地下水资源评价 (1)
水工地质6(地下水资源评价)

三、贮存量 贮存量:地下水循环中,贮存在含水层中的水量。 分为,容积贮存量;弹性贮存量。 贮存量又可按是否参与天然条件下的水的转换分: (一)可变贮存量(又称调节储量) 可变贮存量:指潜水含水层最高水位与最低水位之 间的重力水体积。 (二)不变贮存量 不变贮存量(永久储量或静储量):指在可变贮存 量临界面以下的不变重力水量。
(二)开采补给量 开采补给量(补充补给量):指开采条件下,除天
然补给量外,尚能夺取的额外补给量。
常见的有下述几种情况。
1.夺取地表水的补充量。
2.夺取相邻含水层的补充量。 3.夺取开采地段以外的补充量。 4.夺取消耗补充量。
(三)人工补给量
人工回灌补
灌溉水渗漏补给
灌溉水渗漏补给分为两种情况:
渠系渗漏 田间渗漏
2.地下水流出量:
地下水的流出量可用达西公式计算。
3.泉水溢出量:
用长期观测资料或现场调查统计资料确定。
(二)人为开采量的计算
包括工业自备井,灌溉井,生活水源井。
下面介绍灌溉井的开采量统计。 单并实测流量法: Qu=(n1q1十n2q2十…十niqi)ηw 式中:Qu——年总开采量
n1、n2…ni——不同泵型年配套井数
Qd d Qdr 或
Qw w Qwr
Qd、Qw——分别为渠灌和井灌补给量,m3/a; Β d、β w——分别为渠灌和井灌入渗补给系数; Qdr、Qwr——分别为渠灌和井灌水量,m3/a。
4.侧向补给量:
Q1 K I A
式中:K——含水层渗透系数,m/d; I——水力坡度; A——垂直于水流剖面面积,m2。
q1、q2…qi——不同泵型单井年开采量
ηw ——灌溉井利用率。
水文地质勘查:地下水资源量评价——地下水允许开采量分级、评价

孔抽水试验、地下水动态观测和 实验室测试等资料,计算水文地 质参数。选择均衡法、解析法、 数值法等一种及以上适当的方法, 结合开采方案,对水源地的允许 开采量及尚难利用的资源量进行 初步的计算。对泉源水源地,则 应根据它的补给、径流、排泄条 件,通过数理统计的方法,找出 降水量与泉水流量之间的关系, 初步确定泉水的允许开采量或尚 难利用的资源量。在水文地质条 件复杂或是需水量明显小于允许 开采量的情况下,考虑了补给资 源、储存资源和允许误差问题, 根据群井或单井抽水试验出水量 与降深关系曲线适当外推的出水
4.6地下水允许开采量的分级、 地下水资源量评价
前课回顾
上次课我们讲述了地下水允许开采量确定方法中的水均衡法,要 求大家重点掌握如何用水均衡法确定地下水的允许开采量。
课程引入
在学习了地下水允许开采量计算的相关知识后,本次课我们继续 学习地下水允许开采量的分级和地下水资源量的评价。
下面开始讲述:
三、地下水允许开采量的计算与分级
(二)地下水允许开采量的分级
为根据不同目的和具体水文地质条件选择适当的计算评价方法,以得到不同精 度的地下水允许开采量,便于地下水的开发利用,有必要对地下水允许开采量进行 分级。
地下水允许开采量相当于固体矿产的资源/储量,由全国矿产储量委员会统一审 批。
1.地下水允许开采量的分级方案 全国矿产储量委员会制定了《地下水资源分类分级》,并于1994年由国家技术 监督局颁布为国家标准(GB 15218-1994)。在该标准中,根据勘查研究程度的不同, 将地下水能利用资源即地下水的允许开采量划分为5级,分别用大写的英文“A、B、 C、D、E”5个字符代表;尚难利用的资源可分为3级,分别用英文字符“Cd、Dd、Ed” 代表。地下水资源分分级
地下水资源评价(全套教学课件)

06
案例分析与实践操作
典型地区地下水资源评价案例分析
典型地区选择
选择具有代表性的地区,如华 北平原、长江三角洲等,进行
地下水资源评价案例分析。
评价结果
根据评价结果,分析地下水资 源的数量、质量、开发利用潜 力及存在的问题。
评价方法
采用多种评价方法,如水文地 质勘察、地下水动态监测、数 值模拟等,对地下水资源进行 评价。
05
地下水资源保护与管理
地下水资源保护的措施与手段
立法保护
制定严格的地下水资源保护法律, 明确规定开采、使用和污染地下
水的行为将受到的法律制裁。
规划管理
制定科学的地下水资源开发利用 规划,合理安排开采布局和开采 强度,避免过度开采和滥用水资
源。
污染控制
采取有效措施控制地下水污染源, 包括工业废水、农业化肥和农药、 城市污水等,防止对地下水造成
检测方法
包括化学分析、光谱分析、色谱分析、 电导率测量等,用于测定地下水中的 各种成分。
地下水水质的评价与分析
评价方法
根据地下水水质指标与标准的对 比,评估地下水的水质等级和安
全性。
分析方法
对地下水水质数据的统计分析,识 别主要污染源和污染途径,预测地 下水水质的变化趋势。
结果应用
根据地下水水质评价结果,制定相 应的保护和管理措施,包括水源地 的保护、污染源的控制、地下水资 源的可持续利用等。
案例讨论
组织学生进行案例讨论,分享实践操 作的经验和心得,提高地下水资源评 价的能力和水平。
THANKS
感谢观看
和谐性原则要求人类活动与自然环境相互协调,维护生态平衡。
地下水资源开发利用现状与问题
现状
地下水资源评价(全套教学课件)

区域地下水资源评价对于合理开发利用地下水资源、保护生态环境、促 进区域经济发展等方面具有重要意义,是实现水资源可持续利用的重要 手段之一。
城市地下水资源评价
城市地下水资源评价概述
城市地下水资源评价是对城市区域内地下水资源的数量、质量和可持续利用能力进行评估 的过程,目的是为城市供水、防洪减灾和生态环境保护提供科学依据。
城市地下水资源评价方法
城市地下水资源评价的方法包括水文地质勘察、地下水动态监测、水质监测等,通过这些 方法可以了解城市地下水资源的分布、储量、质量和可持续利用能力。
城市地下水资源评价意义
城市地下水资源评价对于保障城市供水安全、促进城市可持续发展等方面具有重要意义, 是实现城市水资源可持续利用的重要手段之一。
地下水资源评价(全套教学课件)
目录
• 地下水资源评价概述 • 地下水资源评价方法 • 地下水资源评价实践 • 地下水资源管理对策与建议 • 地下水资源评价案例分析
01 地下水资源评价概述
地下水资源的概念与特点
地下水资源是指赋存于地下岩层中的重力水,具有动态变化性、不可再生性和有限 性等特点。
地下水资源在地球水循环中发挥着重要作用,是工农业和生活用水的重要来源之一。
法律和政策依据
地下水资源评价应符合国家法 律法规和政策要求,遵循相关
标准和规范。
02 地下水资源评价方法
地下水资源量评价
地下水资源量评价是地下水资源评价 的重要环节,主要通过水文地质勘察、 地下水动态观测、地下水开采试验等 方法进行。
地下水资源量评价需要考虑含水层的 富水性、地下水补给量、地下水排泄 条件等因素,同时还需要考虑不同地 区的水文地质条件差异。
地下水环境影响评价
地下水资源量评价ppt课件

m值确定方法:
1、可根据渠系有效利用系数η确定 2、根据渠系渗漏补给量计算 3、利用渗流理论计算公式确定
六、水文地质参数的率定
渗透系数K值主要影响因素
主要是岩性及其结构特征
确定渗透系数K值的方法:
八、平原区地下水资源量计算
库塘渗漏补给量
1、当位于平原区的水库、湖泊、塘坝等蓄 水体的水位高于岸边地下水水位时,库塘 等蓄水体渗漏补给岸边地下水 2、计算方法有以下两种: (1)地下水动力学法 (2)出入库塘水量平衡法
八、平原区地下水资源量计算
渠系渗漏补给量
1、渠系水位一般均高于其附近的地下水水 位,故渠系水一般均补给地下水 2、计算方法: (1)地下水动力学法(与上述方法相同) (2)渠系渗漏补给系数法
确定α值的方法主要有:
1、地下水水位动态资料计算法 2、地中渗透仪测定法 3、试验区水均衡观测资料分析法
六、水文地质参数的率定
潜水蒸发系数C值的主要影响因素
水面蒸发量E0、包气带岩性、结构、地下水埋深Z 和植被状况
C值确定方法:
1、可利用地下水水位动态观测资料通过潜水蒸发 经验公式拟合分析计算 2、根据水均衡试验场地中渗透仪对不同岩性、地 下水埋深、植被条件下潜水蒸发量E的测试资料与 相应水面蒸发量E0计算潜水蒸发系数C
开采条件 补给条件 径流条件 排泄条件
一、地下水资源量评价的目的、 内容及相关基本概念
地下水资源量评价主要成果
1、计算分区各项补给量、排泄量、地下水 蓄变量、地下水资源量及地下水可开采量 2、总补给量、地下水资源量及地下水可开 采量的空间分布特征 3、文字报告
地下水资源评价

地下水资源评价(groundwater resource eveluation)通过供水水文地质勘察,评定地下水中可供生产和生活开发利用的水量和水质的方法。
水量的评价要按照符合地下水的补给、径流、排泄条件的合理的地下水资源分类法进行。
水质的评价根据水的用途按不同的用水标准确定。
地下水资源分类法地下水资源分类有一分法(开采量)、二分法(天然资源和开采资源)、三分法(储存量、补给量和开采量)和四分法(静储量、动储量、调节储量和开采储量)等。
在中国,普遍使用的是储存量、补给量和开采量的三分法。
储存量储存在含水层中的重力水的总量(以体积计)。
储存量按埋藏条件分为潜水储存量和承压水储存量。
潜水储存量是给水度与含水层体积的乘积;承压水储存量是释水系数、含水层面积与水头降低值的乘积。
滞留于含水层中的重力水不是静止的,随着补给量的周期变化,储存量也相应地呈周期变化,但其变化在有些地区是十分迟缓的。
储存量的大小还与地下水的排泄量和地区的排泄基准面有关,在排泄基准面以下的储存量,在天然状态下即使没有补给也能长期保存。
对这一部分储存量,有人称之为永久储存量。
当含水层的补给大于排泄时,储存量增加,直至溢出地表使土地沼泽化;当含水层的补给小于排泄时,储存量减少,直至滞留或枯竭。
只有当含水层的补给和排泄保持动态平衡时,储存量才能保持常量。
对补给和排泄而言,储存量在含水层中起库容的调节作用。
补给量通过不同途径进入含水层的水量(以单位时间体积计)。
补给量按补给性质分为天然补给量和开采补给量,按补给方向分有垂直补给量和水平补给量。
对含水层的补给,常见的途径有:地下水径流的流入、降水的渗入、地表水的渗入、相邻含水层的补给和人工补给等。
可见补给量与气象、水文和人类活动的关系十分密切。
补给途径可以是天然条件下发生的,亦可以是在开采条件下诱发的。
天然补给量与开采补给量的主要区别在于后者是依靠人类的生产活动夺取的新的补给量。
补给量进入含水层后,一部分转化为储存量,滞留在含水层中;另一部分成为排泄量排出。
水文地质学地下水资源评价

第11页/共59页
3.2试验外推法
类型 直线型 抛物线型 幂函数型 对数型
野外常见的 Q—S 曲线
表达式
说明
Q qs s AQ BQ 2 Q As B
q 为单位涌水量(m3/dm) 在s / Q Q 坐标系中为直线。A、B 为待定系数。 在 1gQ—1gs 坐标系内为直线。
Q A B lg s 在 Q—lgs 坐标系中为直线。
单位储存量法
第5页/共59页
开采试验法-第二种情况
第6页/共59页
近似直线下降
单位储存量法
• 用开采情况下抽水稳定、水位下降较均匀时,任
意时段内的水量均衡:
Q抽
Q 补
F
S t
• 式 中 : F 为 水 位 下 降 1m 时 储 存 量 的 减 少 量 , 简 称 单 位 储 存 量
(m3/m);S 为Δt时段的水位降深(m)。
降。因此,有保证的地下水可开采资源量应控制在 2600-2700 m3/d 之内。
水位恢复计算表
时段(月 水位恢复值
日)
(m)
s (m / d ) t
平均抽水 量(m3/d)
采用公式
7.2-7.6 19.36
3.87
0
Q补
F
s t
补给量 (m3/d)
2798
7.21-7.26 平均值
19.96
3.33
25880 23 5 253
1841.2
m3 / d
t补 rT补 0.7 112 88.6 日
•
求
补
给量 Q补
。
(F
分' st析 Q当抽 )
地T雨多(年2588水0 文1气1.7象
地下水资源评价原则与方法

地下水资源评价原则与方法一、评价原则。
1. 可持续性原则。
这可持续性可重要啦!就像我们过日子,不能今天把钱都花光,明天就没饭吃了一样。
对于地下水资源,我们得想着以后呢。
不能一下子把地下水抽得太多,要保证它能一直为我们服务。
比如说,在干旱地区,如果过度开采地下水,以后可能就没水可用啦,那可就惨咯。
所以在评价的时候,得看看开采量是不是在地下水可以持续供应的范围内,要给地下水留条“活路”呀。
2. 系统性原则。
地下水可不是孤立存在的哦。
它就像一个大家庭里的一员,和地表水、土壤水还有大气降水都有着千丝万缕的联系呢。
就好比一家人,互相影响、互相帮忙。
所以在评价地下水资源的时候,不能只盯着地下水本身,得把它周围的这些“亲戚”都考虑进去。
比如说,地表水的多少可能会影响到地下水的补给,如果只看地下水,就可能得出错误的结论。
3. 科学性原则。
这科学性就像是我们做事得讲道理一样。
评价地下水资源得用科学的方法,不能瞎猜。
要通过实地调查、测量数据这些靠谱的方式来了解地下水的情况。
比如说,要知道地下水的储量,就得用专业的仪器去测量它的水位、水量,然后根据科学的公式去计算。
可不能像小孩子过家家,随便说个数就当是地下水资源量啦。
4. 实用性原则。
这个原则就是要让我们的评价有用处呀。
我们评价地下水资源不是为了好玩儿,而是为了能够在实际中对地下水进行合理的开发利用和保护。
如果评价出来的结果对实际的水资源管理没有帮助,那可就是白费劲啦。
就像我们做一件衣服,得能穿出去才行,不能做个只能看不能用的东西。
二、评价方法。
1. 水量均衡法。
这就像是算收支账一样。
把地下水的收入(比如降水入渗补给、地表水补给等)和支出(像人工开采、蒸发排泄等)都算清楚。
如果收入比支出多,那地下水可能就比较充足;要是支出太多,那可能就有问题啦。
就像我们每个月的工资和花销一样,得算明白才能知道自己的经济状况呢。
不过这个方法也有点麻烦,要把所有的收支项目都找全可不容易。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下水资源评价地下水水量评价:是对地下水源地或某一地区、某个含水层的补给量、储存量,允许开采量进行计算的基础上,对所用计算方法的适宜性、水文地质参数的可靠性、资源计算结果精度、开采资源保证程度所做出的全面评价。
水资源调查评价工作,就是要回答一个地区或流域有多少水量(包括地表水、地下水的地区分布、时间变化、质量标准、可靠程度)。
同时还要研究社会经济发展需要多少水量(各种用水的现状,近期和远景预测),以及供需平衡存在的问题。
地下水资源评价方法:用于确定地下水资源数量的方法很多,这里主要介绍一下4种评价方法:开采—试验法、补给疏干法、水文分析法、开采强度法。
1、开采—试验法在地下水的非补给期(或枯水期)按接近取水工程设计的开采条件进行较长时间的抽水试验,然后根据抽水量、水位降深动态或开采条件下的水量均衡方程求解出水源地枯季补给量,并以此量作为水源地的允许开采量。
1、1适用条件在水文地质条件复杂地区,如果一时很难查清补给条件而又急需做出评价是,则可打勘探开采孔,并按开采条件(开采降深和开采量)进行抽水试验,根据试验结果可以直接评价开采量,这种评价方法,对潜水或承压水,对新水源地或旧水源地扩建都能适用。
对于含水性不均匀的岩溶地区最为常用。
主要适用于中小型水源地。
该方法的缺点是不能做区域性的水资源评价。
1、2计算方法完全按开采条件抽水,最好从旱季开始,延续一至数月,从抽水到恢复水位进行全面贯彻,结果可能出现两种情形:(1)稳定状态:在长期抽水过程中,如果水位达到设计降深并趋于稳定状态,抽水量大于或等于需水量;抽停后,水位又能较快恢复到原始水位。
则说明抽水量小于开采条件下的补给量,按需水量开采是有补给保证的,这时,实际的抽水量就是要求的开采量。
(2)非稳定状态:如果水位达到设计降深并不稳定,继续下降;停抽后,虽然水位有所恢复,但始终达不到原始水位,测说明抽水量已经超过开采条件下的补给量,按需水量开采是没有保证的,这时,可按下列方法评价开采量:在水位持续下降过程中,只有大部分漏斗开始等幅下降,降速大小同抽水量成比例,则任意时段的水量均衡应满足下式:μF?S=(Q抽−Q补)?tμF—单位储存量,m3?S—?t时段的水位降,mQ抽—平均抽水量m3d⁄Q补—开采条件下的补给量m3d⁄由此得出:Q 抽=Q补+μF?S?t其中抽水量有两部分组成:一是开采条件下的补给量;二是含水层中消耗的储存量。
在抽水过程中,如果抽水量小于补给量,则水位应发生等幅回升,这时?S?t应取负号,故,Q 补=Q抽+μF?S?t其中μF取已求的平均值;?S?t为等幅回升速度。
停抽时,Q抽=0,由此得Q 补=μF?S?t根据以上所求的Q补,结合水文地质条件和需水量即可评价开采量,但由此求得的Q补评价是偏保守的,因为,旱季抽水只能确定一年中最小的补给量,所以Q补用年平均补给量或多年平均补给量进行评价。
1、3 实例某水源地位于基岩裂隙水的富水地段,在面积内打了12个钻孔,最大孔距不超过300m。
在其中的三个孔中进行了四个多月的开采抽水试验,观测数据见表1—1。
表1—1这些数据表明,在水位急速下降阶段结束后,开始等幅持续下降,停抽或暂时中断抽水以及抽水量减少时,都发现水位有等幅回升现象。
这说明抽水量大于补给量。
利用表1中的资料可列出五个方程式:①3169=Q补+μF②2773=Q补+μF③3262=Q补+μF④3071=Q补+μF⑤2804=Q补+μF为了全面考虑,把五个方程搭配联解,求出Q补和μF值,结果见表1—2。
表1—2从计算结果看,由不同时段组合所求出的补给量相差不大,但μF值变化较大,可能是由于裂隙发育不均,降落漏斗扩展速度不匀所致。
,数据及计算结果见表1—3。
再利用水位恢复资料进行复核Q补表1—3从以上计算结果看,该水源地旱季的补给量在~m3/d之间,以此作为开采量是完全有保证的。
若不能满足需水量的要求,还可以利用年内暂时储存量,适当增大允许开采量。
但还应考虑总的降深大小及评价开采后对环境的影响。
2、补给疏干法根据水均衡的原理和以丰补欠的原则,把丰水期多余的地下水补给量(即大于开采量的那一部分补给量)平均分配到枯水期进行开采的资源评价方法。
2、1适用条件补偿疏干法适用于蓄水范围不大,仅有季节性补给,且有一定储存量,能够其调节作用的季节性的调节水源地。
在半干旱地区,降雨季节性分布极不均匀,雨季时间短、降雨集中,地下水开采在旱季以来于消耗含水层的储存量而在雨季以回填被疏干的地下库容的形式进行补给。
开采量多少取决于允许降深范围如何最大限度地利用储存量的调节库容。
采用这种评价方法时,它要求具备以下两个条件:一是可借用的储存量必须满足旱季的连续稳定开采;二是雨季补给必须在平衡当时开采的同时,保证能全部补偿借用的储存量而非部分补偿。
2、2计算方法用补偿疏干法评价,要进行抽水试验,要求有两点:抽水量大小,必须造成动水位等幅下降,以便观测代表整个漏斗的下降值;抽水时间,应包括观测到整个漏斗的等幅上升值。
在旱季漏斗斗幅下降过程中,任意时间段内储存量的变化值,应该等于该时段抽出的水体积,即:μF?S=Q?t?S—时段?t内漏斗的等幅下降值;Q—为抽水量m3/dμF—单位储存量;μ—给水度;F—漏斗面积;当漏斗扩展全区时,μF值接近常量,则:μF=Q1?t=Q1(t1−t0)s10Q1—旱季的定量抽水量;s0—水位急速下降结束时刻t0的水位降;s1—旱季末时刻的水位降;(见下图—抽水试验过程图)根据求出的μF值,分两步对开采量进行评价。
(1)计算开采量,旱季可能借用的储存量,必须保证整个旱季连续开采,所以旱季末期形成的最大水位降深不得超过设计的允许降深。
设允许降深为S max,?s=S max−S0;旱季开采时间设为t开,则?t=t开−t0。
由此可以得出开采量:Q开=μF S max−S0t开−t0≈μF S max−S0t开因为t开?t0,略去t0更安全些。
用上式求出的Q开,可保证旱季连续开采,不会中断,但不一定有补给保证。
(2)计算补给量和评价,等幅回升时的单位补偿量和水位下降时的单位储存量相等。
设雨季抽水过程中测得水位回升值为?S,经过时间为?t,则单位时间内补偿的水体积为μF?s?t 。
如用t补表示雨季的总补给时间,则雨季补给的水体积为(μF?s?t+Q2)?t补。
把这个体积分配为全年开采时:即得年平均补给量:Q 补=t补365(μF?s?t+Q2)Q2—雨季开采量,为了供水安全,考虑到可能出现旱年系列时,应从多年气象周期出发,采用安全系数r=~。
这时t补=rT补,T补为勘察年的时间补给时间。
2、3实例某新建水源地,据勘探查明:含水层为厚层灰岩,呈条带状分布,面积约10km2。
灰岩分布区有间歇性河,故岩溶水的补给来源主要是季节性河水渗漏和降水渗入。
为了评价开采量,在整个旱季做了长期抽水试验,试验资料归纳如图1所示,勘察年的旱季时间t开=253天,两季补给时间为T补=112天,允许降深规定为S max=23m。
解:按旱季抽水资料求出μF值,μF=Q1(t1−t0)s1−s0=1761.7(150−10)14.53−5=25880m3d⁄把允许降深作为旱季末期的最大降深,令t开=253天,则Q 开=μF S max−S0t开=2588023−5253=1841.2m3d⁄取安全系数r=,t补=rT补=0.7×112=88.6天,得出Q 补=t补365(μF?s?t+Q2)=88.6365(25880×11.549+1900)=1963.32m3d⁄由此可得,Q补>Q开,故Q开=1841m3d⁄,是有补给保证又能取出来的开采量。
3、水文分析法在查明水文地质条件的基础上,充分利用水文测流资料和测流控制区的含水层面积,直接求出地下径流模数,,即单位时间点位面积含水层的补给量或地下径流量。
3、1 适用条件在水文地质勘察的基础上,需查明地下水的天然补给量,作为有保证的区域地下水资源,评价区域地下水资源的方法较多,但目前国内采用研究地表径流的水文分析发比较成功。
尤其在水文地质条件复杂、研究程度又相对较低的岩溶水或裂隙水分布区,用这种方法评价比较简单有效。
3、2 计算方法根据地下径流模数,可以间接推算区域地下水的天然补给量或地下径流量:Q=M?FQ—地下径流量,m 3s ⁄M—地下径流模数,m 3s?km2⁄F—含水层面积,km2由此可知,地下径流模数是评价区域地下水资源的重要指标,它受区域地下水的补给、径流、排泄条件所控制。
因此结合不同的水文地质特征采用不同的方法进行评价:1、地下河系发育的岩溶区根据这种水文地质特征,可选择有控制性的暗河出口或泉群,测定其枯水期流量,同时圈定对应的地下流域面积,取流量和地下流域面积之比,就是要求的地下径流模数。
2、地表河系发育的非岩溶区对于裂隙水或岩溶裂隙水和积极交替带的孔隙水,补给量形成地下径流后,直接排入河谷变成河水流量的组成部分,故可充分利用水文站现成的河流水文图来确定地下径流模数。
河水通常是由大气降水和地下水补给,在枯水期,河水流量几乎全由地下水维持,而洪水期河水流量的大部分为降水补给,地下水补给量相对减少,甚至河水倒流补给地下水,因此,利用河流水文图时,必须从实际水文地质条件出发,将地下径流量分割出来。
目前,分割界限常由经验确定。
①对岩性单一,集水面积较小的水文站,在流量过程图上涨部分的起涨点至退水部分的退水转折点之间连线,把该线以下部分作为基流量;②对岩性非均一,集水面积大的水文站,以枯水期平均流量代表基流量;③在没有水文站时,也可沿河流上下游断面布置简易测流法,由上下游断面的流量差可求的控制区的地下径流量和相应的地下径流模数。
④当一个含水层和另一个模数已知的含水层一起被河流排泄时,可按下式计算未知含水层的模数,M2=Q−M1F1F2M2—未知含水层的径流模数,m 3s?km2⁄;F2—对应M2的含水层面积,km2;Q—含水综合体排泄地段上的基流量,m 3s ⁄;M1和F1—已知的含水层面积和径流模数;3、3实例我国广西水文地质队,在地苏、大化等岩溶地区采用水文分析评价地下水资源,同时用实测流量进行了检验。
结果,平均准确度达86%。
具体见表3—1。
表3—14、开采强度法:在大范围的平原开采区,可将井位分布较均匀、水井流量相差不大的区域概化成一个或几个规则形状的开采区,将分散井群的总流量概化为开采强度。
然后按非稳定流的面积井公式去推算设计水位降深条件下的开采量或给定开采量条件下某一时刻开采区中心的水位降深。
这种方法即为开采强度法。
4、1 适用条件在井数很多,井位分散、开采面积很大的地区(这是农业供水的特点),采用开采强度法计算开采量比较方便。