中国地质大学——电磁场与电磁波结课论文
电磁场与电磁波学习心得范文

电磁场与电磁波学习心得范文电磁场与电磁波是物理学中非常重要的概念和理论,在我大学的物理学习中,我也深入学习了这一方面的知识。
在学习过程中,我体会到电磁场和电磁波的基本原理和应用,并能够将其运用到实际问题中。
在此,我将分享我的学习心得。
首先,电磁场是电荷体系所产生的一种物理场。
在学习电磁场的过程中,我深入理解了电场和磁场的定义及其相互作用的基本原理。
电场产生于电荷体系周围的空间中,具有电势能和方向的特性,而磁场则是由电流体系所产生的,对磁性物质有施加力和能量的作用。
在电磁场的理论中,我也学习到了高斯定律、电磁感应定律等重要原理。
其次,学习电磁场还涉及到电磁波的知识。
电磁波是由电场和磁场相互耦合而产生的一种波动现象。
通过学习麦克斯韦方程组,我深入理解了电磁波的性质和传播规律。
电磁波具有传播速度恒定、能量传递等特点,广泛应用于通信、雷达、医学等领域。
在学习电磁波的过程中,我也了解了不同频率和波长的电磁波的特性,并学会了使用波动方程和辐射强度的计算方法。
在学习电磁场和电磁波的过程中,我收获颇多。
首先,我深刻体会到了电磁场与电磁波在物理学中的重要性。
电磁场是解释物质相互作用和变化的重要工具,而电磁波是一种重要的能量和信息传递的方式。
这两个概念对我理解物理现象和解决实际问题都起到了重要的作用。
其次,我通过学习电磁场和电磁波的理论知识,提高了我的分析和解决问题的能力。
电磁场和电磁波的理论是由数学和物理相结合的,需要运用向量、微分方程等数学工具进行推导和计算。
在学习过程中,我也积累了一定的数学解题经验,并能够运用这些知识解决实际问题。
最后,我也通过实验研究电磁场和电磁波的特性和应用。
在实验室中,我亲自操作仪器,观察电磁波的传播,测量电磁场的强度等。
通过实验的方式,我深入理解了电磁场和电磁波的特性,并能够将理论知识与实际应用相结合。
总体来说,学习电磁场与电磁波是一项不容忽视的物理学内容。
通过学习电磁场和电磁波的基本原理和应用,我不仅提高了自己的物理学知识水平,还培养了分析和解决问题的能力。
电磁场与电磁波学习心得范文

电磁场与电磁波学习心得范文电磁场与电磁波是电磁学的重要内容,它们是现代物理学的基石之一。
在学习电磁场与电磁波的过程中,我深感其复杂性和深奥性,但也对它们的普适性和重要性有了更加深刻的认识。
下面是我对电磁场与电磁波的学习心得的总结。
电磁场是指在空间中存在的电场和磁场。
电场是由电荷引起的力场,磁场是由电流引起的力场。
电磁场的描述可以用麦克斯韦方程组来完成。
通过学习麦克斯韦方程组,我了解到电磁场的主要特征和规律。
其中,最基本的是电场和磁场的运动学特征。
电场和磁场的变化规律与电荷和电流的运动有关,而电荷和电流的运动又受到电场和磁场的作用力。
在学习电磁场的过程中,我不仅了解到电磁场的基本概念和性质,还学习到了一些重要的应用知识。
例如,电磁场的存在和变化可以描述电磁波的产生和传播。
电磁波是由电场和磁场相互作用并在空间中传播的能量传递现象。
电磁波具有很多重要的特性,例如速度、频率、波长等。
学习电磁波的过程中,我发现电磁波的产生和传播具有很多规律性。
例如,电磁波的速度是一个常数,即光速。
这意味着光波在真空中的传播速度是不变的,不受传播距离的影响。
另外,电磁波有不同的频率和波长,这决定了电磁波的种类和特性。
不同频率的电磁波具有不同的应用价值,例如无线通信中使用的无线电波就是一种低频电磁波。
学习电磁场和电磁波的过程中,我还了解到电磁场和电磁波的相互关系。
电磁场是电磁波的载体,而电磁波是电磁场的一种表现形式。
电磁波的传播离不开电场和磁场的相互作用,而电场和磁场的存在和变化又受到电磁波的影响。
这种相互关系深入浅出地揭示了电磁学的基本原理和相互作用机制。
除了理论知识,学习电磁场与电磁波还需要进行实践操作。
在实验室中,我们可以使用电磁场与电磁波的相关仪器和设备,进行实际测量和观察。
例如,使用场强计可以测量电场的强度和方向,使用磁强计可以测量磁场的强度和方向。
我们还可以使用天线接收和发射电磁波,进一步了解电磁波的传播特性和性能。
课题研究论文:基于应用背景的“电磁场与电磁波”教学研究

112112 学科教育论文基于应用背景的“电磁场与电磁波”教学研究在十二届全国人大四次会议的记者会上,教育部部长袁贵仁在围绕“教育改革和发展”的谈话中指出,中国高等教育供给侧结构性改革的主要矛盾是培养理论性、学术性人才的学校多,而培养技术、技能型人才的学校少。
他在提出的高校创新创业教育的六件事中明确提到了提升教师创新创业教育教学能力。
从工科“电磁场与电磁波”课程的特点看,由于其数学要求高、理论性强,一直是一门公认的难教难学难考的课程。
考虑到该课程作为专业基础课有着很强的应用背景,有着充足及广泛的素材和实例,引入教学的可行性极强,从而能为培养高素质和高质量的应用型人才搭建一个可靠的平台。
目前各高校对该课程的教学改革进行得如火如荼,包括教学方法、教学内容、考试方式等方面,但无论什么办法,核心的一点就是如何提高学生的学习兴趣和积极性。
笔者认为最重要的是通过认识和专业课的联系及广泛的工程和实际应用例子,使学生真正体会该课程的重要性而自觉投入到学习中。
此课程改革也和中国高等教育和本校的转型完全一致。
要把各种应用例子充实到“电磁场与电磁波”教学的各个环节,不断地强化学生对此的认识。
本文就这一思路和实施重点加以阐述。
一、绪论的精心准备每门课的第一堂课尤为重要,学生听课的效率很高。
十分有必要精心准备好补充的绪论部分,把本课程的地位作用、特点、应用等加以讲述。
要根据不同专业预先了解已上了那些课程,后续有那些专业课,有针对性地设计例子来体现本课程的作用和地位。
如从日常生活中的遥控器到微波炉,从实验中的示波器到电子显微镜,从工程中的发电机到磁悬浮,从医学上的X透射到核磁共振,从通讯领域的手机、局域网到导航系统,从军事上的雷达到隐身飞机等等[1]。
这些例子无不都深刻地反映了电磁场和电磁波在不同领域极其广泛的应用,从而来吸引学生对本课程的学习兴趣和积极性,起到一个良好的开端作用。
二、课堂教学环节的深度融入课堂教学是最核心的环节,除了要使学生掌握“电磁场与电磁波”基本概念和基础知识外,更重要的就要在整个授课过程中贯穿各种应用实例,真正让学生认识到学习本课程的广泛的应用价值。
电磁场与电磁波实训课程学习总结实验中理解电磁现象与波动特性的应用

电磁场与电磁波实训课程学习总结实验中理解电磁现象与波动特性的应用在电磁场与电磁波实训课程中,我有幸获得了丰富的实践经验和理论知识。
通过这门课程的学习,我对电磁现象与波动特性的应用有了更深入的理解。
本文将对我在实验中的所见所学做出总结。
首先,实验中我们研究了电磁波的基本特性。
电磁场的基础理论为我们提供了研究电磁波的理论基础,我们通过实验验证了电磁场的存在。
我们使用了霍尔电流传感器、磁感应强度测量装置等仪器,进行了一系列关于电场的实验。
通过实验我们验证了电磁波的传播速度是光速,电磁波具有横波性,电磁波由电磁场的相互作用产生。
这些实验为我们后续的学习奠定了基础。
其次,在实验中我们探讨了电磁波的传播与反射。
我们使用了反射定律测量装置、光栅实验装置等仪器,对电磁波在不同介质中传播和反射的特性进行了研究。
通过实验我们发现,电磁波在不同介质中传播速度会改变,并且会发生折射现象。
同时,我们还研究了电磁波的反射规律,验证了反射角等于入射角的现象。
这些实验让我们更加深入地理解了电磁波在实际应用中的特性。
再次,实验中我们研究了电磁波的干涉与衍射现象。
我们使用了干涉与衍射实验装置、单缝光栅等仪器,通过实验观察并解释了电磁波的干涉和衍射现象。
我们发现,当两束相干光经过干涉装置时,会出现明暗交替的干涉条纹,而当光通过狭缝或障碍物时,会发生衍射现象,产生波纹状的衍射图样。
这些实验让我们更加直观地认识到了电磁波的波动性质。
最后,在实验中我们还研究了电磁波的偏振与光的旋光现象。
我们使用了偏振片、旋光仪等仪器,通过实验验证了电磁波的偏振性质和光的旋光现象。
我们发现,通过偏振片可以选择性地使电磁波的振动方向发生变化,而光的旋光现象则让我们认识到了光在传播过程中的微妙性质。
通过这门实训课程的学习,我不仅掌握了电磁场与电磁波的基本原理和实验方法,还深入了解了电磁现象与波动特性的应用。
这门课程的学习让我对电磁学领域产生了浓厚的兴趣,并为我今后的学习和科研提供了坚实的基础。
电磁场与电磁波论文

电磁场与电磁波—电能的无线传输姓名:***班级:电科1101班学号:********引言电能的传输长期以来主要是由导线直接接触进行传输,随着用电设备对供电品质、可靠性、方便性等要求的不断提高,还有特殊场合、殊地理环境的供电,使得接触式电能传输方式,越来越不能满足实际需要;便携式电子设备和家电对快捷方便地获取电能的需求越来越强烈。
因此,无线电能传输越来越受到人们的关注,并被美国《技术评论》杂志评选为未来十大科研方向之一。
无线电能传输技术最早由著名电气工程师(物理学家)尼古拉·特斯拉提出,就是借助于电磁场或电磁波进行能量传递的一种技术。
按照电能传输原理的不同,无线电能传输分为:电磁感应式、电磁共振式和电磁辐射式。
通过该项技术可以实现以探讨将远程无线功率传输系统做成电子式互感器,研究其在高压测量方面的应用,还可以探讨更远的距离使将来室内电器实现无线化,所有室内电器设备都装有无接触功率传输系统,电气设备通过无接触功率接收装置远距离高效率的接收电能工作,而电能发射装置是可以装在墙壁内或者地板下的,使电气设备摆脱电线插座的束缚。
此外,无线输电技术在特殊的场合也具有广阔的应用前景。
例如可以给一些难以架设线路或危险的地区供电;可以解决地面太阳能电站、风力电站、原子能电站的电能输送问题。
深入了解其无线传输电能的意义和方向,具有十分积极的意义。
一、电能无线传输技术的简介1.1电能无线传输的现状1.1.1电能无线传输的研究现状一、国外研究现状国外对无线电能传输技术的研究较早,早在20 世纪70 年代中期就出现了无线电动牙刷,随后发布了几项有关这类设备的美国专利。
20世纪90 年代初期,新西兰奥克兰大学对感应耦合功率传输技术(ICPT)进行研究,经过十多年的努力,该技术在理论和实践上已经获得重大突破。
研究主要集中在给移动设备,特别是在恶劣环境下工作的设备的供电问题,如电动汽车、起重机、手提充电器、电梯、传送带、运货行车,以及水下、井下设备。
基于应用背景的“电磁场与电磁波”教学研究

基于应用背景的“电磁场与电磁波”教学研究【摘要】本文主要围绕基于应用背景的“电磁场与电磁波”教学展开研究。
在引言部分中,首先探讨了研究背景和研究意义,明确了研究的重要性。
在通过对电磁场与电磁波基础知识的梳理,教学方法与策略的探讨,案例分析与实践的讨论,教学效果评价以及课程改进与发展等方面,深入探讨了教学内容与方法的优化与改进。
在结论部分对研究进行了总结,展望了未来研究方向,同时对教学实践提供了一定的启示。
本研究旨在提高学生对电磁场与电磁波相关知识的理解和应用能力,促进教学效果的提升,为学科教学的改进与发展提供参考与借鉴。
【关键词】关键词:电磁场、电磁波、教学研究、应用背景、基础知识、教学方法、案例分析、教学效果评价、课程改进、结论总结、未来研究方向、教学实践、启示。
1. 引言1.1 研究背景电磁场与电磁波作为物理学中重要的概念,在现代科学和技术领域具有广泛的应用。
随着科技的不断进步和发展,电磁场与电磁波的研究成果已经深入到各个领域,如通信、医疗、能源等。
对于这一领域的教学研究仍然存在着一些挑战和问题。
当前的教学模式往往局限于传统的讲授和实验教学,缺乏与实际应用场景结合的教学内容和方法。
学生在学习过程中往往缺乏对电磁场与电磁波的深入理解和应用能力,导致学习效果与实际需求的脱节。
我们有必要进行基于应用背景的“电磁场与电磁波”教学研究,以期通过整合现代科技应用中的实际问题和案例分析,探索更符合学生需求和发展趋势的教学方法和策略,提高教学效果和学生的学习动力。
这也将有助于促进电磁场与电磁波相关课程的持续改进和发展,为培养具有实践能力和创新精神的优秀人才做出贡献。
1.2 研究意义电磁场与电磁波是物理学中非常重要的一个主题,对于理解电磁现象和应用技术具有深远的意义。
在当今信息化社会中,电磁场与电磁波的应用已经无处不在,比如无线通信、雷达系统、医学影像等领域都依赖于电磁波的传播和感知。
教学研究在于将复杂的科学概念和理论以浅显易懂的方式呈现给学生,引导他们建立正确的物理观念和思维方式。
电磁场与电磁波论文
电磁场与电磁波论文电磁场与电磁波论文院系:电子信息学院班级:电气11003班学号:201005792序号:33姓名:张友强电磁场与电磁波的应用摘要:磁是人类生存的要素之一。
地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。
外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。
所以,现在地球的磁场强度只有500年前的50%了,许多人出现种种缺磁症状。
科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’’就是因缺磁而造成的。
由此可见磁对于生命的重要性。
磁场疗法,又称“磁疗法”、“磁穴疗法”,是让磁场作用于人体一定部位或穴位,使磁力线透人人体组织深处,以治疗疾病的一种方法。
磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。
关键词:磁疗、电磁生物体、生物磁场、磁疗保健电磁场与电磁波简介:电磁波是电磁场的一种运动形态。
电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。
变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。
电磁场与电磁波在实的电流进行控制,达到控制运行目的。
“常导型”磁悬浮列车的构想由德国工程师赫尔曼·肯佩尔于1922年提出。
“常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。
只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。
通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。
我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。
当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。
2.电磁泵利用磁场和导电流体中电流的相互作用,使流体受电磁力作用而产生压力梯度,从而推动流体运动的一种装置。
电磁场与电磁波小论文
理论依据:惟一性定理是镜像法的理论依据。 应注意的问题: a.镜像电荷位于待求场域边界之外 b.将有边界的不均匀空间处理为无限大均匀空间,该均匀空间中媒质 特性与待求场域中一致。 c.实际电荷(或电流)和镜像电荷(或电流)共同作用保持原边界处的 边界条件不变。 1.点电荷对无限大接地导体平面的镜像
于导体表面的线电荷,其电荷密度为 l
y
l
h
0
0 x 0
y
r1 l
P(x, y, z)
h
r2
o
x
h
l
待求场域(y>0)中的电位: l ln r2
上半空间的电场: E
l 2π 0r1
2 ar1
π 0
2
rl1 π 0r2
ar 2
3. 点电荷对无限大介质平面的镜像
设想用镜像电荷代替界面上极化电荷的作用,并使镜像电荷和点电荷
方程,在对偶方程中,处于同等地位的量称为对偶量。
2. 叠加定理
18
静态场分析
电磁场与电磁波小论文
2014.12.26
若1和2 分别满足拉普拉斯方程,则1和2 的线性组合 a1 b2
必然满足拉普拉斯方程。 利用叠加定理,可以把比较复杂的场问题分解为较简单问题的组合, 便于求解。 3. 惟一性定理 在给定边界条件下,泊松方程或拉普拉斯方程的解是惟一的。惟一性 定理为某些复杂电磁问题求解方法的建立提供了理论根据。镜像法就 是惟一性定理的直接应用。 四、镜像法
《电磁场与电磁波》课程论文格式及要求
电子信息工程学院《电磁场与电磁波》课程论文年月日《电磁场与电磁波》课程论文要求一、题目:自拟。
二、内容范围:必须围绕《电磁场与电磁波》第四、五、六章讲过的的内容,必须与所学专业相结合。
三、写作要求:(1)字数要求至多2000字,内容要求语言精练、通顺,内容新颖,层次清楚,格式正确,结构完整。
(2)避免抄袭现象:①整段抄、整篇抄②移花接木③冒名顶替④直接从网上下载⑤雷同现象。
(3)如果发现抄袭或雷同,期末成绩60分以下,总成绩也会不及格。
四、论文撰写的步骤:1、查阅有关资料:查过刊、查现刊或者网上查阅。
2、写作:课程论文包含(1 )封面(2) 题目+学号、姓名(3)摘要(4)关键词(5)正文(6)参考文献(7)致谢七个部分。
正文包括:1 引言 2 论文正文主要内容 3 结论或问题分析、展望等。
五、评分标准:1、结构合理程度:0-50分。
2、语言规范程度:0-30分。
3、独立创新程度:0-20分。
4、期末总成绩:平时成绩占80%,期末成绩占20%。
5、态度分:如果期末论文完成的好,且比平时进步较大,可以将期末成绩占总成绩的40-60%。
六、论文格式要求论文题目[宋体,小二号,加粗,居中,不宜超过20字]学号[黑体,小四号,居中]姓名[楷体_GB2312,小四号,居中][空一行]摘要[黑体,五号,加粗,缩进两个字]:本文介绍了……..的现状等,对…………有意义。
×××××××××××××××××××××××。
[摘要内容为宋体, 五号,300汉字左右]关键词[黑体,五号,加粗,缩进两个字]:×××,×××,×××[宋体, 五号,数量一般不超过6个。
大学论文-电磁场与电磁波
.引言电与磁的对偶性是指电场与磁场之间的一种对称关系,它们之间虽然用来描述这两种场的有关物理量概念不同,但是在一定条件下,可以用相同的数学模型来描述。
我们在研究电磁场的过程中会发现,电与磁经常是成对出现的,电场与磁场的分析方法也有相当的一致性例如,在静电场中,为了简化电场的计算而引入标量电位,在恒定磁场中,也仿照静电场,可以在无源区引入标量磁位,并将静电场标量电位的解的形式直接套出来,因为它们均满足拉普拉斯方程,因此解的形式也必完全相同这样做的理论依据是二重性原理,所谓二重性原理就是如果描述两种不同物理现象的方程具有相同的数学形式它们的解答也必取相同的数学形式。
在求解电磁场问题时,如果能将电场与磁场的方程完全对应起来,即电场和磁场所满足的方程在形式上完全一样,则在相同的条件下,解的数学形式也必然相同这时若电场或磁场的解式已知,则很方便地得到另一场量的解式在早期的研究中,人们认识电与磁都是从单方面进行研究的,既是分立的。
然而,随着电流磁效应的发现后,认识到电流与磁场之间存在着相互联系,再接着法拉第的电磁感应定律又揭示了变化的磁通与感应电动势之间的联系。
综合上两种现象,存在着“磁生电,电生磁”这种初步的对称。
直到后来在麦克斯韦综合前人的理论的自己的假设,对整个电磁现象做了系统的研究,建立了更为具有普适性的理论:借助于数学这个工具,推广了随时间变化的磁场产生涡旋电场(t B E ∂∂-=⨯∇)及提出位移电流假说,完善了随时间变化的电场产生的磁场(t D B J e ∂∂+=⨯∇v )从而达到了电学与磁学、光学的统一。
从麦氏方程组我们可以看到电与磁之间的明确对称统一(但是对于静电磁场的描述除外)。
本文将对电与磁从统一的角度出发,揭示其彼此对偶的一面。
一方面,对偶性是电磁场内在规律的反映,能建立在比静态更一般的基础上;另一方面,对偶性原理对于我们解决某些复杂的问题可以起到简化的作用,给予极大的帮助,由电的有关物理量知道磁的,反之亦然。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国地质大学(武汉)电磁场与电磁波结课论文姓名:班级:学号:指导老师:严彬一、电磁波应用 (3)1. 电磁学在医疗上的应用 (3)2.电磁波在生产、生活上的应用 (4)3. 电磁波在军事上的应用 (5)二、电磁波实验 (6)实验一双缝干涉实验 (6)实验二迈克尔逊干涉实验 (8)实验三偏振实验 (10)实验四布拉格衍射实验 (11)三、平面电磁波理解 (13)1. 均匀平面电磁波 (13)2.正弦均匀平面波在无限大均匀媒质中的传播 (15)无耗介质中: (15)导电媒质中: (16)3.电磁波的极化 (20)一、电磁波应用1.电磁学在医疗上的应用生物电磁学在医疗上的应用,简称磁疗。
是 20 世纪九十年代才广泛兴起的一种自然疗法,用磁能作用于人体,通过磁的一系列生物与生物电磁学效应达到调整人体生理活动、实现身体保健和治疗疾病的目的。
确切地说,磁疗是一种物理能量疗法。
由于磁疗安全、方便、简捷、省时、无毒副作用、疗效肯定受到人们的认可和喜爱,被世界卫生组织推荐为最有前途的绿色疗法。
从严格意义上说,磁疗还未真正地走进现代生命科学的殿堂,尚处于研究、探索、试用阶段,属于生命科学中一门崭新的边缘学科。
本文所述的磁生物与生物电磁生理学效应是对近十年来人们使用磁性保健产品临床效果的总结和理性思考,也是第一次提出“磁生物与生物电磁生理学效应”这一概念,有关人体这一弱电磁生物体与磁场相互作用的具体细节及其量化表述有待进一步实验结果的充实。
在科学上,称超过人体承受或仪器设备容许的电磁辐射为电磁污染。
电磁辐射分二大类,一类是天然电磁辐射,如雷电、火山喷发、地震和太阳黑子活动引起的磁暴等,除对电气设备、飞机、建筑物等可能造成直接破坏外,还会在广大地区产生严重电磁干扰。
另一类是人工电磁辐射,主要是微波设备产生的辐射,微波辐射能使人体组织温度升高,严重时造成植物神经功能紊乱。
但是对电磁辐射,要正确认识,而且要科学防护。
事实上,电磁波也如同大气和水资源一样,只有当人们规划、使用不当时才会造成危害。
一定量的辐射对人体是有益的,医疗上的烤电、理疗等方法都是利用适量电磁波来治病健身(1)生物电磁场保健将人体置于姜氏场导舱内接受载有青春信息的植物幼苗发射的生物电磁波。
结果发现:人体红细胞膜的渗透脆性降低,韧性增强;甲状腺素、性激素分泌增加;免疫功能提高;肾上腺皮质激素分泌无明显变化。
提示:植物幼苗电磁波有助于红细胞功能的发挥,促进机体新陈代谢,增加青春活力,提高性功能,增强免疫力从而对人体发挥返老还青和医疗保健作用。
(2)激光治疗激光是60年代初出现的一种新光源。
已广泛应用于国防、农业、卫生医疗和科学研究,也是治疗肿瘤的一种新方法。
用它既能切割组织,又能同时止血,能使肿瘤组织迅速气化和雾化,从而使肿瘤在瞬间消失。
激光对组织具有热、压、光和电磁场效应的作用。
1、热效应:激光能使肿瘤组织在几秒种的短时间内,局部温度高达200-1000摄氏度,使其变性、凝固坏死,继而气化消失。
2、压力效应:激光本身的光压和由高热导致的组织膨胀引起的二次冲击波,加深了肿瘤组织破坏。
3、光效应:激光被肿瘤组织吸收后,可增强热效应,使肿瘤组织被破坏。
4、电磁场效应:激光是一种电磁波。
能产生电磁场,可使肿瘤组织离化、核分解而被破坏死亡,如有残癌也可自行消退,这可能与免疫有关。
激光制造成激光器、激光手术刀用于治疗体表肿瘤,眼耳鼻咽喉肿瘤、神经肿瘤等。
(3)EMF系统EMF系统是由(株)日本MDM公司开发研究生产的新一代脑外科手术器械。
根据其作用原理,我们俗称之为“电磁刀”。
EMF系统利用高频电磁能对机体组织进行汽化,切割和凝固。
因该系统外周围优良组织的热损伤小且不需要对极板,因此尤其使用于脑外等精密外科。
对硬性及深部微小脑瘤的去除极为有效。
EMF系统与常规的电刀相比,在原理和设计上都有很大区别。
EMF系统用于汽化,切割和凝固的输出功率很小(49W以下),为一般电刀所不及。
不需要对极板这一特点使单极手术刀用于脑外手术成为可能。
没有烧伤感电和破坏神经系统的危险,安全性高,使用方便。
与激光刀相比,不需要眼球保护镜和其它保护附件,操作时对患者和医生均无危害。
手术时与患部直接接触,医生可以灵活掌握调节。
与超声波刀相比,EMF系统对于硬化深部微小肿瘤的汽化治疗效果尤为显著。
HandPiece非常轻便且呈弯曲状,使视野不受影响,并有利于长时间手术。
刀头部分可以任意弯曲,适用于各种手术需要。
(4)微波治疗微波是指波长在1毫米至1米范围内的非电离辐射高频电磁波。
70年代后期微波技术在医疗上得到应用。
科学家研究发现,微波治疗有3种:一是大剂量高热治疗肿瘤,能抑制肿瘤细胞的蛋白质合成,降低肿瘤细胞分裂速度,增强化疗、放疗效果;二是用于局部生物体组织的凝固治疗,具有不炭化、不产生烟雾的特点;三是小剂量的温热治疗,可以解痉、止痛、消炎并促进伤恢复等。
(5)电磁波消毒利用电磁波的场效应和热效应,在5-l0分钟内能迅速达到国家卫生部规定的消毒要求,对成捆、成扎的纸币、成叠的毛巾、医疗器械具有穿透力强,无残留药毒性的消毒特点,是当今消毒领域的新突破。
2.电磁波在生产、生活上的应用静电场的最常见的一个应用就是带电粒子的偏转,这样象控制电子或是质子的轨迹。
很多装置,例如阴极射线示波器,回旋加速器,喷墨打印机以及速度选择器等都是基于这一原理的。
阴极射线示波器中电子束的电量是恒定的,而喷墨打印机中微粒子的电量却随着打印的字符而变化。
在所有的例子中带电粒子的偏转都是通过两个平行板之间的电位差来实现的。
(1)磁悬浮列车列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被安装在轨道上稍后一点的电磁体N极所排斥。
列车前进时,线圈里流动的电流方向就反过来,即原来的S极变成N极,N极变成S极。
循环交替,列车就向前奔驰。
稳定性由导向系统来控制。
“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。
列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。
列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。
“常导型”磁悬浮列车的构想由德国工程师赫尔曼·肯佩尔于1922年提出。
“常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。
只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。
通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。
我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。
当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。
(2)电磁泵利用磁场和导电流体中电流的相互作用,使流体受电磁力作用而产生压力梯度,从而推动流体运动的一种装置。
实用中大多用于泵送液态金属,所以又称液态金属电磁泵。
电磁泵按电源形式可分为交流泵和直流泵;按液态金属中电流馈给的方式可分为传导式电磁泵和感应式电磁泵;按结构不同可分为平面泵和圆柱泵等。
传导式泵中,电流由外部电源经泵沟两侧的电极直接传导给液态金属;感应泵中,电流则由交变磁场感应产生。
电磁泵没有转动部件,结构简单,密封性好,运转可靠,因此在化工、印刷行业中用于输送一些有毒的重金属,如汞、铅等;在原子能动力工业中用于输送化学性质特别活泼的金属,如钠、钾、钠钾合金;在铸造企业中可以用来做铝、镁等活泼金属的定量泵,但现在主要为军工等大型企业使用。
(3)磁流体发电机磁流体发电中的带电流体,它们是通过加热燃料、惰性气体、碱金属蒸气而得到的。
在几千摄氏度的高温下,这些物质中的原子和电子的运动都很剧烈,有些电子甚至可以脱离原子核的束缚,结果,这些物质变成自由电子、失去电子的离子以及原子核的混合物,这就是等离子体。
将等离子体以超音速的速度喷射到一个加有强磁场的管道里面,等离子体中带有正电荷、负电荷的高速粒子,在磁场中受到洛伦兹力的作用,分别向两极偏移,于是在两极之间产生电压,用导线将电压接入电路中就可以使用了。
磁流体发电的另一个好处是产生的环境污染少。
利用火力发电,燃烧燃料产生的废气里含有大量的二氧化硫,这是造成空气污染的一个重要原因。
利用磁流体发电,不仅使燃料在高温下燃烧得更加充分,它使用的一些添加材料还可以和硫化合,生成硫酸钾,并被回收利用,这就避免了直接把硫排放到空气中,对环境造成污染。
利用磁流体发电,只要加快带电流体的喷射速度,增加磁场强度,就能提高发电机的功率。
人们使用高能量的燃料,再配上快速启动装置,就可以使发电机功率达到1000万kW,这就满足了一些需要大功率电力的场合。
目前,中国,美国、印度、澳大利亚以及欧洲共同体等,都积极致力于这方面的研究。
(4)微波炉微波炉,顾名思义,就是用微波来煮饭烧菜的。
微波炉是一种用微波加热食品的现代化烹调灶具。
微波是一种电磁波。
微波炉由电源,磁控管,控制电路和烹调腔等部分组成。
电源向磁控管提供大约4000伏高压,磁控管在电源激励下,连续产生微波,再经过波导系统,耦合到烹调腔内。
在烹调腔的进口处附近,有一个可旋转的搅拌器,因为搅拌器是风扇状的金属,旋转起来以后对微波具有各个方向的反射,所以能够把微波能量均匀地分布在烹调腔内。
微波炉的功率范围一般为500~1000瓦。
从而加热食物。
3.电磁波在军事上的应用(1)雷达雷达是利用电磁波探测目标的电子设备。
发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。
雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。
事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,传播的速度都是光速C,差别在于它们各自占据的频率和波长不同。
其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。
测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。
测量目标方位是利用天线的尖锐方位波束测量。
测量仰角靠窄的仰角波束测量。
根据仰角和距离就能计算出目标高度。
测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。
雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。
从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。
当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。