环境监测与分析,食品检测等方面有了一席之地,随着各种联用技术和新型涂层材料的发展和成熟,SPME 已不在限于以上所说的几个方面,在医药、生物制药(如脂肪酸的分离测定,生物聚合物如蛋白质的吸附萃取)有了更大的发展,SPME已经成为分析方法中重要的一个领域。
1.原理固相微萃取装置非常小巧,状似一只色谱注射器,由手柄和萃取头或纤维头两部分组成,萃取头是一根外套不锈钢细管的1厘米长、涂有不同固定相的熔融石英纤维头,纤维头在不锈钢管内可自由伸缩,用于萃取、吸附样品,手柄用于安装或固定萃取头,可永久使用。
SPME的理论发展大致分为两个,一是早期的平衡理论[1],一是近年发展起来的非平衡理论[2]。
平衡理论认为在吸附或吸收的过程中,固-气或固-液相间建立了吸附或吸收平衡,吸附的量为:n=(KVCV')/(KV+V')(1-1)其中n为分析物吸附在固相涂层上的量,K为分析物在固相(或气相)和液相之间的平衡常数,V为固相涂层的体积,C为分析物在试样溶液中最初的浓度。
从公式中可以看出,n是一个与平衡常数、固相涂层的体积、试样体积及分析物在试样溶液中最初的浓度有关的量。
在SPME中选用的固相涂层对于萃取的有机成分有较强的亲和力,一个大的K可以保证有效的富集,提高了分析的灵敏度。
通常K值并不足以大到使分析物都被萃取到固相涂层中,因此SPME仅仅是一种平衡取样的方法。
若试样体积不变,在整个浓度区间,n与c呈指数而非线性的关系。
仅当c较低时,即平衡处于吸附等温线的线性范围内,公式(1)才成立。
若试样溶液有一个足够低的浓度(50微克每升以下),为了使响应值(n)与c保持线性关系,试样体积也受到限制(如小于5毫升),否则线性响应关系就不在保持。
非平衡理论侧认为在一定时间内,由于慢传质过程,平衡未完全达到。
考虑到分析物在两相中的扩散过程,它被萃取到固相涂层的量为:n=C﴾1-exp(-A(2mm'KV+2mm'V')/mVV'+2m'KVV')﴿(KVV'/KV+V') (1-2)式中K为分析物在试样介质和涂层之间的平衡常数,A为涂层的表面积,m、m'分别为分析物在试样和在固相涂层中的质量转移系数(m为扩散系数除以涂层厚度)。
在SPME采样时,并不一定要求分析物完全被萃取或一直进行到平衡建立,只要在严格条件下获得可靠且稳定的响应值与浓度之间的线性关系。
当吸附(吸收)时间无限长时,则达到平衡后分析物在固相涂层中的量n'为:n'=KVV'/KV+V'(1-3)此结果和平衡理论是一样的。
2固相微萃取技术条件的选择2.1萃取效果影响的因素2.1.1萃取头的选择萃取头是SPME装置的核心,其涂层的性质已经成为SPME方法成功与否的关键。
因此对其选择要十分慎重。
涂层的选择应该由待测物质的性质决定,一般根据相似相溶原理进行选择,极性大的待测物质选择强极性的涂层,极性小的选择弱极性的涂层材料。
小分子或挥发性物质常用厚膜100微米萃取头,较大分子或半挥发性物质采用7微米萃取头,综合考虑分析物的极性和挥发性时,还可以有85微米、65微米、75微米、30微米的极性或非极性萃取头选择。
固定相层可以以非键合、键合或部分交联的形式涂敷在石英纤维上,涂层在有机溶剂中的稳定性为:键合相>部分交联>非键合相,非键合相在有机溶剂中还有较大的溶胀性。
最常用的固相涂层物质是聚甲基硅氧烷(PDMS)和聚丙烯酸酯(PA),前者用于非极性化合物、多环芳烃、芳香烃等,100微米的PDMS适用于分析低沸点的极性物质,7微米的PDMS适用于分析中沸点和高沸点的物质。
后者多用于极性化合物如苯酚类化合物。
随着SPME的不断发展,新型的涂层材料也不断出现:涂有石墨碳黑的石英纤维用于分析水中和空气中的微量化合物,特点是表面多孔、热稳定性好、不保留水、吸附容量大等;Liu等人将键合有碳八和碳十八液相色谱用硅胶用高温环氧固定在金属丝上,将其用于分析水中的芳香烃化合物和多环芳烃,此涂层表面积大、易于达到吸附平衡、可提高检测灵敏度;公认的性能较好的极性涂层材料O megamax250在人体血清样、尿样的分析中效果良好,且干扰峰很少,而用此涂层对研碎药片中的雷尼替丁(ranitidine)进行分析,可得到较低的检测限(0.1微克每升),而多孔二乙烯基苯聚合物类涂层材料可用于杂环胺类的诱导变性剂、安非他明等药物的检测,检出限均在1微克每升以上;而Athur、Michalska等人提出以导电聚合物吡咯(PPY)作为涂层材料,得到了许多人的赞同,导电聚合物易于在单体上引入功能基或在其上沉积金属离子和存在多重作用力如π-π作用、偶极作用、酸碱作用等,PPY能[3]在空气中与有机溶剂保持相对稳定,且其单体和衍生物易得,Wu等人以其作为涂层材料成功地对β-受体阻断剂等物质进行分析,证明PPY有较高的萃取效率[4],PPY也可用于药物如安非他明的检测,甚至是离子型的待测物它也可以进行检测;此外,还有人开发了纤维双液相涂层,它克服了单液相涂层萃取有机化合物范围狭窄的缺点。
涂层材料必须满足对待测物有较强萃取能力外,还应在常用的有机溶剂中保持足够的稳定性,实际上的涂层很难两个方面都满足,如PA在使用了10-20次后就因损伤而不能再继续使用,这使得SPME方法的重现性受到一定的制约。
涂层材料越厚,对待测物吸附量越大,可降低最低检出限,但同时也会增加平衡萃取时间,减慢分析速度,而非键合相在溶剂中有一定的溶胀性对涂层厚度也应当考虑。
2.1.2试样量、容器体积由于固相微萃取是一个固定的萃取过程,为保证萃取的效果需要对试样量,试样容器的体积进行选择。
试样量与试样容器的体积对于保证结果有很大关系,试样量与试样容器体积之间存在有匹配关系,试样量增大的情况下,重现性明显变好,检出量提高。
2.1.3萃取时间萃取时间是从石英纤维与试样接触到吸附平衡所需要的时间。
为保证试验结果重现性良好,应在试验中保持萃取时间一定。
影响萃取时间的因素很多,例如分配系数、试样的扩散速度、试样量、容器体积、试样本身基质、温度等。
在萃取初始阶段,分析组分很容易且很快富集到石英纤维固定相中,随着时间的延长,富集的速度越来越慢,接近平衡状态时即使时间延长对富集也没有意义了,因此在摸索实验方法时必须做富集—时间曲线,从曲线上找出最佳萃取时间点,即曲线接近平缓的最短时间。
一般萃取时间在5~60 min以内,但也有特殊情况。
2.1.4使用无机盐向液体试样中加入少量氯化钠、硫酸钠等无机盐可增强离子强度,降低极性有机物在水中的溶解度即起到盐析作用,使石英纤维固定相能吸附更多的分析组分。
一般情况下可有效提高萃取效率,但并不一定适用于任何组分。
2.1.5改变pH值改变pH值同使用无机盐一样能改变分析组分与试样介质、固定相之间的分配系数,对于改善试样中分析成分的吸附是有益的。
由于固定相属于非离子型聚合物,故对于吸附中性形式的分析物更有效。