Chemical modification of carbon nanotube for improvement of field emission property
氧化锡多孔纳米纤维的制备及储锂性能

孔 隙率 的疏 散 型纤 维 , 用 S M、 G X D和 电化 学 测 试 等 手 段 对 材 料 进 行 了表 征 .结 果 表 明 , n 孔 利 E T A、 R SO 多 纳 米 纤 维 具 有 较 好 的 电化 学 性 质 , 为 锂 离 子 电 池 负 极 材 料 的 初 始 可 逆 容 量 为 7 7m ・ / , 0次 循 环 后 作 1 A h g 2
析纯 , 天津 市 大茂化 学试 剂厂 ;聚 乙烯 吡咯烷 酮 ( V , P P
=13 1。 ,分 析纯 ,A rh公 司 ;聚 偏 氟 . ×0) di c
乙烯 ( V F ,纯度 I9.9 , 国阿科 玛公 司 ;乙炔黑 ,国标 , 海吴化 化工 有 限公 司 ;锂 片 ,纯度 PD ) > 99 % 法 上 > 9 9 ,北京 有色 金属 研究 总 院 ; 箔 ( 9.% 铜 厚度 9 m) 纯 度 > 98 ,惠州 联合铜 箔有 限公 司 ; , 9. % 离子 电 池 电解 液 ( B3 5 ,国泰华 荣化 工新 材料 有 限公 司. L .1 )
锂 离 子 电池 因具有 电压 高 、比能量 高 、 环 寿命 长及 无 污染 等 优点 而 备受 关 注 .目前 商业 化 的 循 锂 离 子 电池负极 材 料 主要 是 碳材料 , 虽然 其具 有低 化 学 电势 ,在空 气 中稳 定 及无 毒 等 优点 ,但碳 负 极 材 料存 在 比容量 较 低 ( 论容 量约 32mA ・ / ) 首 次充 放 电效 率低 ,有机 溶剂 共 嵌入 等 缺点 .随 理 7 hg , 着 移动 电子 设备 和混 合动 力 汽车 的快速 发展 , 们 对高 比容 量 电池 的需 求越来 越 高.SO 作为储 锂 材 人 n: 料具 有 理论 容量 高 (8 A ・ / ) 72m h g 、能 量密 度 大 、原 料来 源广 泛 及 价格 低 廉 的优 点 , 一 种 非常 有 潜 是 力 的锂 电 负极材 料 , 其在充 放 电循 环过 程 中存 在 较 大 的体积 变 化 , 料 易粉 化 坍 塌 , 致其 循 环 性 但 材 导 能 变差 .制 备 SO 纳米 材 料是 有效 的解 决 方 法 之一 ,大 的 比表 面 积有 利 于 缓 冲其 充 放 电过 程 中的 体 n: 积 变化 ,同时 比表 面效应 有利 于更 多 的锂 发生脱 嵌 J .常用 的制备 方 法有 液相 沉 淀 、 学气 相 沉 积 化 法 、溶胶 - 法 和液 晶模 板法 等 . 凝胶 电纺丝技 术 可 以简单 有效地 制 备多种 一 维纳米 材 料 , 联合 溅 射 、液 相沉 积 及煅 烧 等技 术 可调 控产 物 的结构 ,获得 多级 结构 的氧化 物 纳米纤 维 及 纳米 管 J .Mu等 通 过调 控 煅烧 复 合 纤维 过 程 中凝 胶收 缩方 向等 制备 了多级结 构 的 BF O ae 空心 纳米 纤维 、F: , 管结 构 空心 纳米 纤维 及 F , 空心 eO 套 eO 与螺 旋 纳 米 纤 维 ;Sni oA i s H atg—vl 等 制 备 了 SO a 6 n 纳 米 纤 维 ,研 究 了其 光 学 及 光 电 导 性 能 ;C e hn
一种氮掺杂多级孔炭负载的纳米pd催化剂的制备方法及其产品和应用

一种氮掺杂多级孔炭负载的纳米pd催化剂的制备方法及其产品和应用氮掺杂多级孔炭负载的纳米Pd催化剂是一种重要的催化剂,在化学反应中具有广泛的应用。
本文将介绍一种制备该催化剂的方法,以及其产品和应用。
首先,制备该催化剂的方法包括以下几个步骤:1. 制备氮掺杂多级孔炭:将适量的碳源和氮源混合,通过碳化或热解的方式制备氮掺杂多级孔炭材料。
这种材料具有多级孔结构,有利于提高催化剂的比表面积和孔容量。
2. 负载纳米Pd颗粒:将制备好的氮掺杂多级孔炭与Pd前驱体溶液混合搅拌,经过还原或沉积的方式将纳米Pd颗粒负载在多级孔炭上。
这样可以有效地提高Pd的利用率,并增加催化剂的活性。
3. 热处理和活化:将负载了纳米Pd的氮掺杂多级孔炭催化剂进行热处理和活化,以确保催化剂的稳定性和活性。
通过以上步骤,我们可以制备出具有优异催化性能的氮掺杂多级孔炭负载的纳米Pd催化剂。
该催化剂的产品具有以下特点:1. 高活性:纳米Pd颗粒的负载和多级孔炭的结构优势使得催化剂具有高活性,可在各种化学反应中高效催化。
2. 高稳定性:氮掺杂多级孔炭的稳定性和Pd颗粒的均匀负载保证了催化剂的长期稳定性,延长了使用寿命。
3. 可控性:通过调控多级孔炭的孔径和Pd颗粒的尺寸,可以实现催化剂的可控性,满足不同化学反应的需求。
该催化剂的应用范围广泛,主要包括以下几个方面:1. 环境保护:氮掺杂多级孔炭负载的纳米Pd催化剂可用于废水处理、废气净化等环境保护领域,高效降解有机污染物。
2. 能源领域:催化剂可用于氢气生成、氧化还原反应等能源转化领域,提高反应效率和产物纯度。
3. 有机合成:催化剂在有机合成领域具有重要的应用,如催化加氢反应、催化偶联反应等,促进化学反应的进行。
综上所述,氮掺杂多级孔炭负载的纳米Pd催化剂的制备方法简单高效,产品具有优异的催化性能,应用广泛,具有重要的研究和应用价值。
希望通过本文的介绍,能够对该催化剂的制备和应用有进一步的了解和应用。
《2024年新型多孔碳材料的合成与应用研究》范文

《新型多孔碳材料的合成与应用研究》篇一一、引言随着环境保护和可持续发展的重要性日益凸显,新型多孔碳材料作为一种高效、环保的吸附和分离材料,逐渐成为了科研领域的热点。
这种材料具有独特的孔结构、高的比表面积和良好的化学稳定性,广泛应用于能源存储、环境治理、催化剂载体等领域。
本文将详细介绍新型多孔碳材料的合成方法、结构特性及其在各领域的应用研究。
二、新型多孔碳材料的合成方法1. 物理法物理法主要是通过高温炭化或物理活化法等手段合成多孔碳材料。
该方法主要优点是过程简单、成本低,但合成出的多孔碳材料孔径分布较宽,比表面积相对较小。
2. 化学法化学法主要包括模板法、溶胶凝胶法等。
这些方法能够制备出孔径分布窄、比表面积大的多孔碳材料。
其中,模板法是利用模板剂的引导作用,制备出具有特定形状和尺寸的多孔碳材料。
三、新型多孔碳材料的结构特性新型多孔碳材料具有以下特点:1. 高的比表面积:多孔碳材料具有丰富的孔隙结构,从而具有较高的比表面积,有利于吸附和分离等应用。
2. 可调的孔径分布:通过调整合成过程中的条件,可以制备出不同孔径分布的多孔碳材料,以满足不同应用的需求。
3. 良好的化学稳定性:多孔碳材料具有良好的耐酸碱、耐高温等特性,使其在恶劣环境下仍能保持良好的性能。
四、新型多孔碳材料的应用研究1. 能源存储领域新型多孔碳材料作为锂电池、超级电容器等能源存储设备的电极材料,具有优异的电化学性能。
其高的比表面积和良好的导电性,使得电极材料能够充分接触电解质,提高电化学性能。
2. 环境治理领域多孔碳材料对有机污染物、重金属离子等具有良好的吸附性能,可用于废水处理、空气净化等领域。
此外,其优良的再生性能和可循环使用特点,降低了环境治理成本。
3. 催化剂载体多孔碳材料可作为催化剂载体,提高催化剂的分散性和稳定性。
同时,其独特的孔结构有利于反应物的扩散和传输,提高催化反应效率。
五、结论与展望新型多孔碳材料凭借其独特的结构和优良的性能,在能源存储、环境治理、催化剂载体等领域展现出广阔的应用前景。
一种基于多巴胺仿生化学修饰生物炭吸附材料的制备方法

一种基于多巴胺仿生化学修饰生物炭吸附材料的制备方
法
基于多巴胺仿生化学修饰生物炭吸附材料的制备方法,包括以下步骤:
1. 将收集的水稻秸秆清洗、粉碎后,置于自制的高温热解装置进行℃的高温热解,加热结束后冷却至室温,获得水稻生物炭。
2. 将盐酸多巴胺溶于乙醇水溶液,同时加入Tris-HCl缓冲溶液得到多巴胺溶液,然后用稀HCl或稀NaOH溶液将多巴胺溶液pH调节至,获得多巴胺碱溶液。
3. 将水稻生物炭加入到多巴胺碱溶液中,室温下充分搅拌即可得到RSBCPDA。
请注意,制备方法可能因材料和实验条件的不同而有所差异。
以上步骤仅供参考,具体操作应根据实际情况调整。
大学化学开放实验—多孔碳的制备和表征

大学化学开放实验—多孔碳的制备和表征刘亚菲;范丽岩;胡中华【摘要】介绍一个大学化学开放实验,该实验的主要内容包括:利用同步物理-化学活化法制备多孔碳材料,通过低温自动N2吸附法测定多孔碳材料的比表面积和孔隙结构,探究活化条件对碳材料表面结构的影响,将现代分析仪器引入到本科教学中.要求学生自主设计活化实验方案,了解自动气体吸附仪的原理和使用方法,并利用Excel、Origin软件进行实验数据处理、分析,培养学生的科学素养.【期刊名称】《实验室科学》【年(卷),期】2018(021)005【总页数】4页(P41-44)【关键词】同步物理-化学活化法;多孔碳材料;开放实验【作者】刘亚菲;范丽岩;胡中华【作者单位】同济大学化学科学与工程学院, 上海 200092;同济大学化学科学与工程学院, 上海 200092;同济大学化学科学与工程学院, 上海 200092【正文语种】中文【中图分类】O6-339社会的发展与科技的进步对高等教育及大学生的素质提出了更高的要求。
一个合格的大学毕业生不仅仅要具备扎实的理论知识基础,还需要有一定的动手能力和基本的科学素养。
在高等教育的实践教学环节中,采用开放实验的方式,可以极大地发挥学生的主体作用,提高学生的动手能力、解决问题的能力和创新能力,引导学生运用专业知识解决实际问题[1]。
本文将介绍一个参与型的开放实验项目,通过该实验的实施,可以训练学生查阅文献、设计实验方案、动手操作、数据整理分析、成果总结的能力,最终提高学生的科学素养。
多孔碳材料来源广泛,价格便宜,具有巨大的比表面积和优良的导电导热性能,其化学稳定性好,膨胀系数小,在制备过程中孔径分布可以调控,且可根据需要制成多种形态,如粉末、颗粒、纤维、布等,在化工、环保、新型储能器件、食品、生物医药等领域有及其广泛的应用。
如何对多孔碳材料的孔隙结构进行调控一直是碳材料研究领域的热点。
多孔碳材料的制备方法主要有四种:以水蒸汽[2]、二氧化碳、氧气或这些气体的混合气为活化剂的物理活化法;以氯化锌[3]、氢氧化钾、磷酸、碳酸钾等化学试剂为活化剂的化学活化法;物理活化与化学活化联合使用的复合活化法[4-5]以及催化活化法等。
Chemical treatment and modification of multi-walled carbon nanotubes

Physica B 323(2002)280–283Chemical treatment and modification of multi-walled carbonnanotubesT.Saito a,*,K.Matsushige b ,K.Tanaka caVenture Business Laboratory,Kyoto University,Kyoto 606-8501,JapanbDepartment of Electronic Science and Engineering,Graduate School of Engineering,Kyoto University,Kyoto 606-8501,JapancDepartment of Molecular Engineering,Graduate School of Engineering,Kyoto University,Kyoto 606-8501,JapanAbstractIt is shown that raw multi-walled carbon nanotubes (MWCNTs)can be cut into several hundred nanometer lengths by sonication in mixed acids.The resulting shortened MWCNTs formed a stable dispersion state in the polar solvent without the help of surfactants.Toward chemical modification of MWCNTs,the condensation reaction of the shortened MWCNTs and various alkyldiamines was carried out and the products were investigated by the Fourier transform infrared (FT-IR)spectroscopy and the scanning electron microscope (SEM)measurements.r 2002Elsevier Science B.V.All rights reserved.PACS:61.46.+w;81.07.De;85.65.+hKeywords:Multi-walled carbon nanotubes;Chemical treatment;Chemical modificationSince its discovery by Iijima in 1991[1],carbon nanotube (CNT)has been attracting wide interest because of its unique structural,mechanical,and electronic properties.A lot of works targeting applications of multi-walled (MW)and single-walled (SW)CNTs have been piled up,including their utilization as the field emitter [2],the electrode of lithium-ion battery [3],tip for scan-ning probe microscope (SPM)[4,5],nanoelectronic devices [6,7],nanotube actuators [8],and so on.Recently,CNTs with relatively short length in the range of 0.1–1m m have been attracting strong attention because such CNTs are expected to provide connectors and components in,what iscalled,molecular electronic devices.It has been reported that appropriate acid-treatment could accomplish such short length in SWCNTs [9].This shortened SWCNT has been used as a starting material for further chemical modification toward its functionalization,that can modulate the properties of SWCNT including,e.g.,the disper-sing property (solubility)and the band structure [10].In SWCNTs,it was also reported that the thiol-functionalized SWCNT could be sponta-neously adsorbed onto gold via Au–S chemical bonds [11].The development of the chemical modification of CNTs is expected to bring about the novel CNT-based functional materials,such as diode with the chemically formed CNT–CNT junction.In this work,we perform acid-treatment on multi-walled carbon nanotubes (MWCNTs)with*Corresponding author.Tel.:+81-75-753-75-77;fax:+81-75-753-7579.E-mail address:saito@vbl.kyoto-u.ac.jp (T.Saito).0921-4526/02/$-see front matter r 2002Elsevier Science B.V.All rights reserved.PII:S 0921-4526(02)00999-7continuous sonication to shorten MWCNTs and then carry out the chemical modification by making this shortened MWCNTs react with various straight-chain alkyldiamines, H2N(CH2)2n NH2(n¼124).The shortened MWCNT and the reaction products are character-ized with the atomic force microscope(AFM),the scanning electron microscope(SEM),and the Fourier transform infrared(FT-IR)spectroscopy measurements.The MWCNT produced by the chemical vapor deposition(CVD)method were provided from Hyperion Catalysis International,Inc.,Harvard, MA.The typical cutting procedure is as follows: 200mg of the crude MWCNT was suspended in 400ml of a3:1mixture of concentrated H2SO4(90%)/HNO3(70%)and sonicated in a water bath for22h at ca.501C.The resultant acid-treated MWCNTs were collected on a poly-tetrafluoroethylene(PTFE)filter with the pore size of500nm(ADVANTEC,H050A047A)and washed four times with water and methanol, respectively.After this acid-treatment process, the mass of resultant acid-treated MWCNT was reduced down to ca.70%of that of the raw material.The chemically modified MWCNTs with var-ious amino compounds were prepared as follows: 2mg of the acid-treated MWCNTs was thor-oughly dispersed in20ml of DMF by sonication. To this dispersion of the acid-treated MWCNT, 10ml of the DMF solution dissolving1.7mmol of the amino compound was added.Then10ml of THF solution of an excess amount of dicyclohex-ylcarbodiimide(DCC)was added to this solution dropwise and stirred at room temperature for72h Fig.1.AFM images(JEOL,JSPM-4200XK)of MWCNTs(a)before and(b)after the acid-treatment.T.Saito et al./Physica B323(2002)280–283281under a nitrogen atmosphere with continual sonication so as to avoid aggregation.The reaction product was collected on a500nm-pore PTFE filter and washed four times each with DMF, THF,and methanol,and then dried at room temperature under vacuum.The change of CNT’s size is investigated by AFM.The representative AFM images are shown in Fig.1.In order to avoid the aggregation of CNTs,the Si wafer modified by the silane-coupling reagent(3-aminopropyltriethoxysilane) was used as the substrate.Fig.1clearly indicates an abundant population of the shortened MWCNTs with the length o1m m.The average length of the shortened MWCNTs deduced from these pictures was338nm.Moreover,we found that this shortened MWCNT could be dispersed in the polar solvents such as ethanol,DMSO,and DMF more easily than the crude.The degree of the dispersion of the shortened MWCNT in DMF was>0.3mg/ml.These dispersion liquids of the shortened MWCNTs were stable without aggrega-tion for more than one month.This would be due to the reduction of their length and the effect of the solvation brought by the introduced hydro-philic group,i.e.,the carboxyl group.The section analysis along the white lines of Figs.1(a)and(b)reveals that the diameters of MWCNTs were reduced by this acid-treatment,which would suggest that the sidewall of CNTs was etched by the acid-treatment and,therefore,the carboxyl group would be also induced at the sidewall of CNTs partially as well as the ends.In order to characterize thefinal products modified chemically with various amino com-pounds,we measured the FT-IR spectra shown in Fig.2.The characteristic absorptions indicating the formation of the amide bond(amide I band: n C¼O¼1650cmÀ1,amide III band:n C2N¼1260cmÀ1)were observed.Moreover,making a comparison between the amide I band and the characteristic stretching band of alkane (n CÀH¼280023000cmÀ1),it was found that the intensity of n C2H becomes larger in parallel with the longer alkyl-chain of the starting amino compound.Therefore,it is expected that the reaction product becomes more hydrophobic as the alkyl-chain becomes longer.Actually,in contrast to the as-prepared shortened MWCNTs, which are easily dispersed in an aqueous1wt% sodium dodecylsulfate(SDS)solution,the reaction products have less degree of dispersion in that solution,the tendency of which definitely increased as the alkyl-chain became longer.The SEM image of the reaction product from the shortened MWCNTs and1,8-octamethylene-diamine is shown in Fig.3.It is of interest to note possible formation of a T-type junction by attachment of the end of one shortened MWCNT to the other’s sidewall after the chemical reaction, being similar to the ring formation of an SWCNT recently reported[12].In summary,we have demonstrated that MWCNTs can be cut into short lengths by sonication in mixed acids.Moreover,we have carried out the chemical modification of this shortened MWCNTs by amino compounds through the condensation reaction process and characterized the reaction products by FT-IRand absorbance(a.u.)Wave number (cm-1)Fig.2.FT-IR spectra(BIO-RAD,FTS-30)of the as-prepared shortened MWCNT and the reaction products(KBr pellet) with baseline correction.T.Saito et al./Physica B323(2002)280–283 282SEM,though further investigation such as the electrical properties will be still necessary in order to develop the novel CNT-based functional materials.AcknowledgementsWe are grateful to Hyperion Catalysis Interna-tional,Inc.,Harvard,MA,providing us with the MWCNT prepared with the CVD method.This work was supported by the project of Kyoto University Venture Business Laboratory.References[1]S.Iijima,Nature 354(1991)56.[2]Y.Saito,S.Uemura,K.Hamaguchi,Jpn.J.Appl.Phys.Pt.237(1998)L346.[3]G .Che,et al.,Nature 393(1998)346.[4]H.Dai,et al.,Nature 384(1996)147.[5]S.S.Wong,et al.,Nature 394(1998)52.[6]S.Frank,et al.,Science 280(1998)1744.[7]S.J.Tans,A.R.M.Verschueren,C.Dekker,Nature 393(1998)49.[8]R.H.Baughman,et al.,Science 284(1999)1340.[9]J.Liu,et al.,Science 280(1998)1253.[10]J.Chen,et al.,Science 282(1998)95.[11]Z.Liu,et al.,Langmuir 16(2000)3569.[12]M.Sano,et al.,Science 293(2001)1299.Fig.3.A SEM picture (HITACHI,S-4500)of the reactionproduct from the shortened MWCNTs and 1,8-octamethylene-diamine.T.Saito et al./Physica B 323(2002)280–283283View publication stats。
亚甲基蓝在碳纳米管上的吸附及其热力学
对 Langmuir 等温式来说,吸附有利与否可采用
无量纲因子 RL 来判断,即: RL = 1 / ( 1 + KLC0 ) .
RL 有 4 种 可 能 性: ① RL = 0,不 可 逆 吸 附; ②
0 < RL < 1,有利吸附; ③RL = 1,线性吸附; ④RL >
1,不利吸附. 对碳纳米管吸附亚甲基蓝来说,0 <
亚甲基蓝在碳纳米管上的吸附及其热力学
张延霖1* ,刘佩红1 ,舒绪刚2
( 1. 华南师范大学化学与环境学院,广东广州 510631; 2. 仲凯农业工程学院化学化工学院,广东广州 510225)
摘要: 采用亚甲基蓝作为碱性染料,测定了亚甲基蓝初始质量浓度为 10 mg / L,吸附平衡 8 h,温度 290、300、310 K 时
2011 年 2 月 Feb. 2011
华南师范大学学报 ( 自然科学版)
JOURNAL OF SOUTH CHINA NORMAL UNIVERSITY ( NATURAL SCIENCE EDITION)
文章编号: 1000 - 5463( 2011) 01 - 0070 - 04
2011 年第 1 期 No. 1,2011
310 R2 = 0. 987 qm = 119. 71 KL = 3. 12 RL = 0. 031 R2 = 0. 921 KF = 73. 96 1 / n = 0. 29 qm = 128. 21 R2 = 0. 998 qm = 118. 61 as = 1. 78 1 / n = 0. 87
和表 1 所示.
图 1 亚甲基蓝吸附到碳纳米管上的 Langmuir 等温线 Figure 1 Langmuir isotherm for MB adsorption onto MWCNTs
酞菁锰-苯甲酸功能化石墨烯的制备及光催化性能研究
酞菁锰-苯甲酸功能化石墨烯的制备及光催化性能研究杨康【摘要】以酞菁锰(MnTAPc)和苯甲酸功能化的石墨烯(BFG)为原料,通过酰胺反应将MnTAPc负载到BFG上,制备出BFG-MnTAPc光降解材料.通过透射电镜(TEM)、红外光谱(FT-IR)、拉曼光谱(Raman)、X射线光电子能谱(XPs)对其结构进行表征.以罗丹明B作为模拟污染物,在紫外光条件下研究了BFG-MnTAPc对罗丹明B的催化降解性能.结果表明,BFG-MnTAPc能有效降解模拟废水中的罗丹明B,当添加BFG的量为10%,可见光照射3.5h后,其降解率能达到90%;此外,BFG-MnTAPc能够很好地回收利用,不会造成二次污染.【期刊名称】《安徽化工》【年(卷),期】2018(044)002【总页数】7页(P75-81)【关键词】酞菁锰;苯甲酸功能化石墨烯;罗丹明B;催化降解【作者】杨康【作者单位】合肥工业大学化学与化工学院,可控化学与材料化工安徽省重点实验室,安徽合肥230009【正文语种】中文【中图分类】TB33;O643.32近年来,随着印染工业的快速发展,染料废水成为水污染的一个重要因素。
为了解决染料废水对环境和人类造成的危害,制备出高效、环保的光催化剂,成为近年来人们研究的热点[1]。
酞菁化合物是由四个对称的异吲哚单元构成的大共轭π电子体系,这种特殊的大共轭结构使其具有较好的电子传递效应,在光催化方面具有优异的性能[2-3]。
目前,人们用酞菁类化合物降解污染物的研究越来越多,如Li等[4]开展了酞菁锰在可见光下催化降解氯酚类化合物的研究,结果显示,酞菁锰能高效地催化氯酚类化合物转化为无毒的无机小分子。
Marcela等[5]将酞菁锌和二氧化钛复合降解对乙胺酰基酚,结果表明,复合材料的降解效率比二氧化钛高15%。
虽然酞菁化合物具有优良的催化性能,但其在催化降解的同时自身容易被聚集氧化而使活性降低,不能达到预期的降解效果,也不利于循环利用。
碳化相关书籍
碳化相关书籍关于碳化(Carbonization)的主题,有很多涉及不同方面的书籍,包括碳材料、碳化工艺、碳化物的应用等。
以下是一些可能对你感兴趣的碳化相关书籍:* 《Carbon Materials: Science and Applications》* 作者:M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund* 这本书全面介绍了碳材料的科学和应用,包括石墨、炭黑、碳纤维、纳米碳等。
适合对碳材料的基础知识和应用领域感兴趣的读者。
* 《Carbon Nanotubes: Synthesis, Structure, Properties, and Applications》* 作者:Mildred S. Dresselhaus, Gene Dresselhaus, Ado Jorio* 该书深入研究了碳纳米管的合成、结构、性质和应用。
是一本适合对纳米碳材料感兴趣的读者的专业性书籍。
* 《Carbon Nanomaterials》* 作者:Yexin Zhang, Han Zhang, Guoqiang Luo, Zhiming M. Wang* 该书系统地介绍了碳纳米材料的合成、表征和应用。
适合材料科学、纳米科技等领域的学者和研究人员。
* 《Carbon-Related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE》* 编者:Teruo Henmi, Yen Wei* 这本书收录了鈴木章教授在国际碳素大会上的诺贝尔奖获奖演讲,涵盖了碳相关材料的广泛应用。
* 《Introduction to Carbon Science》* 作者:Mark M. Bockrath* 该书为初学者提供了对碳科学的基础介绍,包括碳的基本性质、碳的不同形态等。
请注意,书籍的选择可能因你对碳化的具体兴趣而有所不同。
新型碳纳米材料在低温燃料电池催化剂中的应用
文章编号:025329837(2004)1020839205综述:839~843收稿日期:2004203219. 第一作者:李文震,男,1975年生,博士.联系人:辛 勤.Tel/Fax :(0411)84379071;E 2mail :xinqin @.新型碳纳米材料在低温燃料电池催化剂中的应用李文震1, 梁长海2, 辛 勤1,2(1中国科学院大连化学物理研究所直接醇类燃料电池实验室,辽宁大连116023;2中国科学院大连化学物理研究所催化基础国家重点实验室,辽宁大连116023)摘要:碳纳米管及其衍生纳米碳材料是一种介于富勒烯与石墨之间的碳的存在形式,具有独特的电子性质.碳纳米材料可与其表面负载的金属活性相产生一种特殊的载体2金属相互作用;纳米管中电子转移的动力学行为极佳,并且其特殊的纳米级孔道结构有利于反应物及产物的传质,因此作为低温燃料电池催化剂载体备受关注.综述了多种新型碳纳米材料如碳纳米管、碳纳米纤维、碳纳米盘、碳纳米角和碳纳米分子筛等在低温燃料电池催化剂中的应用,并对其存在的问题和可能的发展方向进行了讨论.关键词:碳纳米管,纳米碳,燃料电池,电催化剂,载体中图分类号:O643 文献标识码:AApplication of Novel C arbon N anom aterials in Low 2T emperature Fuel Cell C atalystsL I Wenzhen 1,L IANG Changhai 2,XIN Qin1,23(1Direct A lcohol Fuel Cells L aboratory ,Dalian Institute of Chemical Physics ,The Chinese Academy of Sciences ,Dalian 116023,L iaoning ,China ;2S tate Key L aboratory of Catalysis ,Dalian Institute of Chemical Physics ,The Chinese Academy of Sciences ,Dalian 116023,L iaoning ,China )Abstract :Carbon nanotubes as well as other carbon nanomaterials are a kind of novel carbon form between fullerene and graphite.The special interaction between metal and carbon nanomaterial support originated from their unique electric property ,the excellent electron transfer kinetics in carbon nanotubes ,and the increase in re 2actant and product mass transfer owing to the special structure ,make them attractive as potential electrocatalyst support for low 2temperature fuel cells.The advances in application of carbon nanomaterials ,such as carbon nan 2otubes ,carbon nanofibers ,carbon nano 2molecular sieves ,carbon nanocoil and single 2walled carbon nanohorns ,as supports of fuel cell catalysts ,the application problems and some research trends were reviewed.K ey w ords :carbon nanotube ,carbon nanomaterial ,fuel cell ,electrocatalyst ,support 自1991年日本N EC 公司从石墨电弧放电产物中发现多壁碳纳米管(multiwalled carbon nanotube ,MWN T ),特别是较大量合成成功以来,碳纳米管(carbon nanotube ,CN T )已引起研究者的极大兴趣,迅速成为富勒烯研究的热点,是物理、化学和材料等学科中前沿的研究领域之一[1~5].碳纳米管(carbon nanotube ,CN T )有多壁和单壁之分,可以通过电弧放电、化学气相沉积、催化法甚至激光辐射制备.碳纳米管的管径在017~60nm 间,其长度可达到宏观量级,属于一维材料.这不同于碳的其他同素异形体金刚石(三维)、石墨(二维)或富勒烯C 60(零维).碳纳米管独特的结构和电子特性使它在众多领域如储氢材料[6~8]、近场发射材料[9]、纳米半导体器件[10]和增强纤维材料[11]等具有潜在的应用价值.碳纳米管的发现随即引发了衍生的纳米碳材料如碳纳米纤维(graphite nanofiber ,GN F )[12,13]、碳纳第25卷第10期催 化 学 报2004年10月Vol.25No.10Chi nese Journal of CatalysisOctober 2004米角(carbon nanohorn)[14]、碳纳米锥(carbon nanocone)[15,16]、碳纳米洋葱管(carbon nano2 onion)[17]及碳纳米笼(carbon nano2cage)[18]等的发现和研究热潮.这些碳纳米材料均由石墨平面卷曲形成,是介于富勒烯与石墨之间的一种碳的存在形式.石墨平面的卷曲方式及程度决定着碳纳米材料的结构、形貌及螺旋性.近年来发展的模板法制备的碳纳米分子筛(carbon nano2molecular sieve,CN2 MS)[19]具有规整的纳米级三维孔道结构(2~50 nm),也引起研究者的极大兴趣. 燃料电池作为一种新型高效的替代电源,具有环境友好及能量转化效率高等优点[20~23].高活性、长寿命的电极催化剂是燃料电池的核心部件,低温燃料电池,包括以氢2氧为燃料的质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)和直接甲醇燃料电池(direct methanol fuel cell,DM2 FC),一般采用高负载量的铂基催化剂[24].适宜的电极催化剂载体则应具备良好的导电性能、较大的比表面积、合理的孔结构(具有较多的中孔比例,满足反应气体及气体产物的传质)以及优异的抗腐蚀性等特点[25].从催化剂成本和寿命等实际应用角度考虑,最常用的载体为炭黑材料,包括乙炔黑(A BET=50m2/g)、Vulcan XC272R(A BET=250 m2/g)及Ketjen黑(A BET=1000m2/g).其中Vul2 can XC272R为无定形活性炭经石墨化处理的炭黑材料,其比表面积适中且具有良好的导电性和较佳的孔结构,是目前学术研究与工业中应用较为广泛的电催化剂载体[24,25].碳纳米管及其衍生纳米材料具有独特的管状结构和由连续的sp2杂化提供的独特的电子特性,使其与表面负载的金属活性相产生一种特殊的载体2金属相互作用;碳纳米分子筛规整的中孔孔道结构有利于反应物及产物的传质,从而提高催化剂的比活性,因此成为多相催化研究领域的一个热点[26~38].与传统的碳材料相比,碳纳米管中电子转移的动力学行为最好,接近能斯特方程[39],故在电催化剂研究领域多有尝试.本文对多种新型碳纳米材料在燃料电池催化剂中的应用进行了综述.1 碳纳米管 Che等[40]首先利用多孔氧化铝膜为模板,采用化学气相沉积碳源于铝膜内制备出孔结构规整的碳纳米膜管(carbon nanotubule membrane,CN TM),其管径为200nm,壁厚为20nm;通过浸渍法负载Pt或Pt2Ru,再利用HF酸洗进行骨架脱铝,并于580℃将贵金属于H2气氛中还原,得到碳纳米膜管负载的Pt或Pt2Ru催化剂.10%负载量的Pt催化剂的粒径在7nm左右,Pt2Ru催化剂的粒径则小于2nm,且分别显示出很高的氧还原活性及甲醇氧化活性.Rajesh等[41,42]采用类似的模板方法,将聚苯乙炔浸渍于铝膜内,并经过高温碳化制备出规整和均一柱状孔道的多壁碳纳米管(管径约为200nm),并采用浸渍法制备出Pt/MWN T,Pt2Ru/MWN T和Pt2WO3/MWN T催化剂,粒径分别为112,116和10 nm.通过半池评价得到系列催化剂对甲醇氧化的活性为Pt2Ru/MWN T>Pt2WO3/MWN T>Pt2Ru/ XC272(E2TEK Corp.),表明MWN T载体具有更好的性能. 基于燃料电池催化剂载体导电性的考虑,Li 等[43~45]采用高纯石墨电弧放电法制备出多壁碳纳米管(管径为4~60nm)作为载体,利用调变的乙二醇法[46~52]制备出均匀高分散的Pt/CN T阴极催化剂,平均粒径为215nm,其直接甲醇燃料电池性能比以XC272为载体的催化剂的单池性能提高43%,并且发现碳纳米管表面的氧化处理及制备体系中溶剂乙二醇的浓度对贵金属Pt的负载及粒径分布有很大的影响.碳纳米管负载Pt2Fe催化剂也被合成出来,且具有较高的氧还原活性[53].Liu 等[54]采用Fe2Co2No为催化剂,用化学气相沉积法制备出多壁碳纳米管,并通过HNO32K2Cr2O7/ H2SO4氧化处理以增加其表面含氧官能团,然后利用N2H4将Pt还原负载于CN T上,该Pt/CN T催化剂粒径为1~5nm,表现出很好的PEMFC单池性能.随后,他们采用乙二醇为溶剂微波还原制备出Pt2Ru/CN T催化剂(粒径2~6nm,平均粒径为315nm)[55],该催化剂具有与商品化的Pt2Ru/C(E2 TEK)相近的DMFC单池性能. 碳纳米管发明者Iijima博士领导的研究小组[14]在1999年报道了一种新型碳纳米材料单壁碳纳米角(single2walled carbon nanohorn,SWN H)负载的Pt催化剂,Pt的平均粒径为2nm,且均匀分布在SWN H的外壁.应用Pt/SWN H和Pt2Ru/SWN H 分别为阴极和阳极催化剂的DMFC输出功率较以XC272为载体时的输出功率显著提高.目前,N EC 和Hitachi公司均宣称采用新型的碳纳米材料作为其公司开发的DMFC原型机电极催化剂载体,显示048催 化 学 报第25卷出该项研究潜在的实际应用价值. 在理论研究方面,Britto等[56]应用从头计算法与密度泛函理论,并通过分子动力学模拟计算,研究了氧在多壁碳纳米管上的解离吸附及电子转移过程,提出MWN T中弯角的五边形及表面六边形缺陷是其催化氧化还原反应(ORR)活性提高的主要原因,解释了H2SO4电解质中MWN T电极催化ORR活性较石墨电极高5倍的现象.2 碳纳米纤维 碳纳米纤维(GN F)是研究较多的另一类新型碳材料.该材料是通过烃类解离吸附于催化剂表面,碳原子在不同金属催化剂的晶面上沉积形成的,用不同的催化剂和催化条件可以得到不同的石墨片排布.由于GN F具有优异的导电性和独特的物理化学性质,从而成为理想的电催化剂载体材料. Bessel等[57]用浸渍法制备了不同形貌的碳纳米纤维(盘形platelet,带形ribbon,鲱骨形herring2bone)负载Pt催化剂.这些催化剂的Pt粒子呈扁形高度晶体化的结构,表明金属2载体具有很强的相互作用(support metal strong interaction,SMSI).在半池反应中,5%Pt负载量的该催化剂与Vulcan XC272负载30%Pt的催化剂的甲醇氧化活性相当.这可能是由于金属2载体强相互作用导致高活性Pt晶面的形成所致,也可能同Pt/GN F催化剂具有更好的去除中间物种的能力、GN F具有更好的导电性能以及较XC272含有更少的硫有关.Lukehart小组将Pt2 Ru单分子源前驱体(η2C2H4)(Cl)Pt(μ2Cl)2Ru(Cl) (η32η322,72dimethyloctadienediyl)负载于碳纳米纤维上,并通过650℃氮气保护处理制备出Pt2Ru/GN F 系列催化剂,催化剂负载量高于40%,粒径在5~9 nm间.这些催化剂应用于DMFC阳极,其电化学性能较非负载Pt2Ru催化剂的性能提高50%[58,59].3 碳纳米盘 Park等[60,61]制备了直径为5~10nm的碳纳米盘(carbon nanocoil,CNC,A=318m2/g).该碳纳米盘的XRD衍射峰强于XC272炭黑,表明其具有更好的电子传导特性.他们将Pt2Ru用NaBH4还原并负载于CNC得到粒径为215nm的Pt2Ru/ CNC催化剂[62],在H2SO4(015mol/L)2MeOH(210 mol/L)中甲醇氧化的比质量活性为27A/g,高于Pt2Ru/XC272催化剂的比质量活性(12A/g);以Pt2Ru/CNC为阳极催化剂的DMFC在60℃功率密度达到230mW/cm2,而采用Pt2Ru/XC272为阳极催化剂时的功率密度仅为150mW/cm2.Pt2Ru/ CNC催化剂甲醇氧化活性的提高可能得益于载体的电子传导性和比表面积的同时提高.4 碳纳米分子筛 碳纳米分子筛是一类具有规则纳米孔道结构的碳材料[19,63].其制备思路是将大分子的糖类或醇类浸渍于以中孔分子筛为模板剂的孔道中,利用硫酸为催化剂将其转化为碳骨架,再利用HF将模板去除,完成孔道碳骨架与分子筛硅铝骨架的转换,从而制备出可以控制孔道结构的碳纳米分子筛.Ryoo 等[63]利用SBA215为模板,以糠基醇为前驱体制备出具有六角形规则孔道结构(内孔径为6nm,外孔径为9nm)的碳分子筛.该分子筛具有很大的比表面积(A=1570m2/g)和较好的导电性能.他们利用常规浸渍法制备的载Pt催化剂,其负载量可以达到50%,Pt粒径仍可控制在3nm以下,并且粒径分布极窄;而对于Vulcan XC272R炭黑材料,利用同样方法制备的50%载Pt催化剂,Pt粒径大于30 nm.Pt/CNMS显示出很高的氧还原活性,33%Pt/ CNMS在900mV电位下,氧还原电流可高达100 A/g,远高于以炭黑为载体的Pt催化剂(15A/g). Yu等[64]利用类似的合成技术,采用苯酚和甲醛为碳源,制备出具有均匀孔径的三维碳纳米分子筛网络(孔径200nm,壁厚约20nm),使用该纳米碳材料负载的Pt2Ru阳极催化剂的DMFC较之使用E2 TEK公司商品化的Pt2Ru/C催化剂的DMFC,其阳极贵金属负载量降低25%,最大功率密度提高15%.这表明用碳纳米分子筛作为催化剂载体,对于燃料电池尤其是需要高贵金属负载量的DMFC 显示出极好的应用前景.5 其他新型碳材料 其他新型碳材料如碳微球(mesocarbon mi2 crobead,MCMB)和球状富勒烯(C60)也被尝试作为潜在的燃料电池催化剂载体[65,66].MCMB是一种球状碳材料(直径为1~40μm),作为催化剂载体,可有效地减小对甲醇传质的阻力.1213%Pt/ MCMB催化剂的Pt粒径为3~5nm,经过NaOH处理后,它可显示出较Pt/Vulcan XC272R更高的甲醇氧化活性[65].Vinodgopal等[66]发现电化学沉积富148第10期李文震等:新型碳纳米材料在低温燃料电池催化剂中的应用勒烯C60膜负载Pt催化剂具有优异的甲醇氧化活性.6 存在问题及展望 由于碳纳米材料具有独特的结构和电子特性,世界各国研究者对其作为燃料电池载体进行了广泛的研究,发现很多新型碳纳米材料具有较传统炭黑载体(XC272,Ketjen等)更好的性能.但是,有关新型碳材料负载贵金属催化剂活性提高的机理有待深入阐明.此外,碳纳米材料的制备成本较高,必须研发出新的廉价的生产路线,降低成本,才可能应用于商品化燃料电池.另一个值得注意的问题是目前碳纳米材料与电极制备脱离,大都是将合成的碳纳米材料负载催化剂涂覆在电极上.如果把碳纳米材料、电催化剂和电极制备结合起来,即直接在电极上合成碳纳米材料,得到纳米有序化电极,则可大大加速电子传输,有利于反应物及产物传质,从而可有效提高燃料电池输出功率.这一引人入胜的研究已经初步开展,如Luo等[67]首先尝试在Co修饰的不锈钢板上制备出多壁碳纳米管;Sun等[68,69]在一个特别设计的化学气相沉积反应器中,利用Co2Ni为催化剂将MWN T直接生长在碳纸上,之后采用离子交换的方法将Pt负载于MWN T上,其平均粒径仅有112nm,该电极较E2TEK公司的电极性能提高25%[68,69].Wang等[70]使用电化学与化学气相沉积结合的方法在碳纸上直接生长出MWN T,采用电化学还原的方法负载Pt,制备出新型的MWN T电极.这方面的工作可能是碳纳米材料应用于燃料电池中的一个新的研究方向.参考文献1 Iijima S.N ature,1991,354(6348):562 Ebbesen T W,Ajayan P M.N ature,1992,358(6383): 2203 Li W Z,Xie S S,Qian L X,Chang B H,Z ou B S,Zhou W Y,Zhao R A,Wang G.Science,1996,274(5293): 17014 刘宝春,唐水花,高利珍,梁奇,张伯兰,瞿美臻,熊贵志,于作龙.催化学报(Liu B Ch,Tang Sh H,G ao L Zh, Liang Q,Zhang B L,Qu M Zh,Xiong G Zh,Yu Z L.Chin J Catal),2001,22(2):1515 成会明.纳米碳管制备、结构、物性及应用.北京:化学工业出版社(Chen H M.Preparation,Structure,Physical Properties and Application of Carbon Nanotubes.Beijing: Chem Ind Press),20026 Liu C,Fan Y Y,Liu M,Cong H T,Cheng H M,Dressel2 haus M S.Science,1999,286(5442):11277 Dillon A C,Jones K M,Bekkedahl T A,K iang C H, Bethune D S,Heben M J.N ature,1997,386(6623): 3778 Chen P,Wu X,Lin J,Tan K L.Science,1999,285 (5424):919 De Heer W A,Bonard J M,Fauth K,Chatelain A,Forro L,Ugarte D.A dv M ater(Weinheim),1997,9(2):87 10 Collins P G,Zettl A,Bando H,Thess A,Smalley R E.Science,1997,278(5335):10011 Rao A W,Abdrew R,Derbyshire F.Energeria,1998,9(1):112 Rodriguez N M,Chambers A,Baker R T K.L angm uir, 1995,11(10):386213 Rodriguez N M.J M ater Res,1993,8(12):323314 Iijima S,Yudasaka M,Y amada R,Bandow S,Suenaga K,K okai F,Takahashi K.Chem Phys L ett,1999,309 (3/4):16515 Sattler K.Carbon,1995,33(7):91516 Krishnan A,Dujardin E,Treacy M M J,Hugdahl J, Lynum S,Ebbesen T W.N ature,1997,388(6641): 45117 Sano N,Wang H,Chhowalla M,Alexandrou I,Ama2 ratunga G A J.N ature,2001,414(6683):50618 Shim J,Y oo D2Y,Lee J2S.Elect rochim Acta,2000,45(12):194319 Ryoo R,Joo S H,J un S.J Phys Chem B,1999,103(37):774320 EG&G Services Parsons Inc.Fuel Cell Handbook.5th Ed.Morgantown:US Department of Energy,200021 衣宝廉.燃料电池高效、环境友好的发电方式.北京:化学工业出版社(Y i B L.Fuel Cells High E fficient and Environmentally Friendly Electricity G eneration Methods.Beijing:Chem Ind Press),200022 黄倬,屠海令,张冀强,詹峰.质子交换膜燃料电池的研究开发与应用.北京:冶金工业出版社(Huang Zh, Tu H L,Zhang J Q,Zhan F.Research Development and Application of Proton Exchange Membrane Fuel Cells.Beijing:Metallurg Ind Press),200023 McNicol B D,Rand D A J,Williams K R.J Power Sources,1999,83(1/2):1524 Arico A S,Srinivasan S,Antonucci V.Fuel Cells,2001, 1(2):13325 Ralph T R,Hogarth M P.Platinum Met Rev,2002,46(1):326 Coq B,Planeix J M,Brotons V.A ppl Catal A,1998, 173(2):17527 Chambers A,Nemes T,Rodriguez N M,Baker R T K.J Phys Chem B,1998,102(12):2251248催 化 学 报第25卷28 Planeix J M,Coustel N,Coq B,Brotons V,Kumbhar P S,Dutartre R,G eneste P,Bernier P,A jayan P M.J A m Chem Soc,1994,116(17):793529 Rodriguez N M,K im M2S,Baker R T K.J Phys Chem, 1994,98(50):1310830 Park C,Baker R T K.J Phys Chem B,1998,102(26): 516831 Serp P,Corrias M,K alck P.A ppl Catal A,2003,253(2):33732 Salman F,Park C,Baker R T K.Catal Today,1999, 53(3):38533 Park C,Anderson P E,Chambers A,Tan C D,Hidalgo R,Rodriguez N M.J Phys Chem B,1999,103(48): 1057234 Luo J Z,G ao L Z,Leung Y L,Au C T.Catal L ett, 2000,66(1/2):9135 Liang Ch H,Li Zh L,Qiu J Sh,Li C.J Catal,2002, 211(1):27836 Li Zh L,Liang Ch H,Feng Zh Ch,Y ing P L,Wang D Zh,Li C.J Mol Catal A,2004,211(1/2):10337 Ertl G,Kn¨o zinger H,Weitkamp J.Handbook of Hetero2 geneous Catalysis.Weinheim:Wiley2VCH,199738 Auer E,Freund A,Pietsch J,Tacke T.A ppl Catal A, 1998,173(2):25939 Ajayan P M,Zhou O Z.In:Dresselhaus M S,Dressel2 haus G,Avouris P eds.Carbon Nanotubes:S ynthesis, Structure,Properties and Applications.New Y ork: Springer,2001.39140 Che G L,Lakshmi B B,Fisher E R,Martin C R.N a2 ture,1998,393(6683):34641 Rajesh B,Thampi K R,Bonard J2M,Xanthopoulos N, Mathieu H J,Viswanathan B.J Phys Chem B,2003, 107(12):270142 Rajesh B,K arthik V,K arthikeyan S,Thampi K R, Bonard J2M,Viswanathan B.Fuel,2002,81(17):2177 43 Li W Z,Liang Ch H,Qiu J Sh,Zhou W J,Han H M, Wei Zh B,Sun G Q,Xin Q.Carbon,2002,40(5):791 44 Li W Zh,Liang Ch H,Zhou W J,Qiu J Sh,Zhou Zh H, Sun G Q,Xin Q.J Phys Chem B,2003,107(26):6292 45 Li W Zh,Liang Ch H,Zhou W J,Qiu J Sh,Li H Q, Sun G Q,Xin Q.Carbon,2004,42(2):43646 Toshima N,Y onezawa T.New J Chem,1998,22(11): 117947 Wang Y,Ren J W,Deng K,Gui L L,Tang Y Q.Chem M ater,2000,12(6):162248 周卫江,周振华,李文震,孙公权,辛勤.化学通报(Zhou W J,Zhou Zh H,Li W Zh,Sun G Q,Xin Q.Chemist ry),2003,(4):22849 Zhou Zh H,Wang S L,Zhou W J,Wang G X,Jiang LH,Li W Zh,S ong Sh Q,Liu J G,Sun G Q,Xin Q.Chem Com m un,2003,(3):39450 Zhou W J,Zhou Zh H,S ong Sh Q,Li W Zh,Sun G Q, Tsiakaras P,Xin Q.A ppl Catal B,2003,46(2):273 51 Zhou W J,Zhou B,Li W Z,Zhou Z H,S ong S Q,Sun G Q,Xin Q,Douvartzides S,G oula M,Tsiakaras P.J Power Sources,2004,126(1/2):1652 Zhou W J,Li W Z,S ong S Q,Zhou Z H,Jiang L H, Sun G Q,Xin Q,Poulianitis K,K ontou S,Tsiakaras P.J Power Sources,2004,131(1/2):21753 Li W Zh,Liang Ch H,Qiu J Sh,Li H Q,Zhou W J, Sun G Q,Xin Q.React Kinet Catal L ett,2004,82(2): 23554 Liu Z L,Lin X H,Lee J Y,Zhang W,Han M,G an L M.L angm uir,2002,18(10):405455 Liu Zh L,Lee J Y,Chen W X,Han M,G an L M.L angm uir,2004,20(1):18156 Britto P J,Santhanam K S V,Rubio A,Alonso J A,A2 jayan P M.A dv M ater(Weinheim),1999,11(2):154 57 Bessel C A,Laubernds K,Rodriguez N M,Baker R T K.J Phys Chem B,2001,105(6):111558 Steigerwalt E S,Deluga G A,Cliffel D E,Lukehart C M.J Phys Chem B,2001,105(34):809759 Steigerwalt E S,Deluga G A,Lukehart C M.J Phys Chem B,2002,106(4):76060 Hyeon T,Han S,Sung Y2E,Park K2W,K im Y2W.A ngew Chem Int Ed,2003,42(36):435261 Han S,Yun Y,Park K2W,Sung Y2E,Hyeon T.A dv M ater(Weinheim),2003,15(22):192262 Park K2W,Sung Y2E,Han S,Yun Y,Hyeon T.J Phys Chem B,2004,108(3):93963 Joo S H,Choi S J,Oh I,Kwak J,Liu Z,Terasaki O, Ryoo R.N ature,2001,412(6843):16964 Yu J2S,K ang S,Y oon S B,Chai G.J A m Chem Soc, 2002,124(32):938265 Liu Y Ch,Qiu X P,Huang Y Q,Zhu W T.Carbon, 2002,40(13):237566 Vinodgopal K,Haria M,Meisel D,K amat P.N ano L ett,2004,4(3):41567 Luo Y,Vander Wal R,Hall L J,Scherson D A.Elec2 t rochem Solid2S tate L ett,2003,6(3):A5668 Sun X,Stansfield B,Dodelet J P,Desilets S.Chem Phys L ett,2002,363(5/6):41569 Sun X,Li R,Villers D,Dodelet J P,Desilets S.Chem Phys L ett,2003,379(1/2):9970 Wang C,Maje M,Wang X,Tang J M,Haddon R C, Y an Y S.N ano L ett,2004,4(2):345(Ed W GZh)348第10期李文震等:新型碳纳米材料在低温燃料电池催化剂中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Accelarated PublicationChemical modification of carbon nanotube for improvement of field emission propertySunwoo Lee a ,Tetsuji Oda a ,Paik-Kyun Shin b,*,Boong-Joo Lee caElectronic Engineering,The University of Tokyo,113-8656Hongo,Tokyo,JapanbSchool of Electrical Engineering,Inha University,#253Yonghyun-Dong,Nam-Gu,Incheon Metropolitan City 402-751,Republic of Korea cElectronic Engineering,Namseoul University,21Maeju-ri,Seounghwan-Eup,Cheonan City,Choongnam 330-707,Republic of Koreaa r t i c l e i n f o Article history:Received 17November 2008Received in revised form 31December 2008Accepted 17February 2009Available online 25February 2009Keywords:Chemical modification Carbon nanotube CNTField emission Tunnelinga b s t r a c tIn the present work,chemical modification of carbon nanotube was proposed for improvement of field emission property.Multi-wall carbon nanotubes (MWCNTs)were grown vertically on silicon substrate using catalytic chemical vapor deposition.Tips of grown MWCNTs were chemically modified using oxy-gen plasma,nitric acid,and hydrofluoric acid.Surface state and morphology of the chemically modified CNTs were T tips were opened and defects working as trap sites were generated on the CNT surface by the chemical modification process leading to improvement of field emission property.We suggest that two main factors determining the field enhancement factor are geometric factor and surface state of the CNT tips.Ó2009Elsevier B.V.All rights reserved.1.IntroductionCarbon nanotubes (CNTs)have attracted much attention be-cause of their unique electrical properties and their potential appli-cations [1,2].Large aspect ratios of CNTs with high chemical stability,thermal conductivity,and high mechanical strength are advantageous for applications to the field emitter [3].Since CNTs are grown directly on a substrate by CVD,the CNT emitter can be fabricated simply.Many researchers have devoted efforts to the artificial control of alignment,number density,and aspect ratio of CNTs [4–7].Although it is essential for FED application to eluci-date the correlation between the structural properties and field electron emission properties of CNTs,systematic experiments on the field emission property regarding the change of surface state of CNTs by chemical modification have not been carried out Ts having strong covalent bonds are very stable against to chemical attacks.Breaking these strong covalent bonds and chang-ing surface state would be expected to change the CNT’s physical property as well as chemical property [8,9].As field emission behavior takes place at the tip of the CNT,one could control the field emission property by changing the structure and surface state of the CNT tips.In this study,the correlation between the field emission prop-erty and structural property or surface state of CNTs was investi-gated as a function of the chemical modification.Although the field emission properties of CNTs were improved with increasing the aspect ratio of the CNT,the field enhancement factor obtained from the Fowler–Nordheim plot was found to be much larger than that obtained from the geometric factors.These results suggest that the field emission from CNTs is strongly influenced by the sur-face states induced by surface defects and attached functional groups,rather than by their geometric factors.2.ExperimentalIn our experiment,the nickel catalyst films were prepared by sputtering method on silicon substrate using low power and long time (at 10W for 1h)to minimize size and distribution of the nick-el catalyst particles.MWCNTs used in this work were grown in a thermal CVD system with C 2H 2source gas and Ar carrier gas with a flow rate of 30/100sccm at 700°C on the nickel catalyst.The CNTs were chemically modified by oxygen plasma,nitric acid (HNO 3),and hydrofluoric acid (HF).The modified samples were named as O 2–CNT,HNO 3–CNT,and HF–CNT,respectively.The oxygen plasma treatment was done with a gas flow rate of O 2:Ar =20:200sccm at 500°C for 5min.The HNO 3treatment was done in 20vol%HNO 3solution at room temperature for 1h,and the samples was subsequently rinsed in distilled water,and dried at room temperature for 1h.The HF treatment was done in 20vol%HF solution at room temperature for 1h,and the sample was rinsed and dried.0167-9317/$-see front matter Ó2009Elsevier B.V.All rights reserved.doi:10.1016/j.mee.2009.02.021*Corresponding author.Tel.:+82328607393;fax:+82328635822.E-mail address:shinsensor@inha.ac.kr (P.-K.Shin).Microelectronic Engineering 86(2009)2110–2113Contents lists available at ScienceDirectMicroelectronic Engineeringjournal homepage:www.else v i e r.c o m /l o c a t e /m eeThe field emission characteristics of the grown CNT film was measured by digital multimeter in a vacuum chamber with a base pressure of 1.5Â10À8Torr.A flat parallel diode type configuration was used in the setup as shown in Fig.1.Both electrodes were glass plated with a conductive indium tin oxide (ITO)coating,and the cathode contained the grown CNT film.The distance between the anode and the CNT film surface was 100l m as separated by spacers.The surface morphology and internal structure of the CNTs were characterized by scanning electron microscopy (SEM)and trans-mission electron microscopy (TEM).3.Results and discussionsSEM images and TEM images (right side of each image)of the as-grown CNTs and the chemically modified CNTs are shown in Ts grown in this work are bamboo type multi-wall carbon nanotubes,which are vertically aligned to the substrate.The length of chemically modified CNTs is slightly shorter than that of as-grown CNTs due to the chemical etching during the chemical mod-ification processes.In case of the HNO 3–CNT,length was drastically reduced,because CNTs were partly delaminated and remained CNTs were fallen down during the chemical modification process.Tip of as-grown CNT is typically closed,while those of chemi-cally modified CNTs are opened as shown in Fig.2(right side of each image).The most parts of CNT consist of stable hexagonal car-bon structure,while the tip of CNT has pentagonal structure to close the tube end [10].The pentagonal carbon structure is easily broken by the chemical attack relative to the hexagonal structure [11].Relatively weak bonds at the CNT tip might be broken and opened by the chemical modification.Since the bond breaking might be started from the outer shell of the MWCNT used in this work and propagated into the inner shell,the shape of CNT tips be-came sharp.Furthermore,the chemical modification process might result in changing the surface state by the bond breaking as well as the structural change.In order to confirm the above mentioned surface state change,X-ray photoelectron spectroscopy (XPS)using the monochrome Al Ka X-ray was carried out.Wide scan spectra for as-grown and chemically modified CNTs are shown in Fig.3.In all cases,carbon peak (C1s,284.5eV)and oxygen peak (O1s,530eV)are observed [12].The oxygen peak stronger than that of the as-grown CNT film for the O 2–CNT,the weak nitrogen peak for HNO 3–CNT,and fluo-rine peak for HF–CNT are observed.This result correspondstoFig.1.Schematic drawing of the setup for measurement of the field emissioncurrent.Fig.2.SEM (left)and TEM (right)images of as-grown and chemically modified CNTs.S.Lee et al./Microelectronic Engineering 86(2009)2110–21132111the previous TEM results that the chemical modification processes could change the surface states of the CNT tips.The chemical modification dependence on the field emission property was investigated.Fig.4a shows emission current density as a function of applied electric field for the as-grown CNTs and the chemically modified CNTs.It is found that the chemically modified CNTs exhibit a better field emission property than that for the as-grown CNTs.If we define the threshold electric field (E th )as the ap-plied electric field that produces an emission current of 1mA/cm 2,it can be clearly seen from Fig.4b that threshold electric field is chemical modification dependent.The Fowler–Nordheim (F–N)equation can be described as,J ¼1:56Â10À6ðb E Þ2/exp À6:83Â109/3=2b E!;where J (A/cm 2)is the emission current density,E (V/l m)is theapplied electric field,b is the field enhancement factor,and /(eV)is the work function of the emitter [13].The experimental value b can be estimated on the basis of the slope of the F–N plot as shown in Fig.4c.Although there is no distinguishable difference in geo-metric factors such as diameter and length of each CNTs,the field emission property for chemically modified CNTs is better than that for as-grown CNTs.We estimated the field enhancement factors for each CNTs using geometric factors from SEM images and the FN plot of the experimental field emission data.The field enhance-ment factor estimated from the FN plot (b $1000s)was two or-ders greater than that estimated from the geometric factors (b $10s).This result implies that the field enhancement factor estimated from the F–N plot includes another factor for the improvement of field emission.Another factor affecting field emis-sion more dominantly might be correlated with the surface state of the CNT tips.TEM results and XPS results strongly imply that defects working as trap sites might be on the CNT surfaces.As shown in Fig.4c,there are two different kinds of tunneling mechanism from the slope of J /E 2vs.1/E plots.The slope at low field regime is quite dif-ferent from that at high field regime.Trap sites play a dominant role in tunneling mechanism at lower field than FN tunneling re-gime,so called trap assisted tunneling (TAT)[14].Tunneling gov-erned by TAT mechanism at low field regime affect the threshold electric field,and is related to trap sites on CNT tips.The tunneling model is based on a two-step tunneling process via traps on CNT surface which incorporates energy loss by phonon emission [15].Fig.4d shows the basic two-step process of an electron tunneling from a region with higher Fermi energy (the cathode)to a region with lower Fermi energy (the anode).Electrons could be emitted at relatively low electric field with an aid of trap sites.Finally,we suggest that two main factors determining the field enhance-ment factor are geometric factor and surface state.Therefore gen-eration of trap sites on CNT surface is strongly required to improve the field emission property,as well as the geometricfactor.Fig.3.XPS wide scan spectra of the as-grown CNTs and the chemically modified CNTs.Since some parts of CNTs are delaminated during HNO 3chemical modification process as shown in Fig.2c,strong oxygen and silicon signals are detected from the naturally oxidized Si substrate.2112S.Lee et al./Microelectronic Engineering 86(2009)2110–21134.SummaryWe have found that CNT tips were opened and defects working as trap sites were generated on the CNT surface by the chemical modification process leading to improvement of field emission property.Trap sites play a dominant role in tunneling mechanism at lower field than FN tunneling regime.We found that another factor affecting the field emission might be correlated with the sur-face state of the CNT tips.Therefore generation of trap sites on CNT surface is strongly required to improve the field emission property,as well as the geometric factor.References[1]W.A.de Heer,A.Chatelain,D.Ugarte,Science 270(1995)1179.[2]B.I.Yakobson,R.E.Smalley,Am.Sci.85(1997)324.[3]T.W.Ebbesen,Carbon Nanotubes,CRC Press,Boca Raton,FL,1997.[4]M.Chhowalla,K.B.K.Teo,C.Ducati,N.L.Rupesinghe,G.A.J.Amaratunga,A.C.Ferrari,D.Roy,J.Robertson,ne,J.Appl.Phys.90(2001)5308.[5]Y.Y.Wei,G.Eres,V.I.Merkulov,D.H.Lowndes,Appl.Phys.Lett.78(2001)1394.[6]V.I.Merkulov,D.H.Lowndes,Y.Y.Wei,G.Eres,E.Voelkl,Appl.Phys.Lett.76(2000)3555.[7]M.Katayama,K.-Y.Lee,S.Honda,T.Hirao,K.Oura,Jpn.J.Appl.Phys.43(2004)L774.[8]W.K.Hong,H.C.Shin,S.H.Tsai,et al.,Jpn.J.Appl.Phys.39(2000)L925.[9]U.D.Weglikowska,J.M.Benoit,P.W.Chiu,et al.,Curr.Appl.Phys.(2002)2.[10]G.L.Martin,P.R.Schwoebel,Surf.Sci.601(2007)1521.[11]X.Y.Zhu,S.M.Lee,Y.H.Lee,T.Frauenheim,Phys.Rev.Lett.85(2000)2757.[12]F.Moulder,W.F.Stickle,P.E.Sobol,K.D.Bomben,Handbook of X-rayPhotoelectron Spectroscopy,Physical Electronics,Inc.,Minnesota,1995.[13]R.H.Fowler,L.W.Nordheim,Proc.R.Soc.Lond.Ser.(1928)A119.[14]M.Houssa,M.Tuominen,M.Naili,V.Afanas’ev,A.Stesmans,S.Haukka,M.M.Heyns,J.Appl.Phys.87(2000)8615.[15]F.Jiménez-Molinos,A.Palma,F.Gámiz,J.Banqueri,J.A.Lopez-Villanueva,J.Appl.Phys.90(2001)3396.Fig.4.(a)J –E curves of the as-grown CNTs and the chemically modified CNTs.(b)Threshold electric field as a function of chemical modification.(c)J /E 2–1/E curves of the as-grown CNTs and the chemically modified CNTs.(d)Field emission model considering trap sites on the surface of CNT tip.S.Lee et al./Microelectronic Engineering 86(2009)2110–21132113。