一次函数讲解
一次函数-一次函数的概念、图像、与基本性质(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
关于学生小组讨论部分,我发现学生们在讨论一次函数在实际生活中的应用时,能够提出一些有创意的想法。但在分享成果时,部分学生的表达能力仍有待提高。为了提高学生的表达能力,我计划在今后的课堂中增加一些口语表达训练,如小组代表发言、角色扮演等。
最后,在总结回顾环节,学生对一次函数的知识点有了更深刻的理解。但在课后反馈中,仍有部分学生表示对某些知识点存在疑问。针对这个问题,我将在课后加强个别辅导,关注学生的掌握情况,并及时解答他们的疑问。
(4)空间想象能力的培养:对于一次函数图像的想象和绘制,学生可能缺乏空间想象力。
突破方法:借助教学软件、实物模型等辅助工具,帮助学生建立一次函数图像的空间概念。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数的概念、图像与基本性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人一起跑步,一个人跑得快,一个人跑得慢,他们的距离是如何变化的?”这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、图像和基本性质。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
一次函数讲解

一次函数讲解一次函数是初中数学中最基础、最简单的函数之一。
它是一种线性函数,由一个常数和一个一次项组成。
在本文中,我们将深入探讨一次函数的定义、图像、性质、应用以及解题技巧。
一、定义一次函数也称为线性函数,其定义为:f(x) = kx + b,其中k 和b分别是常数,x是自变量,f(x)是因变量。
其中,k称为函数的斜率,b称为截距。
二、图像一次函数的图像是一条直线。
其中,斜率k表示这条直线的倾斜程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为0表示直线水平。
截距b表示直线与y轴的交点。
三、性质1.一次函数是一种线性函数,其图像是一条直线。
2.斜率k表示直线的倾斜程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为0表示直线水平。
3.截距b表示直线与y轴的交点。
4.一次函数的自变量和因变量成正比例关系。
5.一次函数的定义域为实数集,值域为实数集。
四、应用1.物理学中,一次函数可以用来描述速度、加速度等物理量的变化规律。
2.经济学中,一次函数可以用来描述商品价格、销售量等经济变量的关系。
3.工程学中,一次函数可以用来描述电压、电流等工程量的变化规律。
4.统计学中,一次函数可以用来描述数据的线性趋势。
五、解题技巧1.求斜率k:斜率k可以通过两个点的纵坐标之差除以横坐标之差来求得。
2.求截距b:截距b可以通过直线与y轴的交点来求得。
3.求函数解析式:可以通过已知的两个点的坐标来求得函数解析式。
4.求函数值:可以直接代入自变量的值来求得函数值。
六、例题解析1.已知一次函数y = 2x + 3,求当x = 5时的函数值。
解:将x = 5代入函数中,得到y = 2 × 5 + 3 = 13。
因此,当x = 5时,函数值为13。
2.已知一次函数y = kx + 2,当x = 3时,y = 5;当x = 4时,y = 8。
求函数解析式。
解:根据已知条件,可以列出如下方程组:k × 3 + 2 = 5k × 4 + 2 = 8解得k = 1。
一次函数知识点

龙文教育------您值得信赖的中小学1对1课外辅导专家一次函数的讲解(一)一次函数概念一般地,函数)0(≠+=k b k b kx y 都为常数,且、叫做一次函数。
当0=b 时,一次函数b kx y +=就成为)0(≠=k k kx y 为常数,叫做正比例函数,常数k 叫做比例系数。
强调:(1)作为一次函数的解析式b kx y +=,其中y b x k ,,,中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中b k ,符合什么条件? (2)在什么条件下,)0(≠+=k b kx y 为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数k 和常数项b 的值各为多少?,2r C π=,20032+=x y ,200vt = (),32x y -= ()x x s -=50 【典型例题】例1:求出下列各题中x 与y 之间的关系,并判断y 是否为x 的一次函数,是否为正比例函数:⑴某农场种植玉米,每平方米种玉米6株,玉米株数y 与种植面积)(2m x 之间的关系。
⑵正方形周长x 与面积y 之间的关系。
⑶假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱元)(y 与所存月数x 之间的关系。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至2000元部分的税率为10% ⑴ 设全月应纳税所得额为x 元,且2000500≤<x 。
应纳个人所得税为y 元,求y关于x 的函数解析式和自变量的取值范围。
⑵ 小明妈妈的工资为每月2600元,小聪妈妈的工资为每月2800元。
问她俩每月应纳个人所得税多少元?注:例如,某人某月工资收入为2400元,则应纳税所得额为元)(16008002400=-,应纳个人所得税为()(元)135%105001600%5500=⨯-+⨯。
一次函数图像与性质ppt课件

图
象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是
一
条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .
一次函数讲解ppt(共87张PPT)

3
2
A.
5
的值为2,则
)
2
5
B.
5
解析 ∵x=2时,在
4
25
C.
2≤x≤4 之间,∴将
25
4
D.
5
x=2代入函数
1
y=得
2
y=5.故
选 B.
答案 B
22
教材新知精讲
拓展点一
拓展点二
拓展点三
综合知识拓展
拓展点四
23
教材新知精讲
拓展点一
拓展点二
拓展点三
综合知识拓展
拓展点四
拓展点二根据表格求函数的解析式
6
教材新知精讲
知识点一
知识点二
知识点三
知识点四
综合知识拓展
知识点五
7
教材新知精讲
知识点一
知识点二
知识点三
知识点四
综合知识拓展
知识点五
知识点二函数和自变量
一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确
定的值,y都有唯一的值与其对应,那么我们就说x是自变量,y是x的函数.
解读 正确理解函数这一概念必须注意如下几点:
2.找特殊点
3.数形结合
知识点二从函数图象读取信息
观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就
是观察图象反映的是哪两个变量之间的关系。 观察图象图象上
一句话解决方案
的特殊点,如与坐标轴的交点、图象上的拐点、线段的端点等,这
些特殊点的意义往往对问题的解决有很大的帮助.分析(1)找到第一天
中最高点与最低点的坐标,进而可得骆驼体温的变化范围与它的体温从 数形结合,正确理解自变量和
八年级数学之一次函数的图像知识点最新5篇

八年级数学之一次函数的图像知识点最新5篇数学一次函数知识点篇一一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限四、确定一次函数的)○(表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b.(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1、当时间t一定,距离s是速度v的一次函数。
s=vt.2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
一次函数与方程不等式讲解

一次函数与方程不等式讲解一次函数与方程不等式是数学中非常重要的概念,它们在日常生活中也有广泛应用。
本文从定义、性质、求解方法等方面进行讲解,希望能够帮助读者更好地掌握这些知识。
一、一次函数的定义与性质一次函数是指形如y=kx+b的函数,其中k和b是常数,x是自变量,y是因变量。
它的图像通常是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
一次函数的性质包括:1.斜率相同的两条直线平行,斜率相反的两条直线相交于一点。
2.直线的截距可以通过函数的图像或方程求解。
3.直线的图像在x轴和y轴上的截距分别为(-b/k,0)和(0,b)。
二、一次方程的定义与性质一次方程是指形如ax+b=c的方程,其中a、b、c是已知数,x是未知数。
它的求解方法可以用解方程、平衡法、加减混合法等。
一次方程的性质包括:1.方程的解可以唯一确定未知数的取值。
2.方程的解可以用代数方法求解,也可以利用图像方法求解。
3.方程的解可以分为有理数解和无理数解。
三、一次不等式的定义与性质一次不等式是指形如ax+b<0或ax+b>0的不等式,其中a、b是已知数,x是未知数。
它的求解方法与一次方程相似,只需要将等式改为不等式,并分析不等式的性质即可。
一次不等式的性质包括:1.不等式的解可以是一个区间,也可以是整个实数集。
2.不等式的解可以用代数方法求解,也可以利用图像方法求解。
3.不等式的解可以分为正数解和负数解。
综上所述,一次函数、方程、不等式是数学中非常重要的概念,它们的应用十分广泛。
在学习和应用过程中,我们需要了解其定义、性质和求解方法,有助于更好地掌握这些知识,并解决相关问题。
希望本文能够对读者有所启发,促进学习和实践的提高。
专题08 一次函数【考点精讲】

边在第一象限作正方形 ABCD ,则对角线 BD 所在直线的解析式为( A )
A.
y
1 7
x
4
B.
y
1 4
x
4
C.
y
1 2
x
4
D. y 4
2.(2020•河北)表格中的两组对应值满足一次函数 y=kx+b,现画出了它的图象
为直线 l,如图.而某同学为观察 k,b 对图象的影响,将上面函数中的 k 与 b
3.一次函数的图象与性质
函数 系数取值 大致图象
k>0 y=kx (k≠0)
k<0
k>0b>0
y=kx+b (k≠0)
k>0b<0 k<0b>0
k<0b<0
经过的象限 一、三 二、四
一、二、三 一、三、四 一、二、四 二、三、四
函数性质 y随x增大而增大 y随x增大而减小 y随x增大而增大
y随x增大而减小
【例 1】(2021·辽宁营口市·中考真题)已知一次函数 y kx k 过点1,4 ,则下列结论
正确的是( C )
A.y 随 x 增大而增大
C.直线过点 1,0
B. k 2
D.与坐标轴围成的三角形面积为 2
【例 2】(2020•杭州)在平面直角坐标系中,已知函数 y=ax+a(a≠0)的图象过点 P(1,2)
B. x 4
C. x 2 D. x 4 或 x 2
【例 5】(2021·广西贺州市·中考真题)直线 y ax b ( a 0 )过点 A0,1 , B2,0 ,
则关于 x 的方程 ax b 0 的解为( C )
A. x 0 B. x 1 C. x 2 D. x 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 14 讲 一次函数
目 录 首 页 上一页 下一页 末 页
宇轩图书
考 点 知 识 精 讲
中 考 典 例 精 析
举 一 反 三
考 点 训 练
目 录 首 页 上一页 下一页 末 页
宇轩图书
考
点
知
考点一 一次函数的定义
识
一般地,如果 y=kx+b(k、b 是常数,k≠0),那么 y 叫做 x 的一次函数.
精
析
举 一 反 三
考 点 训 练
目 录 首 页 上一页 下一页 末 页
宇轩图书
考
点
(2010·宁波)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校
知 与天一阁的路程是 4 千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好
识 精 讲
到达天一阁,图中折线 O—A—B—C 和线段 OD 分别表示两人离学校的路程 s(千米)与所经 过的时间 t(分钟)之间的函数关系,请根据图象回答下列问题:
考
典
例
(2)(2010·济南)一次函数 y=-2x+1 的图象经过哪几个象限( )
精 析
A.一、二、三象限 B.一、二、四象限 C.一、三、四象限 D.二、三、四象限
举 一
(3)(2010·盐城)给出下列四个函数:①y=-x;②y=x;③y=1x;④y=x2.当 x<0 时,y
反 随 x 的增大而减小的函数有( )
宇轩图书
【点拨】本题考查一次函数的应用,从图象或题意中获取信息是解题的关键.
考 点 知
【解答】(1)15
4 15
(2)由图象可知,s 是 t 的正比例函数.
识
设所求函数的解析式为 s=kt(k≠0),
精 讲
代入(45,4),得 4=45k.解得 k=445.
中
∴s 与 t 的函数关系式 s=445t(0≤t≤45)
1.求一次函数解析式
精
求一次函数解析式,一般是已知两个条件,设出一次函数解析式,然后列出方程,解方
讲 程组便可确定一次函数解析式.
中
2.利用一次函数性质解决实际问题
考
用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量;②建立一次函数关
典 系式;③确定自变量的取值范围;④利用函数性质解决问题;⑤答.
精 讲
特别地,当 b=0 时,一次函数 y=kx+b 就成为 y=kx(k 是常数,k≠0),这时,y 叫做
x 的正比例函数.
中
1.由定义知:y 是 x 的一次函数⇔它的解析式是 y=kx+b,其中 k、b 是常数,且 k≠0.
考
2.一次函数解析式 y=kx+b(k≠0)的(2)x 的次数是 1;(3)常数项 b 可为任意实数. 3.正比例函数解析式 y=kx(k≠0)的结构特征:
中 考 典 例 精 析
举
一 反
(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为________千米
三 /分钟.
(2)请你求出小明离开学校的路程 s(千米)与所经过的时间 t(分钟)之间的函数关系;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
考
点
训
练
目 录 首 页 上一页 下一页 末 页
考 典 例
(3)由图象可知,小聪在 30≤t≤45 的时段内 s 是 t 的一次函数,设函数解析式为 s=mt +n(m≠0)
精 析
代入(30,4)、(45,0),得3405mm+ +nn= =40, ,
举 一 反
m=- 解得
145,
n=12.
三
∴s=-145t+12(30≤t≤45).
考 点 训 练
令-145t+12=445t,解得 t=1345. 当 t=1435时,s=445×1435=3.
答:当小聪与小明迎面相遇时,他们离学校的路程是 3 千米.
目 录 首 页 上一页 下一页 末 页
宇轩图书
考 点 知 识 精 讲
中 考 典 例 精 析
举 一 反 三
点
训
练
目 录 首 页 上一页 下一页 末 页
宇轩图书
【解答】(1)令 x=0,则 y=0+3=3,∴与 y 轴的交点为(0,3).故选 A.
考 点
(2)∵k=-2<0,∴图象必过二、四象限.∵b=1>0,∴图象与 y 轴正半轴相交,∴y=
知 -2x+1 的图象经过一、二、四象限.故选 B.
识 (3)若是一次函数,则要求 k<0,所以①可以.若是反比例函数,则要求 k>0,所以③可
析
(1)k≠0;(2)x 的次数是 1;(3)没有常数项或者说常数项为 0.
举 一 反 三
考 点 训 练
目 录 首 页 上一页 下一页 末 页
宇轩图书
考
点
知 识
考点二 一次函数的图象
精 讲
1.一次函数 y=kx+b(k≠0)的图象是经过点(0,b)和(-bk,0)的一条直线.
2.正比例函数 y=kx(k≠0)的图象是经过点(0,0)和(1,k)的一条直线.
中
考
典
例
精
析
举
一
考点三 一次函数图象的性质
反 三
一次函数 y=kx+b,当 k>0 时,y 随 x 的增大而增大,图象一定经过第一、三象限;当 k<0 时,y 随 x 的增大而减小,图象一定经过第二、四象限.
考 点 训 练
目 录 首 页 上一页 下一页 末 页
宇轩图书
考
点 知
考点四 一次函数应用
识
例
精
析
举 一 反 三
考 点 训 练
目 录 首 页 上一页 下一页 末 页
宇轩图书
考 点 知 识 精 讲
中 考 典 例 精 析
举 一 反 三
考 点 训 练
目 录 首 页 上一页 下一页 末 页
宇轩图书
考
点
知
识
精
讲
(1)(2010·温州)直线 y=x+3 与 y 轴的交点坐标是( )
中
A.(0,3) B.(0,1) C.(3,0) D.(1,0)
精 以.而 y=x2 开口方向向上,对称轴为 y 轴,当 x<0 时,也有 y 随 x 的增大而减少,故共有 讲 ①③④3 个符合条件.故选 C.
中 考
(4)当 k>0 时,y=kx+1 过一、二、三象限,y=kx过一、三象限;当 k<0 时,y=kx+1
典 例
过一、二、四象限,y=kx过二、四象限.故选 B.
三
A.1 个 B.2 个
C.3 个 D.4 个
考 点 训 练
目 录 首 页 上一页 下一页 末 页
宇轩图书
考 点
(4)(2010·荆门)在同一直角坐标系中,函数 y=kx+1 和函数 y=kx(k 是常数且 k≠0)的图象
知 只可能是( )
识
精
讲
中 考 典 例 精 析
举 一 反 三
考
【点拨】本组题考查一次函数的图象及其性质.