三维激光扫描仪大容量计量数据处理

合集下载

3D激光扫描仪测量及数据处理

3D激光扫描仪测量及数据处理

3D激光扫描仪测量及数据处理摘要:3D激光扫描技术是20世纪90年代新兴的一门测量技术,采用非接触式高速激光测量,以获取研究目标的三维坐标和数码照片的方式,快速高效的得到目标的三维立体信息,因此该技术有着广泛的应用。

另外,3D激光扫描技术的产生和发展是时代进步的体现,推动了许多行业的发展和进步。

同时,这项技术使测量技术领域在数据的提供上有了更高的精准度。

关键词:3D激光扫描仪;测量原理;数据处理随着信息科技的发展,三维模拟、实物重构、虚拟现实等理论的相继提出,人们对事物的认识已从平面二维空间,逐渐转向3D立体思维模式。

3D激光扫描仪的出现解决了这一实际问题,通过3D激光扫描技术,又称“实景复制技术”,以其非接触、扫描速度快、获取信息量大、精度高、实时性强、全自动化、复杂环境测量等优点,克服传统测量仪器的局限性,成为直接获取目标高精度三维数据,并实现三维可视化的重要手段。

它极大地降低了测量成本,节约时间,使用方便,而且应用范围广。

一、3D激光扫描仪测量原理3D激光扫描仪基于激光的单色性、方向性、相干性和高亮度等特性,在注重测量速度和操作简便的同时,保证了测量的综合精度,其测量原理主要分为测距、测角、扫描、定向四方面。

1、测距原理。

激光测距作为激光扫描技术的关键组成部分,对于激光扫描的定位、获取空间三维信息具有十分重要的作用。

目前,测距方法主要有:三角法、脉冲法、相位法。

1)三角测距法。

三角法测距是借助三角形几何关系,求得扫描中心到扫描对象的距离。

激光发射点和CCD接收点位于长度位的高精度基线两端,并与目标反射点构成一个空间平面三角形。

如图1所示,图中,通过激光扫描仪角度传感器可得到发射、入射光线与基线的夹角分别为、,激光扫描仪的轴向自旋转角度,然后以激光发射点为坐标原点,基线方向为X轴正向,以平面内指向目标且垂直于X轴的方向线为Y轴建立测站坐标系。

通过计算可得目标点的三维坐标,然后结合P的三维坐标便可得被测目标的距离S。

《2024年三维激光扫描点云数据处理及应用技术》范文

《2024年三维激光扫描点云数据处理及应用技术》范文

《三维激光扫描点云数据处理及应用技术》篇一一、引言随着科技的不断进步,三维激光扫描技术已成为众多领域中重要的数据获取手段。

通过高精度的激光扫描设备,可以快速获取大量点云数据,这些数据在建筑测量、地形测绘、文物保护、机器人导航等领域有着广泛的应用。

然而,如何有效地处理这些点云数据,以及如何将处理后的数据应用于实际场景中,成为了当前研究的热点问题。

本文将详细介绍三维激光扫描点云数据处理的基本原理、方法及流程,并探讨其在不同领域的应用技术。

二、三维激光扫描点云数据处理基本原理及方法1. 数据获取:利用高精度的三维激光扫描设备,对目标物体或场景进行扫描,获取大量的点云数据。

2. 数据预处理:对原始点云数据进行去噪、补缺、坐标转换等操作,以提高数据的准确性和完整性。

3. 数据配准:通过算法将多个扫描站的数据进行配准,实现整体数据的拼接和融合。

4. 点云处理:包括点云简化、特征提取、分类等操作,以便更好地分析数据的空间信息和几何特征。

5. 数据输出:将处理后的点云数据导出为适用于特定软件的数据格式。

三、三维激光扫描点云数据处理流程1. 数据导入与预处理:将原始点云数据导入到处理软件中,进行去噪、补缺等操作,确保数据的准确性和完整性。

2. 数据配准与拼接:利用算法对多个扫描站的数据进行配准和拼接,实现整体数据的统一。

3. 点云处理与分析:对拼接后的数据进行简化、特征提取和分类等操作,以便更好地分析数据的空间信息和几何特征。

4. 模型构建与优化:根据需求构建三维模型,并进行优化和调整,使模型更加逼真和准确。

5. 数据输出与应用:将处理后的数据导出为适用于特定软件的数据格式,并应用于建筑测量、地形测绘、文物保护、机器人导航等领域。

四、三维激光扫描点云数据处理技术的应用1. 建筑测量与地形测绘:通过高精度的三维激光扫描设备,可以快速获取建筑或地形的点云数据,经过处理后可用于建筑测量、地形测绘等领域。

例如,在古建筑保护中,通过扫描古建筑的外形轮廓,可以精确地获取其空间尺寸和形态特征,为保护和修复工作提供重要的数据支持。

三维激光扫描点云数据处理及应用技术

三维激光扫描点云数据处理及应用技术

三维激光扫描点云数据处理及应用技术三维激光扫描点云数据处理及应用技术引言随着技术的不断进步,三维激光扫描点云数据已经成为获取高精度三维信息的一种重要手段。

该技术广泛应用于建筑、制造、地理信息系统等领域。

然而,如何高效地处理和应用三维激光扫描点云数据仍然是一个具有挑战性的任务。

本文将介绍三维激光扫描点云数据处理的基本原理,并讨论其在不同领域中的应用技术。

一、三维激光扫描点云数据处理的基本原理(一)点云数据的获取三维激光扫描仪通过发射激光束并接收反射回来的光信号来获取目标物体表面的三维点云数据。

激光束发射器会发射一束激光,然后记录激光束投射到目标物体上后反射回来的光信号的时间和方向信息。

通过对这些信息进行处理,可以得到目标物体表面的三维点云数据。

(二)点云数据的处理三维激光扫描点云数据处理主要包括数据去噪、配准、重建和分析等步骤。

1. 数据去噪:点云数据通常会受到传感器噪声、环境干扰等因素的影响,导致数据中存在噪声点。

数据去噪的目的是将噪声点剔除,以得到更准确的目标物体表面的点云数据。

常用的去噪算法包括法向量法、曲率法和高斯滤波法等。

2. 配准:由于激光扫描仪的位置和姿态可能会发生变化,所以点云数据通常需要进行多个视角的配准,以获得整个目标物体的完整三维点云数据。

配准指的是将不同位置和姿态的点云数据对齐,使其在同一个坐标系下。

常用的配准方法包括迭代最近点(ICP)算法、特征匹配算法等。

3. 重建:重建是根据点云数据恢复目标物体的表面形状和结构。

根据点云数据的密度和形状特征,可以使用不同的重建算法,如基于体素的重建方法、基于多边形网格的重建方法等。

4. 分析:点云数据分析是对点云数据进行进一步处理和分析,以获取更多的信息。

例如,通过点云数据可以计算目标物体的表面曲率、法向量、体积等特征。

二、三维激光扫描点云数据处理的应用技术(一)建筑领域三维激光扫描点云数据在建筑领域具有广泛的应用。

它可以被用于建筑物的精确测量、室内外空间的三维模型构建、建筑物的结构分析等。

输电线路三维激光扫描点云数据处理及应用

输电线路三维激光扫描点云数据处理及应用

输电线路三维激光扫描点云数据处理及应用摘要:文章以某地区电网输电线路三维激光扫描点云数据处理为研究对象,根据输电线路相关运行规范,对现场激光扫描点云数据进行细化分类,提升三维数据分类建模自动化水平,对影响输电线路安全运行的主要因素进行了预判和分析。

点云数据处理研究将为地区电网的数字化、信息化奠定良好的基础。

关键词:输电线路;激光雷达技术;3D点云数据模型;树障分析0引言传统的输电线路和变电站的人工巡检作业模式已不能满足高效电网巡检工作的要求。

因此,为提高电网运行维护水平,保障电网安全可靠运行,需要对电线杆塔进行精细检查。

目前,我国架空输电线路树障信息采集方法以人工树障隐患采集为主。

传统的树障隐患采集方法主要依靠人工目视检查,工作强度高,具体故障位置难以确定,效率低下。

激光雷达(LightDetectionandRanging,LiDAR)技术利用激光实现回波测距和定向,将激光测距、差分定位和姿态测量相结合,可以实现对目标的识别。

激光雷达技术在电力行业的应用逐步深入,取得了一定的研究成果[1]。

文章采用激光雷达技术对输电线路的激光点云进行处理,根据输电线路相关运行规范要求,获取现场激光点云数据,然后进行数据处理和快速分类,根据线路安全操作规程规定的安全距离,对树障分析结果进行讨论,以提高树障隐患分析的准确性,减少现场工作,提高工作效率。

1相关概念1.1激光雷达技术激光雷达(LiDAR)技术需要发射激光脉冲,接收返回的脉冲信号,进行处理,得到目标的三维空间信息。

机载激光雷达对地物进行扫描,可以获取地物的空间信息,快速获取地表信息,无须大量地面控制点。

文章结合前人的研究和生产实践,对机载激光雷达数据处理及输电线路检测中应用的关键技术进行深入探讨,以提高激光雷达技术在输电线路检测中的应用效率。

1.2点云数据点云数据是得到识别目标的三维坐标后形成的坐标点集合,点云数据可以由激光3D扫描仪采集,也可以从2D图像的3D重建中得到,还可以通过3D模型计算得到。

三维激光扫描测绘中的数据处理方法

三维激光扫描测绘中的数据处理方法

三维激光扫描测绘中的数据处理方法三维激光扫描测绘是一种先进的测绘技术,可以快速、准确地获取地形地貌等信息。

然而,随着扫描数据量的增加和数据质量要求的提高,对数据处理方法的研究变得尤为重要。

本文将探讨三维激光扫描测绘中的数据处理方法,主要包括数据滤波、曲面拟合和点云配准等方面。

1. 数据滤波数据滤波是三维激光扫描测绘数据处理的关键步骤之一。

由于扫描过程中可能受到环境干扰和仪器误差等影响,采集到的点云数据中常常存在噪声和异常值。

因此,需利用滤波方法处理原始数据,提高数据质量。

常用的数据滤波方法包括高斯滤波和中值滤波。

高斯滤波通过对每个点及其邻域内的点进行权重求和,降低噪声的影响。

而中值滤波则通过对每个点邻域内的值进行排序,将中间值作为滤波结果。

这两种方法各有优缺点,根据实际需求选择合适的滤波方法。

2. 曲面拟合曲面拟合是三维激光扫描测绘中常用的数据处理方法之一,用于将离散的点云数据拟合成平滑的曲面模型。

曲面拟合可以用于建立数字地形模型、地质模型等。

常用的曲面拟合方法有最小二乘法和贝叶斯拟合。

最小二乘法通过最小化点到拟合曲面的距离平方和,求得最佳拟合曲面。

贝叶斯拟合则引入先验信息和正则化项,使拟合结果更加稳定。

在选择拟合方法时,需要考虑拟合精度、计算效率等因素。

3. 点云配准点云配准是将多个扫描数据集对齐的过程,用于综合不同位置、角度下获取的点云数据,构建完整的三维模型。

点云配准可以通过特征匹配、最小二乘法等方法实现。

特征匹配是一种常用的点云配准方法,通过提取点云中的特征点,并对特征点进行匹配,找到相对应的点对。

根据点对之间的对应关系,可以计算出变换矩阵,实现点云的配准。

最小二乘法则通过最小化点云间的距离平方和,求得最佳变换矩阵。

在点云配准过程中,需考虑特征提取的准确性、匹配的可靠性等因素。

4. 数据处理工具为了方便进行数据处理,开发了一系列的三维激光扫描测绘数据处理工具。

这些工具通过提供图形化界面和强大的算法库,实现了各种数据处理方法的自动化和高效化。

使用激光扫描仪进行三维建模的步骤与技巧

使用激光扫描仪进行三维建模的步骤与技巧

使用激光扫描仪进行三维建模的步骤与技巧近年来,随着科技的不断发展,激光扫描仪在多个领域展现出了其强大的功能与广阔的应用前景。

激光扫描仪能够通过高精度的测量方法获取目标物体的三维形状,为三维建模提供了有力的工具。

然而,如何正确并高效地使用激光扫描仪进行三维建模仍然是一个值得探讨的话题。

本文将从使用激光扫描仪的步骤、数据处理及常见问题解决技巧等方面进行论述,希望能给读者带来一些启发。

一、激光扫描仪的基本步骤1. 准备工作:在进行激光扫描仪的使用之前,首先需要对目标物体进行充分的准备工作。

例如,清理目标物体的表面,确保表面光洁无杂物,并进行必要的标记,以便扫描时能够准确识别需要测量的区域。

2. 硬件设置:在进行扫描之前,需要确保激光扫描仪的硬件设置正确。

例如,调整扫描仪的分辨率和扫描速度,选择适当的扫描模式,以及校准扫描仪的位置和姿态,以保证测量的准确性和完整性。

3. 扫描过程:一旦准备工作和硬件设置完成,就可以开始进行扫描了。

扫描过程中,激光扫描仪会通过发射一束激光并记录其反射回来的时间和强度来获取目标物体的三维信息。

通常情况下,需要从不同角度和位置进行多次扫描,以确保获取全面的数据。

4. 数据处理:在扫描完成后,通过将扫描仪获取的原始数据进行处理,可以得到清晰、准确的三维模型。

数据处理的过程通常包括点云数据的重建、噪声滤波、网格生成等环节。

其中,点云重建是一个关键步骤,它将散乱的点云数据进行拼接和优化,生成更加完整和连续的几何体。

5. 后期修饰:最后,通过对生成的三维模型进行后期修饰,可以使模型更加真实和美观。

常见的后期处理包括纹理映射、材质贴图、灯光调整等。

这些处理可以使三维模型在展示和应用中更加出色和逼真。

二、数据处理的技巧1. 噪声滤波:由于激光扫描仪的测量过程中会受到一些误差的影响,因此在进行数据处理时,需要对点云数据进行噪声滤波。

常见的滤波方法包括统计学滤波、高斯滤波、曲面滤波等。

根据具体情况选择合适的滤波方法,可以有效提高数据的质量和模型的精度。

三维激光扫描仪解决方案

三维激光扫描仪解决方案

企业成长历程
2010年6月,公司注册成立,同年底 TW-Z100原理样机开发成功 2011年10月,TW-Z100工程样机开发成功,荣获“中国国际工业博览会创新奖” 2011年7月,创业项目获得“科技部科技型中小企业创新基金” 2011年10月,入选杭州市“雏鹰计划”企业 2012年10月,“高精度激光三维扫描仪产品开发”列入萧山区科技计划重大项目,项目编号:2012118 2012年10月,TW-Z100产品设计定型,实现产品销售突破 2013年7月,“长距离激光三维扫描仪产品开发”列入浙江省重大科技项目,项目编号:2013C01153 2013年10月,承担国家重大科学仪器设备开发专项“机载双频激光雷达产品开发和应用”项目产品工程化开发任务 2013年12月,通过ISO9000:2008质量体系认证 2014年10月,参加第三届中国创新创业大赛,荣获“优秀企业”奖 2014年12月,建立了地基产品小批量生产线
高效便捷全景三维点云数据分析处理26283dtwsmas专业的隧道点云分析软件提供全面的数字化隧道工程测量解决方案软件功能模块扫描控制模块点云拼接与预处理模块点云可视化模块点云数据处理系统特色与主要功能地下作业高效快捷海量点云数据的快速加载和索引建立快速完整全方位采集数据大幅度提高其工作效率点云模型的重建可视化管理点云模型支持各项数据分析方法减少不必要的劳动强度点云与cad数据分析对cad模型的导入与模型建立分析施工成果与设计指标的差距各项分析指标保存输出模型构建模块量测分析模块对比分析模块工程土方量计算剖切面分析变形分析超欠挖分析净空测量点云图设计模型构建模型断面线断面分析超欠挖分析2528顾客至上质量第一管理规范持续发展不断提高产品测量精
公司系列产品是在其中科院知识创新工程、国家“探月工程”和“863”科技成果基础上开发成功的。

3D激光扫描仪的使用技巧与数据处理流程

3D激光扫描仪的使用技巧与数据处理流程

3D激光扫描仪的使用技巧与数据处理流程近年来,随着科技的飞速发展,3D激光扫描技术在各个领域得到广泛应用。

3D激光扫描仪作为一种高精度、高效率的测量工具,被广泛用于建筑、文化遗产保护、工业设计等多个领域。

本文将介绍3D激光扫描仪的使用技巧与数据处理流程。

一、3D激光扫描仪的使用技巧1. 确定扫描对象:在使用3D激光扫描仪之前,首先需要确定扫描的对象。

根据需要进行扫描的目标,可选择不同类型的扫描仪。

例如,需要测量建筑物内部结构的,可以选择手持式扫描仪;需要扫描大型建筑物或场景的,可以选择移动式扫描仪。

2. 调整扫描仪参数:根据扫描对象的特点,调整激光扫描仪的参数是关键。

其中包括激光束的频率、扫描角度、扫描距离等参数。

合理的参数设置可以保证扫描结果的准确度和精度。

3. 扫描仪位置选择:为了获得全面的扫描数据,选择合适的扫描仪位置是必要的。

通常情况下,选择高处或者中心位置进行扫描,可以获得更全面、更准确的扫描结果。

4. 点云数据捕获:通过激光扫描仪进行扫描后,会得到大量的点云数据。

在捕获点云数据时,需要保持扫描仪的稳定,并尽可能避免遮挡物的存在。

捕获的数据越完整,后续数据处理的效果就越好。

二、3D激光扫描仪的数据处理流程1. 数据导入与预处理:将扫描仪获取的点云数据导入到数据处理软件中。

在导入之前,需要进行预处理,包括数据格式转换、数据校正等操作,确保数据的准确性。

2. 数据对齐与配准:在导入后,点云数据需要进行对齐和配准。

对齐是指将不同角度或位置扫描的点云数据合成为一个整体;配准是指将多个扫描仪扫描的点云数据进行匹配,使其在同一坐标系下。

3. 整理与清理:扫描仪获取的点云数据通常会存在一些无关的噪点或异常点。

在数据处理过程中,需要对这些数据进行整理与清理,以提高数据的质量。

4. 表面重建与模型生成:在清理完点云数据后,可以利用数据处理软件进行表面重建与模型生成。

通过追踪点云数据之间的边界,生成三维模型,以便后续分析和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描过程
整个系统由地面三维激光扫描仪、 后处理软件、电源以及附属设备构成。 采用非接触式高速激光测量方式, 获取几何图形数据和影像数据。
地面激光扫描仪系统组成与坐标系
扫描过程
放置仪器并启动扫描完一站, Fra bibliotek查数据是否 遗漏

单独 扫描 补点

设置高等分辨率 继续下一个站点的 扫描,直到完成所 有站点
1 库区勘察:了解整个水封洞库内部概况,初步划分扫描作业面
站点布置:选择在平坦、稳定的底板上;最大范围地扫描到目标场景 2
3 标靶布设:依照划分,将标靶放在预定的地方,保证标靶摆放平稳
绘制草图:绘制结构草图、记录信息,标明扫描站点和标靶位置等
4
扫描过程
将脚架放置在事先规划的扫描站
点上,仪器脚架安置一定要稳固(必 要时可以使用磁性表座);对中、整 平后,将扫描仪架设在三脚架上。
开始扫描
扫描结束
点云数据预处理
将扫描到的数据导入仪器自带的 后处理系统中,对所有站点扫描 数据进行坐标变换,使其位于同 一坐标系内
点云配准 点云去噪
在不影响曲面重构和保 持一定精度的情况下, 对数据进行精简,从而 减少数据的处理量,提 高处理速度。
除去点云数据中由于某 些环境因素的影响,比 如行人和被测实体表面 存在的缺陷等
数据精简
数据导出
点云数据预处理
导出数据
1.数据量大
2.排列不规律
3.一串数字,不直观
截取数据的一小部分
原始点云图
局部点云图 点云整体图
计算

将地下水封岩洞库模型从下至上依次划分为 n 个小棱台体 , 每个棱台的高 度为 1cm

根据投影法做切片,对每个切片内的点云数据进行排序、粗差剔除、滤波、

室外型(长距离)
按载体:
机载

车载
地面
手持型
按测量方式: 基于脉冲式 基于相位差 基于三角测距原理
一般基于相位差原理的三维激光扫描仪测程较短,只有百米左右。而基 于脉冲式原理的三维激光扫描仪测程较长,测程最远的可达 6 公里。
8.三维激光扫描仪分类

脉冲式测量原理: 通过测量激光脉冲从发出经被测物体表面再返回所用
项目评估阶段

设计输入

系统设计方案的提出
一、设计输入
1.大容量计量研究背景
2.现有储油方式
3.地下水封洞库密封原理 4.地下水封洞库容量计量标准 5.大容量计量研究现状 6.三维激光扫描技术 7.三维激光扫描原理 8.三维激光扫描仪分类
9.技术要求
1.大容量计量应用背景

石油作为重要的战略物资,与一个国家的国计民生有着密切的联系; 石油储运工程中容积计量问题是关于储油洞穴的容积计量; 在战略石油储备等大型储运工程中,收发量大,贸易双方货值价格高,如果 计量检测不准确,将给国家和社会造成巨大损失;
精简、计算横截面面积(核心)

同时考虑洞内附件的体积,进而计算总的容量
地下水封洞库容量计算模型
计算

水封岩洞库的横截面轮廓线可以看作是由 n 个有序排列的点构成,横截面 可以看作是由 n 个依次相邻的小三角形叠加而成(理想状态) 同时计算附件体积

地下水封洞库横水平截面图(理想)
实际点云分布情况
结束
地下水封石油洞库密封原理
4.地下水封洞库容量计量标准
地下水封岩洞库: 1. 深度达 1000 米以上 2. 墙壁形状不规则,属特大异形体 容量无法通过常规计量方法得到,因此容积测量比较困难。 虽然各国在地下水封岩洞库容量计量方面都作了相应的研究,但国内外尚未 形成统一的计量标准。
5.大容量计量研究现状
2. 测量精度:± 5mm
3. 扫描距离: 0.3m~187m
4. 点云最小间隔: 0.6mm
5. 最大视场角: 360 °× 320 ° 6. 最大扫描速率: 1016000 点 /s 7. 测量位置必须保证仪器工作稳定
徕卡三维激光扫描仪HDS7000
相关文献
[1] 廉育英主编 . 容量计量技术 [M]. 北京:中国计量出版社, 2006 [2] 何建邦,励惠国 . 地下水封石油洞库的计量方法 [J]. 勘察技术, 1979 [3] 吕 宏 权 . 黄岛 50 万 方 地下液化石油气水封洞库库容测量 . 隧道建设,
的时间,从而计算目标物体与测站之间的距离
公式:

相位式测量原理: 是主动发射一束不间断的整数波长的激光,通过计算
发射激光波长与从被测物体表面反射回来的激光波长的相位差,进而计算 和记录目标物体与测站之间的距离 公式: S 1 2 c 2f
9.技术要求
1. 选用徕卡 HDS7000 相位式三维激光扫描仪
几何测量法
声纳测 量仪器
曲面拟合集群 式测量系统
6.三维激光扫描技术
▲ ▲
一种快速、准确地大容量计量方法; 一种先进的全自动高精度立体扫描技术,又称为“实景复制技术”,可用于物 体表面非接触空间信息的获取;

三维激光扫描仪具有扫描速度快、实时性、信息量大、自动化、精度高等优势;
三 维 扫 描 仪 应 用 范 围
2016
二、系统设计方案的提出
1.扫描前的准备工作
2.扫描过程 3.点云数据预处理
4.计算
二、系统设计方案的提出
扫描前的准备工作
库区勘察 扫描站点布设 标靶布设 绘制草图 仪器架设 场景拍照
扫描
扫描范围确定 扫描参数设置 扫描
标靶坐标提取
点云配准 点云数据预处理 点云去噪 数据精简 数据导出
扫描前的准备工作
7.三维激光扫描原理

利用激光测距的原理,通过记录被测物体表面大量的密集的点的三维坐标、 反射率和纹理等信息,获取大量的点云数据,可快速复建出被测目标的三 维模型及线、面、体等各种图件数据。
立式罐
立式罐内表面空间点云数据分布图
立式罐外表面空间点云数据分布图
8.三维激光扫描仪分类

按用途:
室内型(短距离)
立式罐
卧式罐
2.现有储油方式

我国现有的石油储备基地采用地面罐储存和地下水封洞库两种形式 地面罐:立式圆桶形储罐,卧式圆桶形储罐等形式 地下水封洞库:自然水封洞库,人工水封洞库,以及两者结合的
地 下 水 封 石 油 洞 库 效 果 图


3.地下水封洞库密封原理
在地下水位以下的人工凿岩洞内,利用“水封” 的作用储存油品,由于岩壁中充满地下水的静压力 大于储油静压力,油品始终被封存在有岩壁和裂隙 水组成的一个封闭的空间里,使油品不会渗透出去。
相关文档
最新文档