解析几何综合题解题方法总结
破解解析几何问题常见的技巧

4
所以△ F 1 MN 内切圆半径 r 最大,即 △1 最大.
设直线 l 的方程为 x = my + 3 ( m ≠0),
=+ 3,
2+4) y 2+2 3 my -1=0,Δ>0显然
由ቐ 2
得(
m
+ 2 = 1,
4
−2 3
−1
成立,则 y 1+ y 2= 2 , y 1 y 2= 2 ,
消去
y
,得63
x
2
4
4
2
− =1
9
193=0,∵Δ=1262-4×63×(-193)>0,且 x 1 x 2<0,∴直线 AB
与双曲线的两支分别相交,∴D满足题意.故选D.
高中总复习·数学
解法分析
解析几何是高中数学中用代数方法研究几何问题的重要分支,解题的
第一步通常是把几何条件转化为代数语言,即转化为方程或函数问
值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形
如 y = ax + b ± + ( a , b , c , d 均为常数,且 ac ≠0)的函数
常用此法求解,但在换元时一定要注意新元的取值范围,以保证等价
转化,这样目标函数的值域才不会发生变化.
高中总复习·数学
技巧5
妙借向量,更换思路
12
12
则 2 + 2 =1,
22
22
+ 2 =1,
2
②
①
.
高中总复习·数学
①-②得
(1 +2 )(1 −2 )
1 −2
当
=-1时
1 −2
2
+
(1 +2 )(1 −2 )
2
解析几何题型及解题方法总结

解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。
解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。
2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。
3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。
例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。
线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。
高考解析几何题

高考解析几何题高考解析几何题的解题技巧与方法解析几何作为高中数学的重要组成部分,在高考数学试题中占有不可忽视的地位。
它主要研究图形的几何性质与代数表达式之间的联系,通过坐标系将几何问题转化为代数问题进行求解。
本文将从几个方面探讨高考解析几何题的解题技巧与方法,帮助考生在面对这类题目时能够更加得心应手。
一、掌握基本概念和公式解析几何的基本概念包括点、线、面的位置关系,以及圆、椭圆、双曲线、抛物线等圆锥曲线的性质。
熟练掌握这些概念及其相关公式是解题的基础。
例如,直线的方程有一般式、点斜式、两点式等,每种形式都有其适用的场合。
圆的标准方程、椭圆的焦点性质等,都需要考生牢记于心。
二、培养图形的直观感知能力解析几何题目往往需要考生能够在脑海中构建出题目所描述的图形,并能够对图形进行操作和变换。
因此,培养良好的图形直观感知能力对于解题至关重要。
考生可以通过多做练习题、观察生活中的几何图形等方式来提高这方面的能力。
三、运用代数方法解决问题解析几何的特点就是将几何问题转化为代数问题。
因此,考生需要掌握如何通过代数运算来求解几何问题。
例如,通过联立方程组求交点,利用向量方法求解角度和距离,或者运用坐标变换简化问题等。
这些方法都需要考生在解题时灵活运用。
四、注意解题步骤的条理性在高考中,解析几何题目往往步骤较多,需要考生条理清晰地进行解题。
首先,要仔细审题,弄清楚题目的要求和所给条件;其次,要合理规划解题步骤,避免在解题过程中出现混乱;最后,要仔细检查,确保每一步的计算都是正确的。
五、总结常见题型和解题模板高考解析几何题目虽然千变万化,但总有规律可循。
考生可以通过总结历年高考题,找出常见的题型和解题模板。
例如,直线与圆的位置关系、动点轨迹问题、最值问题等,都有其特定的解题思路和方法。
掌握这些模板,可以帮助考生在面对新题目时能够迅速找到解题的切入点。
六、提高解题速度和准确性高考是一场与时间赛跑的考试,提高解题速度和准确性是提高分数的关键。
解析几何解题思路总结

解析几何巧妙解题思路总结解析几何巧妙解题思路总结一.直线和圆的方程一.直线和圆的方程1.理解直线的斜率的概念,理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、掌握直线方程的点斜式、掌握直线方程的点斜式、两点式、两点式、一般式,并能根据条件熟练地求出直线方程.一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.线的方程判断两条直线的位置关系. 3.了解二元一次不等式表示平面区域..了解二元一次不等式表示平面区域. 4.了解线性规划的意义,并会简单的应用..了解线性规划的意义,并会简单的应用. 5.了解解析几何的基本思想,了解坐标法..了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 二.圆锥曲线方程二.圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质..掌握椭圆的定义、标准方程和椭圆的简单几何性质. 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质..掌握双曲线的定义、标准方程和双曲线的简单几何性质. 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质..掌握抛物线的定义、标准方程和抛物线的简单几何性质. 4.了解圆锥曲线的初步应用..了解圆锥曲线的初步应用. 【例题解析】 考点1.1.求参数的值求参数的值求参数的值求参数的值是高考题中的常见题型之一求参数的值是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,构造方程解之构造方程解之. . 例1.(2009年安徽卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162x y +=的右焦点为(2,0),所以抛物线222y px =的焦点为(2,0),则4p =,故选D. 考点2. 2. 求线段的长求线段的长求线段的长求线段的长也是高考题中的常见题型之一求线段的长也是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,找出点的坐标找出点的坐标,,利用距离公式解之离公式解之. .例2.(2009年四川卷)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3 B.4 C.32D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x bì=-+Þ++-=Þ+=-í=+î,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-´-=.故选C 例3.(2006年四川卷)如图,把椭圆2212516x y +=的长轴的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆2212516x y +=的方程知225, 5.a a =\=∴12345677277535.2aPF P F P F P F P F P F P F a ´++++++==´=´= 故填35. 考点3. 3. 曲线的离心率曲线的离心率曲线的离心率曲线的离心率是高考题中的热点题型之一曲线的离心率是高考题中的热点题型之一,,其解法为充分利用其解法为充分利用: : (1)(1)椭圆的离心率椭圆的离心率e =ac ∈(0,1) (e 越大则椭圆越扁越大则椭圆越扁); );(2) (2) 双曲线的离心率双曲线的离心率e =ac ∈(1, (1, +∞+∞+∞) (e ) (e 越大则双曲线开口越大越大则双曲线开口越大). ).结合有关知识来解题结合有关知识来解题. .例4.(2008年全国卷)文(年全国卷)文(44)理()理(44)已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为双曲线方程为A .221412x y -=B .221124x y -=C .221106x y -= D .221610x y -=考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程:解答过程: 2,4,ce c a=== 所以22,12.a b \==故选(A). 小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会. 例5.(2008年广东卷)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于(到右准线的距离之比等于( )A. 2B.332 C. 2 D.4 考查意图: 本题主要考查双曲线的性质和离心率e =ac∈(1, +∞) 的有关知识的应用能力. 解答过程:依题意可知解答过程:依题意可知 3293,322=+=+==b a c a . 考点4.4.求最大求最大求最大((小)值求最大求最大((小)值, , 是高考题中的热点题型之一是高考题中的热点题型之一其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是特别是,,一些题目还需要应用曲线的几何意义来解答一些题目还需要应用曲线的几何意义来解答. .例6.(2006年山东卷年山东卷))已知抛物线y 22=4x,=4x,过点过点P(4,0)P(4,0)的直线与抛物线相交于的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是的最小值是 . 考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P(4,0)的直线为()()224,8164,y k x k x x x =-\-+=()()122222222122284160,8414416232.k x k x k k y y x x k k \-++=+æö\+=+=´=+³ç÷èø 故填32. 考点5 5 圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例7.(2007年广东卷文)年广东卷文)在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y=x 相切于坐标原点O.椭圆9222y ax +=1与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. [考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.行推理运算的能力和解决问题的能力. [解答过程] (1) 设圆C 的圆心为的圆心为 (m, n) 则,222,m n n =-ìïí×=ïî 解得2,2.m n =-ìí=î所求的圆的方程为所求的圆的方程为 22(2)(2)8x y ++-= (2) 由已知可得由已知可得 210a = , 5a =. 椭圆的方程为椭圆的方程为 221259x y += , 右焦点为右焦点为 F( 4, 0) ; 假设存在Q 点()222cos ,222sin q q -++使QF OF =, ()()22222cos 4222sin 4q q-+-++=.整理得整理得 s i n 3c o s 22q q=+, 代入代入 22sin cos 1q q +=. 得:210cos 122cos 70q q ++= , 122812222cos 11010q -±-±==<-.因此不存在符合题意的Q 点. 例8.(2007年安徽卷理)年安徽卷理)如图,曲线G 的方程为)0(22³=y x y .以原点为圆心,以)0(>t t 为半径的圆分别与曲线G 和y 轴的轴的 正半轴相交于正半轴相交于 A 与点B. 直线直线 AB 与 x 轴相交于点C. (Ⅰ)求点(Ⅰ)求点 A 的横坐标的横坐标 a 与点与点 C 的横坐标c 的关系式;的关系式;(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值. [考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的 两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系 ,考查运算能力与思维能力,综合分析问题的能力. [解答过程](I )由题意知,).2,(a a A 因为.2,||22t a a t OA =+=所以 由于.2,02a a t t +=>故有 (1)由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+t y c x又因点A 在直线BC 上,故有,12=+ta c a将(1)代入上式,得,1)2(2=++a a a ca 解得解得 )2(22+++=a a c . (II )因为))2(22(++a a D ,所以直线CD 的斜率为的斜率为1)2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,所以直线CD 的斜率为定值. 例9.已知椭圆2222x y E :1(a b 0)a b +=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E 的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求:,求: (1)椭圆E 的离心率;(2)双曲线C 的方程. 解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ),则221122x y 1a b+=,222222x y 1a b +=,二式相减得:,二式相减得: 21212AB 21212y y (x x )b k x x (y y )a -+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =, 则c2e a 2==;(2)椭圆E 的右准线为22a(2c)x 2c cc===,双曲线的离心率11e 2e==, 设P(x,y)是双曲线上任一点,则:是双曲线上任一点,则: 22(x 2)(y 1)|PM |2|x 2c ||x 2c |-+-==--,两端平方且将N(4,1)-代入得:c 1=或c 3=,当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去;,不合题意,舍去;当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求. 小结:(1)“点差法”是处理弦的中点与斜率问题的常用方法;“点差法”是处理弦的中点与斜率问题的常用方法; (2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义. 考点6 利用向量求曲线方程和解决相关问题利用向量求曲线方程和解决相关问题利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题:典型例题:例10.(2008年山东卷)双曲线C 与椭圆22184x y +=有相同的焦点,直线y=x 3为C 的一条渐近线. (1)求双曲线C 的方程;的方程;(2)过点P(0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合)当12PQ QA QB l l ==,且3821-=+l l 时,求Q 点的坐标. 考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力. 解答过程:(Ⅰ)设双曲线方程为22221x y a b -=, 由椭圆22184x y +=,求得两焦点为(2,0),(2,0)-,\对于双曲线:2C c =,又3y x =为双曲线C 的一条渐近线的一条渐近线\3ba = 解得解得 221,3ab ==,\双曲线C 的方程为2213y x -=(Ⅱ)解法一:(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零. 设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k -. 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. 111111114444()44x k k x k k y y l l l l ì=--ìï-=+ïï\Þííïï-==-îïî 11(,)A x y 在双曲线C 上,上,\2121111616()10k l l l +--=. \222211161632160.3k k l l l ++--=\2221116(16)32160.3k k l l -++-=同理有:2222216(16)32160.3k k l l -++-=若2160,k -=则直线l 过顶点,不合题意.2160,k \-¹12,l l \是二次方程22216(16)32160.3k x x k -++-=的两根. 122328163k l l \+==--,24k \=,此时0,2k D >\=±. \所求Q 的坐标为(2,0)±. 解法二:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 1PQ QA l = , Q \分PA的比为1l . 由定比分点坐标公式得由定比分点坐标公式得1111111111144(1)14401x x k k y y l l l l l l l ìì-==-+ïï+ïï®íí+ïï=-=ïï+îî下同解法一下同解法一解法三:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 12PQ QA QB l l == , 111222444(,4)(,)(,)x y x y kkkl l \--=+=+. 11224y y l l \-==, 114y l \=-,224y l =-,又1283l l +=-,121123y y \+=,即12123()2y y y y +=. 将4y kx =+代入2213y x -=得222(3)244830k y y k --+-=. 230k -¹ ,否则l 与渐近线平行. 212122224483,33k y y y y k k -\+==--. 222244833233k k k -\´=´--.2k \=±(2,0)Q \±. 解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k- 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. \1114444k kx x kl -==-++.同理同理 1244kx l =-+. 1212448443kx kx l l +=--=-++. 即 2121225()80k x x k x x +++=. (*)又 22413y kx y x =+ìïí-=ïî消去y 得22(3)8190k x kx ---=. 当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -¹. 由韦达定理有:由韦达定理有: 12212283193k x x k x x k ì+=ïï-íï=-ï-î代入(*)式得)式得24,2k k ==±. \所求Q 点的坐标为(2,0)±. 例11.(2007年江西卷理)年江西卷理)设动点P 到点A(-l ,0)和B(1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围, 使OM ·ON =0,其中点O 为坐标原点.为坐标原点.[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合 运用数学知识进行推理运算的能力和解决问题的能力.运用数学知识进行推理运算的能力和解决问题的能力.[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.的双曲线.方程为:2211x y l l-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.在双曲线上.即2111511012l l l l l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l lì-=ï-íï=-î得:2222(1)2(1)(1)()0k x k x k l l l l l éù--+---+=ëû, 由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--. 于是:22212122(1)(1)(1)k y y k x x kl l l =--=--.因为0=×ON OM ,且M N ,在双曲线右支上,所以在双曲线右支上,所以 2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l ll -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -<≤.解法2:(1)同解法1 (2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB l l l l l=-=Þ+-=-,因为01l <<,所以512l -=; ②当12x x ¹时,002222212111111y x k y x y xMN ×-=Þïïîïïíì=--=--l l l l l l . 又001MN BE y k k x ==-.所以22000(1)y x x l l l -=-;由2MON p =∠得222002MN x y æö+=ç÷èø,由第二定义得2212()222MN e x x a æö+-éù=ç÷êúëûèø 22000111(1)211x x x l l ll æö=--=+--ç÷--èø. 所以2220(1)2(1)(1)y x x l l l l -=--+-.于是由22000222000(1),(1)2(1)(1),y x x y x x l l l l l l l ì-=-ïí-=--+-ïî得20(1).23x l l -=-因为01x >,所以2(1)123l l->-,又01l <<,C BA oy x解得:51223l -<<.由①②知51223l -<≤.考点7 利用向量处理圆锥曲线中的最值问题利用向量处理圆锥曲线中的最值问题利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易. 例12.设椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为33,过点C(1,0)-的直线交椭圆E 于A 、B 两点,且CA2BC = ,求当AOB D 的面积达到最大值时直线和椭圆E 的方程. 解答过程:因为椭圆的离心率为33,故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为my x 1=+,由222x 3y t my x 1ì+=í=+î得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ), 则1224m y y 2m 3+=+…………① 又CA 2BC =,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………②由①②得:128m y 2m 3=+,224m y 2m 3-=+,则AOB 1221m S |y y |6||22m 3D =-=+=66322|m ||m |£+, 当23m 2=,即6m 2=±时,AOB D 面积取最大值,面积取最大值,此时2122222t32m y y 2m 3(2m 3)-==-++,即t 10=,所以,直线方程为6x y 102±+=,椭圆方程为222x 3y 10+=. 小结:利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易. 例13.已知P A (x 5,y)=+,PB (x 5,y)=- ,且|P A||P B|6+= , 求|2x 3y 12|--的最大值和最小值. 解答过程:设P(x,y),A(5,0)-,B(5,0),因为|P A ||PB|6+=,且|AB|256=<,所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆,的椭圆,椭圆方程为22x y 194+=,令x 3cos ,y 2sin =q =q , 则|2x 3y 12|--=|62cos()12|4pq +-,当cos()14pq +=-时,|2x 3y 12|--取最大值1262+,当cos()14pq +=时,|2x 3y 12|--取最小值1262-. 小结:利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算. 考点8 利用向量处理圆锥曲线中的取值范围问题利用向量处理圆锥曲线中的取值范围问题解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域问题. 例14.(2006年福建卷)年福建卷) 已知椭圆2212x y +=的左焦点为F , O 为坐标原点. (I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==\=-=-圆过点O 、F , \圆心M 在直线12x =-上. 设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =得2213(),22t -+=解得 2.t =±\所求圆的方程为2219()(2).24x y ++±=(II )设直线AB 的方程为(1)(0),y k x k =+¹代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F ,\方程有两个不等实根. ylG ABF OF EP DBA Oy x记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB \的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得222002222211.21212124210,0,2G G k k k x x ky k k k k k x =+=-+=-=-+++++¹\-<<\点G 横坐标的取值范围为1(,0).2- 例15.已知双曲线C :2222x y 1(a 0,b 0)a b-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足|OA|,|OB|,|OF| 成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,(1)求证:PA OP PA FP ×=×;(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围. 解答过程:(1)因|OA |,|OB|,|OF| 成等比数列,故22|OB |a|OA |c |OF|== ,即2a A(,0)c , 直线l :ay (x c)b=--,由2a y (x c)a ab b P(,)bc c y xa ì=--ïïÞíï=ïî, 故:22ab a ab b ab PA (0,),OP (,),FP (,)c c c c c =-==-,则:222a b PA OP PA FP c×=-=×,即PA OP PA FP ×=× ;(或P A (OP FP)P A (PF PO)P A OF 0×-=×-=×=,即PA OP PA FP ×=× ) (2)由44422222222222222ay (x c)a a a c (b )x 2cx (a b )0b b b b b x a y a b ì=--ïÞ-+-+=íï-=î,由4222212422a c (a b )b x x 0a b b -+=<-得:4422222b a b c a a e 2e 2.>Þ=->Þ>Þ>(或由DFDO k k >Þa bb a->-Þ2222222222b c a a e 2e 2=->Þ>Þ>)小结:向量的数量积在构造等量关系中的作用举足轻重,向量的数量积在构造等量关系中的作用举足轻重,而要运用数量积,而要运用数量积,必须先恰当地求出各个点的坐标. 例16.已知a (x,0)= ,b (1,y)=,(a 3b)(a 3b)+^- ,(1)求点P(x,y)的轨迹C 的方程;的方程;(2)若直线y kx m(m 0)=+¹与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围. 解答过程:(1)a 3b +=(x,0)3(13(1,,y)(x 3,3y)+=+,a 3b -=(x,0)3(13(1,,y)(x 3,3y)-=--, 因(a 3b)(a 3b)+^- ,故(a 3b)(a 3b)0+×-=,即22(x 3,3y)(x 3,3y)x 3y 30+×--=--=,故P 点的轨迹方程为22x y 13-=. (2)由22y kx mx 3y 3=+ìí-=î得:222(13k )x 6kmx 3m 30----=, 设1122A(x ,y ),B(x ,y ),A 、B 的中点为00M(x ,y )则22222(6km)4(13k )(3m 3)12(m 13k )0D =----=+->,1226km x x 13k +=-,1202x x 3km x 213k +==-,002my kx m 13k=+=-, 即A 、B 的中点为223km m(,)13k 13k --, 则线段AB 的垂直平分线为:22m 13kmy ()(x )13k k 13k -=----, 将D(0,1)-的坐标代入,化简得:24m 3k 1=-,PQCBA xy O则由222m 13k 04m 3k 1ì+->ïí=-ïî得:2m 4m 0->,解之得m 0<或m 4>,又24m 3k 11=->-,所以1m 4>-, 故m 的取值范围是1(,0)(4,)4-+¥ . 小结:求变量的范围,要注意式子的隐含条件,否则会产生增根现象. 考点9 利用向量处理圆锥曲线中的存在性问题利用向量处理圆锥曲线中的存在性问题存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐标,再根据合理的推理,若能推出题设中的系数,则存在性成立,否则,不成立. 例17.已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O ,且AC BC 0×= ,|BC|2|AC|=, (1)求椭圆的方程;)求椭圆的方程;(2)如果椭圆上的两点P ,Q 使PCQ Ð的平分线垂直于OA ,是否总存在实数λ,使得PQ λAB =?请说明理由;请说明理由;解答过程:(1)以O 为原点,OA 所在直线为x 轴建立轴建立 平面直角坐标系,则A(2,0),设椭圆方程为222x y14b+=,不妨设C 在x 轴上方,轴上方,由椭圆的对称性,|BC|2|AC|2|OC||AC||OC|==Þ= ,又AC BC 0×=AC OC Þ^,即ΔOCA 为等腰直角三角形,为等腰直角三角形,由A(2,0)得:C(1,1),代入椭圆方程得:24b 3=, 即,椭圆方程为22x 3y 144+=; (2)假设总存在实数λ,使得PQ λAB =,即AB //PQ ,由C(1,1)得B(1,1)--,则AB 0(1)1k 2(1)3--==--,若设CP :y k(x 1)1=-+,则CQ :y k(x 1)1=--+,由22222x 3y 1(13k )x 6k(k 1)x 3k 6k 1044y k(x 1)1ì+=ïÞ+--+--=íï=-+î, 由C(1,1)得x 1=是方程222(13k )x 6k(k 1)x 3k 6k 10+--+--=的一个根,的一个根,由韦达定理得:2P P 23k 6k 1x x 113k --=×=+,以k -代k 得2Q 23k 6k 1x 13k+-=+, 故P Q P Q PQ P Q P Q yy k(x x )2k 1k x x x x 3-+-===--,故AB //PQ , 即总存在实数λ,使得PQ λAB =. 评注:此题考察了坐标系的建立、待定系数法、椭圆的对称性、向量的垂直、向量的共线及探索性问题的处理方法等,是一道很好的综合题. 考点10 利用向量处理直线与圆锥曲线的关系问题利用向量处理直线与圆锥曲线的关系问题直线和圆锥曲线的关系问题,直线和圆锥曲线的关系问题,一般情况下,一般情况下,是把直线的方程和曲线的方程组成方程组,是把直线的方程和曲线的方程组成方程组,进一进一步来判断方程组的解的情况,但要注意判别式的使用和题设中变量的范围. 例18.设G 、M 分别是ABC D 的重心和外心,A(0,a)-,B(0,a)(a 0)>,且GM AB =l ,(1)求点C 的轨迹方程;的轨迹方程;(2)是否存在直线m ,使m 过点(a,0)并且与点C 的轨迹交于P 、Q 两点,且OPOQ 0×= 若存在,求出直线m 的方程;若不存在,请说明理由. 解答过程:(1)设C(x,y),则x yG(,)33, 因为GM AB =l ,所以GM //AB ,则xM(,0)3,由M 为ABC D 的外心,则|MA ||MC |=,即2222x x ()a (x)y 33+=-+,整理得:2222x y 1(x 0)3a a+=¹;(2)假设直线m 存在,设方程为y k(x a)=-,由2222y k(x a)x y 1(x 0)3aa =-ìïí+=¹ïî得:22222(13k )x 6k ax 3a (k 1)0+++-=,设1122P(x ,y ),Q(x ,y ),则21226k a x x 13k +=+,221223a (k 1)x x 13k -=+,22212121212y y k (x a )(x a )k [x x a (x x )a ]=--=-++=2222k a 13k-+, 由OP OQ 0×=得:1212x x y y 0+=,即2222223a (k 1)2k a13k 13k --+=++,解之得k 3=±,又点(a,0)在椭圆的内部,直线m 过点(a,0),故存在直线m ,其方程为y 3(x a)=±-. 小结:(1)解答存在性的探索问题,一般思路是先假设命题存在,再推出合理或不合理的结果,然后做出正确的判断;然后做出正确的判断;(2)直线和圆锥曲线的关系问题,一般最终都转化成直线的方程和圆锥曲线的方程所组成的方程组的求解问题. 专题训练与高考预测专题训练与高考预测一、选择题一、选择题1.如果双曲线经过点(6,3),且它的两条渐近线方程是1y x 3=±,那么双曲线方程是(),那么双曲线方程是()A .22x y 1369-= B .22x y 1819-= C .22x y 19-= D .22x y 1183-= 2.已知椭圆2222x y 13m 5n +=和双曲线2222x y 12m 3n-=有公共的焦点,那么双曲线的的渐近线方程为(为( ) A.15x y 2=± B. 15y x2=± C. 3x y 4=± D. 3y x 4=± 3.已知12F ,F 为椭圆2222x y 1(a b 0)a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴,轴, 且12FMF 60Ð=°,则椭圆的离心率为(,则椭圆的离心率为( ) A.12 B.22 C.33 D.324.二次曲线22x y 14m+=,当m [2,1]Î--时,该曲线的离心率e 的取值范围是(的取值范围是( )A.23[,]22B. 35[,]22C.56[,]22D. 36[,]225.直线m 的方程为y kx 1=-,双曲线C 的方程为22x y 1-=,若直线m 与双曲线C 的右支相交于不重合的两点,则实数k 的取值范围是(的取值范围是( )A.(2,2)-B.(1,2)C.[2,2)-D.[1[1,,2)6.已知圆的方程为22x y 4+=,若抛物线过点A(1,0)-,B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程为(抛物线的焦点的轨迹方程为( ) A. 22xy1(y0)34+=¹B. 22x y 1(y 0)43+=¹ C. 22x y 1(x 0)34-=¹ D. 22x y 1(x 0)43-=¹二、填空题二、填空题7.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by ax 上一点,若021=×PF PF 21tan 21=ÐF PF ,则椭圆的离心率为,则椭圆的离心率为 ______________ . 8.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,轴正方向上的一定点,若过点若过点A ,斜率为1的直线被椭圆截得的弦长为3134,点A 的坐标是______________ . 9.P 是椭圆22x y 143+=上的点,12F ,F 是椭圆的左右焦点,设12|PF ||PF |k ×=,则k 的最大值与最小值之差是______________ . 10.给出下列命题:.给出下列命题:①圆22(x 2)(y 1)1++-=关于点M(1,2)-对称的圆的方程是22(x 3)(y 3)1++-=;F 2F 1A 2A 1PNM oy x FQoyx②双曲线22x y 1169-=右支上一点P 到左准线的距离为18,那么该点到右焦点的距离为292;③顶点在原点,对称轴是坐标轴,且经过点(4,3)--的抛物线方程只能是29y x 4=-;④P 、Q 是椭圆22x 4y 16+=上的两个动点,O 为原点,直线OP ,OQ 的斜率之积为14-,则22|OP ||OQ|+等于定值20 . 把你认为正确的命题的序号填在横线上_________________ . 三、解答题三、解答题 11.已知两点A(2,0),B(2,0)-,动点P 在y 轴上的射影为Q ,2PA PB 2PQ ×=, (1)求动点P 的轨迹E 的方程;的方程;(2)设直线m 过点A ,斜率为k ,当0k 1<<时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及此时点C 的坐标. 12.如图,1F (3,0)-,2F (3,0)是双曲线C 的两焦点,直线4x 3=是双曲线C 的右准线,12A ,A是双曲线C 的两个顶点,点P 是双曲线C 右支上异于2A 的一动点,直线1A P 、2A P 交双曲线C 的右准线分别于M,N 两点,两点, (1)求双曲线C 的方程;的方程;(2)求证:12FM F N × 是定值. 13.已知OFQ D 的面积为S ,且OFFQ 1×= ,建立如图所示坐标系,,建立如图所示坐标系, (1)若1S 2=,|OF|2= ,求直线FQ 的方程;的方程;(2)设|OF|c(c 2)=³,3S c 4=,若以O 为中心,F 为焦点的椭圆过点Q ,求当|OQ |取得最小值时的椭圆方程. 14.已知点H(3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM 0×= ,3PM MQ 2=-,BAMQ E T HP o yx(1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T(1,0)-作直线m 与轨迹C 交于A 、B 两点,若在x 轴上存在一点0E(x ,0),使得ABE D 为等边三角形,求0x 的值. 15.已知椭圆)0(12222>>=+b a b y a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量.是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;的取值范围;16.已知两点M (-1,0),N (1,0)且点P 使NPNM PN PM MN MP ×××,,成公差小于零的等差数列,数列, (Ⅰ)点P 的轨迹是什么曲线?的轨迹是什么曲线? (Ⅱ)若点P 坐标为),(00y x ,q 为PN PM 与的夹角,求tan θ.参考答案参考答案一. 1.C .提示,设双曲线方程为提示,设双曲线方程为11(x y)(x y)33+-=l ,将点(6,3)代入求出l 即可. 2.D .因为双曲线的焦点在因为双曲线的焦点在x 轴上,故椭圆焦点为22(3m 5n ,0)-,双曲线焦点为22(2m 3n ,0)+,由22223m 5n 2m 3n -=+得|m |22|n |=,所以,双曲线的渐近线为6|n |3y x 2|m |4=±=± . 3.C .设1|MF |d =,则2|MF |2d =,12|FF |3d =,11212|FF |c 2c 3d3e a2a|MF ||MF |d 2d 3=====++ . 4.C .曲线为双曲线,且曲线为双曲线,且512>,故选C ;或用2a 4=,2b m =-来计算. 5.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组将两方程组成方程组,利用判别式及根与系数的关系建立不等式组. 6.B .数形结合,利用梯形中位线和椭圆的定义数形结合,利用梯形中位线和椭圆的定义. 二.7.解:设c 为为椭圆半焦距,∵021=×PF PF ,∴21PF PF ^ . 又21tan 21=ÐF PF ∴ïïïîïïïíì==+=+212)2(122122221PF PF a PF PF c PF PF解得:255()93,cc e aa === . 选D . 8. 解:设A (x 0,0)(x 0>0),则直线l 的方程为y=x-x 0,设直线l 与椭圆相交于P (x 1,y 1),Q (x 2、y 2),由,由 y=x-x 0 可得3x 2-4x 0x+2x 02-12=0, x 22+2y 22=12 34021x x x =+,31222021-=×x x x ,则,则 2020221221212363234889164)(||x x xx x x x x x -=--=-+=-.∴||13144212x x x -×+=,即202363223144x -××=. ∴x 02=4,又x 0>0,∴x 0=2,∴A (2,0).9.1;22212k |PF ||PF |(a ex)(a ex)a e x =×=+-=- . 10.②④. 三. 11.解(1)设动点P 的坐标为(x,y),则点Q(0,y),PQ (x,0)=-,P A (2x,y)=-- ,PB (2x,y)=---,22P A PB x 2y ×=-+ ,因为2PA PB 2PQ ×= ,所以222x 2y 2x -+=,即动点P 的轨迹方程为:22y x 2-=; (2)设直线m :y k(x 2)(0k 1)=-<<,依题意,点C 在与直线m 平行,且与m 之间的距离为2的直线上,的直线上, 设此直线为1m :y kx b =+,由2|2k b |2k 1+=+,即2b 22kb 2+=,……①把y kx b =+代入22y x 2-=,整理得:222(k 1)x 2kbx (b 2)0-++-=,则22224k b 4(k 1)(b 2)0D =---=,即22b 2k 2+=,…………②由①②得:25k 5=,10b 5=,此时,由方程组222510y x C(22,10)55y x 2ì=+ïÞíï-=î . 12.解:(1)依题意得:c 3=,2a4c 3=,所以a 2=,2b 5=,所求双曲线C 的方程为22x y145-=;(2)设00P(x ,y ),11M(x ,y ),22N(x ,y ),则1A (2,0)-,2A (2,0),100A P (x 2,y )=+ ,200A P (x 2,y )=- ,1110A M (,y )3= ,222A N (,y )3=- , 因为1A P 与1A M 共线,故01010(x 2)y y 3+=,01010y y 3(x 2)=+,同理:0202y y 3(x 2)=--, 则1113F M (,y )3= ,225F N (,y )3=-, 所以12FM F N ×=1265y y 9-+=202020y 6599(x 4)---=20205(x 4)206541099(x 4)-´--=-- . 13.解:(1)因为|OF|2= ,则F(2,0),OF (2,0)=,设00Q(x ,y ),则00FQ (x 2,y )=- ,0OF FQ 2(x 2)1×=-= ,解得05x 2=,由0011S |OF ||y ||y |22=×== ,得01y 2=±,故51Q(,)22±,所以,PQ 所在直线方程为y x 2=-或y x 2=-+;(2)设00Q(x ,y ),因为|OF|c(c 2)=³,则00FQ (x c,y )=- ,)))设椭圆方程为22x y a b +=222594a4b í+=ïî所以,椭圆方程为x y106+=MQ 2-)2-Q(,0)3)(x,)22-22(k 2)k -,2(,)k k-2(x )k k k-=--2k=+2E(k+的距离等于3|2221212(x x )(y y )=-+-=22241k 1k k -×+,所以,422231k 21k k |k |-=+,解得:3k 2=±,011x 3= . 15.解:(1)∵a b y c x c F M M 21,),0,(=-=-则,∴acb k OM 2-= . ∵AB OM a b k AB与,-=是共线向量,∴a bac b -=-2,∴b=c,故22=e . (2)设1122121212,,,2,2,FQ r F Q r F QF r r a F F c q ==Ð=\+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r q +-+--===-³-=+ 当且仅当21r r =时,cos θ=0,∴θ]2,0[pÎ . 16.解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得)得(1,),PM MP x y =-=--- ),1(y x NP PN ---=-=, )0,2(=-=NM MN . 所以所以 )1(2x MN MP +=× . 122-+=×y x PN PM , )1(2x NP NM -=× . 于是,于是, NP NM PN PM MN MP ×××,,是公差小于零的等差数列等价于是公差小于零的等差数列等价于îîïíì<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 îíì>=+0322x y x . 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (Ⅱ)点P 的坐标为),(00y x 。
初中解析几何题型及解题方法

初中解析几何题型及解题方法解析几何是初中数学中的一个重要部分,主要涉及直线、圆、抛物线、双曲线等图形的性质和特点。
以下是一些常见的初中解析几何题型及解题方法:1. 求直线的方程题型描述:给定直线上两点或一点及斜率,要求求出直线的方程。
解题方法:+ 两点式:$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$+ 点斜式:$y - y_1 = m(x - x_1)$2. 求圆的方程题型描述:给定圆上的三点或两点及半径,要求求出圆的方程。
解题方法:$(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆心,$r$ 是半径。
3. 直线与圆的位置关系题型描述:给定直线和圆的方程,要求判断直线与圆的位置关系(相交、相切、相离)。
解题方法:计算圆心到直线的距离,与半径比较。
4. 求抛物线的方程题型描述:给定抛物线上的两点或一点及焦点,要求求出抛物线的方程。
解题方法:标准方程为 $y = ax^2 + bx + c$。
如果知道焦点和准线,则可以求出 $a$ 和 $b$ 的值。
5. 求最值问题题型描述:在给定的图形中,求某一点的坐标或某条线段的长度,使得该值最大或最小。
解题方法:使用配方法、顶点式、导数等方法求最值。
6. 实际应用题题型描述:给定生活中的实际问题,如最短路径、最大面积等,要求用解析几何知识求解。
解题方法:建立数学模型,转化为几何问题,然后使用解析几何的知识求解。
在解决解析几何问题时,除了掌握上述方法外,还需要培养自己的空间想象能力和逻辑推理能力。
同时,多做练习题也是提高解题能力的有效途径。
解析几何综合题解题思路案例分析

解析几何是数学中的一个分支,主要研究几何形状的数学表达和特征。
解析几何综合题需要运用多种几何知识和方法进行解题。
解题思路:
题目阅读:仔细阅读题目,弄清题目意思,明确问题
数据分析:分析题目给出的数据,确定所需要的几何知识和方法
方法选择:根据题目数据和问题,选择合适的几何方法进行解题
解题过程:根据选定的方法进行解题,记录解题过程
结果检验:验证解题结果是否正确
案例分析:
例如,有一道题目是:已知圆心坐标为(1,2),半径为3,求圆的标准方程。
题目阅读:已知圆心坐标和半径,求圆的标准方程
数据分析:圆心坐标(1,2),半径3
方法选择:圆的标准方程
解题过程:根据圆的标准方程(x-a)^2 + (y-b)^2 = r^2,可得(x-1)^2 + (y-2)^2 = 9
结果检验:圆的标准方程是(x-1)^2 + (y-2)^2 = 9。
初中数学知识归纳解析几何的综合计算与解决问题

初中数学知识归纳解析几何的综合计算与解决问题知识点一:直线方程的求解在解析几何中,求解直线方程是一个基础且重要的知识点。
一般情况下,给定两点或一个点和斜率,可以确定一条直线的方程。
1.给定两点求解直线方程设直线过点A(x1, y1)和B(x2, y2),斜率为k,直线方程可表示为y - y1 = k(x - x1)。
2.给定一个点和斜率求解直线方程设直线过点A(x1, y1),斜率为k,直线方程可表示为y - y1 = k(x - x1)。
知识点二:直线与二次函数的交点直线与二次函数的交点问题是解析几何中的重要题型之一,解题的关键在于将直线方程代入二次函数的方程,从而求得交点的横、纵坐标。
1.将直线方程代入二次函数的方程,得到二次方程2.解二次方程,求得交点的横、纵坐标例如,给定直线方程y = 2x + 3与二次函数y = x^2 - 1,将直线方程代入二次函数方程,得到x^2 - 2x - 4 = 0。
解这个二次方程,可以求得交点的横、纵坐标。
知识点三:三角形的面积计算三角形是解析几何中的重要图形,求解三角形的面积是常见的题目。
根据三角形的已知信息,可以采用不同的方法计算面积。
1.通过底边和高计算面积2.通过两边和夹角计算面积3.通过三个顶点的坐标计算面积知识点四:平面图形的相似性质与比例关系在解析几何中,研究图形的相似性质与比例关系是一项重要的内容。
通过观察和分析,可以得出以下结论:1.相似三角形的对应边比例相等2.相似三角形的对应角相等3.相似三角形的面积比等于边长比的平方4.平行四边形的对角线互相平分5.矩形的对角线相等知识点五:角平分线与垂直平分线性质角平分线是指将一个角分成两个相等角的直线。
垂直平分线是指垂直于一条线段并且将其分成两个相等线段的直线。
这两个概念是解析几何中的重要知识点。
1.角平分线平分角2.垂直平分线垂直于线段,并且将其分成两个相等线段3.角平分线和垂直平分线可以同时存在于一个图形中以上是初中数学中解析几何的综合计算与解决问题的一些知识点归纳。
解析几何题型及解题方法总结

解析几何题型及解题方法总结
几何是小学、中学数学的基础内容,对理解和掌握数学有着重要的作用,而解析几何就是从图形出发,把它们构成的性质表示出来。
随着数学应用范围的不断扩大,解析几何也变得越来越重要。
一般来说,解析几何题型包括:直线、线段、圆、三角形、椭圆、正方形等。
在解析这些几何题型时,有一些总体的解题思路与解题方法。
首先,把问题翻译成几何模型,也是解题的第一步。
其次,通过绘图的方法,让图形的性质更加清晰,即确定结构。
最后,运用相关的几何知识、定理,进行计算、判断和证明。
举例来说,解决一道给定两线段判断是否相交的问题,可以这样做:首先,用两个不同的色彩表示这两条线段,绘出它们的图形;其次,利用类似两线段角平分线定理的几何原理,计算出两线段的角平分线,判断它们是否相交。
此外,解决解析几何问题还需要熟练掌握和推导各种常见的几何定理,如勾股定理、等腰三角形定理、角平分线定理等,并且应该能够根据情况,判断出此类定理的使用范围。
另外,还要深入理解几何中角度、边长之间的各种关系:一条线段所围成的角的几何关系,一个三角形的边长与其垂直边、对边角的几何关系,一个椭圆的边长与其顶点角的几何关系等。
最后,解析几何中突出的一般性知识,:平行线、垂直线、对称中心、交点、垂足等,也要熟练掌握,这样方便在解决具体问题时正
确使用正确的几何知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何综合题解题方法总结富源县第一中学解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。
据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.一、判别式案例1 已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:简解:设点)2,(2x x M +为双曲线C 上支上任一点,则点M 到直线l 的距离为:212222=+-+-k kx kx ()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k kkx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k k x k的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2判别式与韦达定理例2 .已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。
其实,应该想到轨迹问题可以通过参数法求解. 因此,首先是选定参数,然后想方设法将点Q 的横、纵坐标用参数表达,最后通过消参可达到解题的目的.由于点),(y x Q 的变化是由直线AB 的变化引起的,自然可选择直线AB 的斜率k 作为参数,如何将y x ,与k 联系起来?一方面利用点Q 在直线AB 上;另一方面就是运用题目条件:AP PB AQ QB =-来转化.由A 、B 、P 、Q 四点共线,不难得到)(82)(4B A BA B A x x x x x x x +--+=,要建立x 与k 的关系,只需将直线AB 的方程代入椭圆C 的方程,利用韦达定理即可.通过这样的分析,可以看出,虽然我们还没有开始解题,但对于如何解决本题,已经做到心中有数.在得到()k f x =之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到关于y x ,的方程(不含k ),则可由1)4(+-=x k y 解得41--=x y k ,直接代入()k f x =即可得到轨迹方程。
从而简化消去参的过程。
简解:设()),(),(,,2211y x Q y x B y x A ,,则由QBAQPB AP -=可得:x x x x x x --=--212144, 解之得:)(82)(4212121x x x x x x x +--+=(1)设直线AB 的方程为:1)4(+-=x k y ,代入椭圆C 的方程,消去y 得出关于 x 的一元二次方程:()08)41(2)41(412222=--+-++k x k k x k(2)∴ ⎪⎪⎩⎪⎪⎨⎧+--=+-=+.128)41(2,12)14(42221221k k x x k k k x x 代入(1),化简得:.234++=k k x (3) 与1)4(+-=x k y 联立,消去k 得:().0)4(42=--+x y x 在(2)中,由02464642>++-=∆k k ,解得41024102+<<-k ,结合(3)可求得.910216910216+<<-x 故知点Q 的轨迹方程为:042=-+y x (910216910216+<<-x ). 点评:由方程组实施消元,产生一个标准的关于一个变量的一元二次方程,其判别式、韦达定理模块思维易于想到. 这当中,难点在引出参,活点在应用参,重点在消去参.,而“引参、用参、消参”三步曲,正是解析几何综合问题求解的一条有效通道.3 求根公式例3. 设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,试求APPB的取值范围.分析:本题中,绝大多数同学不难得到:AP PB =BA x x-,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.分析1: 从第一条想法入手,AP PB =BA x x-已经是一个关系式,但由于有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB 的斜率k . 问题就转化为如何将B A x x ,转化为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.简解1:当直线l 垂直于x 轴时,可求得51-=PB AP ; 当l 与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l 的方程为:3+=kx y ,代入椭圆方程,消去y 得()045544922=+++kx x k ,解之得 .4959627222,1+-±-=k k k x 因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.当0>k 时,4959627221+-+-=k k k x ,4959627222+---=k k k x , 所以 21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k =25929181k -+-.由 ()049180)54(22≥+--=∆k k , 解得 952≥k , 所以 51592918112-<-+-≤-k ,综上 511-≤≤-PB AP .分析2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定k 的取值范围,于是问题转化为如何将所求量与k 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于21x x PB AP-=不是关于21,x x 的对称关系式. 原因找到后,解决问题的方法自然也就有了,即我们可以构造关于21,x x 的对称关系式.简解2:设直线l 的方程为:3+=kx y ,代入椭圆方程,消去y 得()045544922=+++kx x k(*)则⎪⎪⎩⎪⎪⎨⎧+=+-=+.4945,4954221221k x x k k x x ,令λ=21x x ,则,.20453242122+=++k k λλ 在(*)中,由判别式,0≥∆可得 952≥k , 从而有 5362045324422≤+≤k k , 所以 536214≤++≤λλ, 解得551≤≤λ. 结合10≤<λ得151≤≤λ.综上,511-≤≤-PB AP .点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等. 本题也可从数形结合的角度入手,给出又一优美解法.解题犹如打仗,不能只是忙于冲锋陷阵,一时局部的胜利并不能说明问题,有时甚至会被局部所纠缠而看不清问题的实质所在,只有见微知著,树立全局观念,讲究排兵布阵,运筹帷幄,方能决胜千里.。