测量超声波在空气中的传播速度
超声声速测量实验报告

超声声速测量实验报告超声声速测量实验报告引言:超声声速测量是一种常见的实验方法,广泛应用于物理、材料科学、地质学、医学等领域。
本实验旨在通过测量超声波在不同介质中的传播速度,探究声速与介质性质之间的关系,并验证超声波在空气、液体和固体中传播的特性。
实验原理:超声波是指频率高于人耳可听到的20kHz的声波。
在超声声速测量实验中,通常采用超声波在介质中的传播时间来计算声速。
根据声速的定义,声速等于声波在介质中传播的距离除以传播时间。
实验步骤:1. 实验装置搭建首先,将超声波发生器与超声波探头连接,然后将探头放置在测试介质中。
确保探头与介质接触良好,避免空气间隙对测量结果的影响。
2. 测量空气中的声速将超声波探头置于实验室中的空气中,调节发生器的频率和幅度,使得发出的超声波信号稳定。
记录下超声波在空气中传播的时间t1。
3. 测量液体中的声速将超声波探头放入一个已知介质(如水)中,调节发生器的频率和幅度,记录下超声波在液体中传播的时间t2。
4. 测量固体中的声速将超声波探头放置在一个固体物体上,调节发生器的频率和幅度,记录下超声波在固体中传播的时间t3。
实验数据处理:根据实验步骤中测得的传播时间t1、t2和t3,可以计算出空气、液体和固体中的声速。
1. 空气中的声速计算根据声速的定义,声速等于声波在介质中传播的距离除以传播时间。
由于空气中的声速近似为343m/s,传播距离为探头与接收器之间的距离,可以通过测量得到。
因此,可以计算出空气中的声速。
2. 液体中的声速计算同样地,根据声速的定义,液体中的声速等于声波在液体中传播的距离除以传播时间。
传播距离可以通过测量得到,而传播时间t2已经记录。
因此,可以计算出液体中的声速。
3. 固体中的声速计算固体中的声速计算与液体类似,只需将传播距离改为超声波在固体中传播的距离,传播时间为t3。
通过测量这两个参数,可以计算出固体中的声速。
实验结果与讨论:根据实验数据处理部分的计算,可以得到空气、液体和固体中的声速。
空气中超声声速的测定

图3.1.8 用利萨如图观察相位变化
相位差也可以利用示波器的双踪显示功能,把发射端信号和 接收端信号的波形在荧光屏上同时显示并比较、移动接收头 寻找同位相点的位置来测超声波波长。
四.时差法测量声速
连续波经脉冲调制后由发射换能器发射至被测介质 中,声波在介质中传播,经过t时间后,到达L距离 处的接收换能器。由运动定律可知,声波在介质中 传播的速度可由以下公式求出:
换句话说,相位每变化2π,传播距离正好变化一 行调节,使在示波器上获得稳定的正弦波。
当形成稳定的驻波时,尽管波节处空气元的振动速度为零,但波节两侧空气元的位移反向,从而产生最大的声压变化。
个波长λ。于是,根据相位差变化2π,便可以测量 调信号源“频率调节”钮,使正弦波振幅达到极大,此频率即是压电换能器S1、S2相匹配频率点(即谐振频率,在该频率上换能器能
压电陶瓷超声换能器由压电陶瓷片和轻、重两种 金属组成。压电陶瓷片(如钛酸钡、锆钛酸铅等) 是由一种多晶结构的压电材料做成的,在一定的 温度下经极化处理后,具有压电效应。在简单情 况下,压电材料受到与极化方向一致的应力T时, 在极化方向上产生一定的电场强度E,它们之间 有一简单的线性关系E=gT;反之,当与极化方向 一致的外加电压U加在压电材料上时,材料的伸 缩形变S与电压U也有线性关系S=dU。比例常数g、 d称为压电常数,与材料性质有关。由于E与T、S 与U之间具有简单的线性关系,因此我们就可以 将正弦交流电信号转变成压电材料纵向长度的伸 缩,成为声波的波源;同样也可以使声压变化转 变为电压的变化,用来接收声信号。
在压电陶瓷片的头尾两端胶粘两块金属,组成夹 心型振子,头部用轻金属做成喇叭型,尾部用重 金属做成锥型或柱型,中部为压电陶瓷圆环,紧 固螺钉穿过环中心。这种结构增大了辐射面积, 增强了振子与介质的耦合作用。由于振子是以纵 向长度的伸缩直接影响头部轻金属做同样的纵向 长度伸缩(对尾部重金属作用小),这样所发射 的波方向性强,平面性好。
声速测量

课程名称:大学物理实验
实验名称:
学院:食品学院专业班级:生物工程151班
学生姓名:冯思麟学号:**********
实验地点:基础实验大楼B211座位号:
实验时间:第五周星期一上午十点开始
一、实验目的:1.学会测量超声波在空气中的传播速度的方法
2.学会用逐差法进行数据处理;
3.理解驻波和震动合成理论。
八、附上原始数据:
五、实验数据与处理:
表1 f=38.167kHz
项目
S2坐标/mm
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
15.365
19.368
24.475
28.969
33.490
37.081
42.617
46.142
51.790
56.210
逐差
X6-X1
X7-X2
X8-X3
X9-X4
X10-X5
21.725
23.249
七、思考题:
1、为什么换能器要在谐振频率条件下进行声速测定?
答:因为在谐振频率下,反射面之间的声压达极大值。这样从示波器上观察到的电压信号幅值为最大,从而更利于观察。
2、要让声波在两个换能器之间产生共振必须满足那些条件?
答:1、两个换能器的发射面与接受面互相平行。
2、两个换能器间的距离为半波长的整数倍。
(1)即当 和 之间的距离L等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。
移动 ,可以连续地改变L的大小。由式(1)可知,任意两个相邻共振状态之间,即 所移过的距离为:
空气中声速的测定

【实验目的】1、掌握两种测量声速方法的原理,学会测定超声波在空气中的传播速率。
2、了解压电换能器的功能,熟悉信号源和示波器的使用。
3、加深对驻波及振动合成理论的理解。
4、测定超声波在固体中的传播速率【实验原理】(原理概述,电学。
光学原理图,计算公式)在波动过程中,波速v、波长λ和频率f之间存在下列关系v=fλ通过实验,测出波长λ和频率f,就可以求出声速v。
常用的方法有驻波法和相位比较法两种。
超声波声速测定装置主要由压电传感器和游标卡尺构成。
传感器的主要部件是用多晶体结构的压电材料(如碳酸钡)在一定温度下经特殊处理而成的压电陶瓷片。
这种陶瓷片具有压电效应,它能将交流电压信号转换成纵向长度的伸缩,靠自身成为声波波源;反过来,也可将声压变化转换成电压变化,即用它将接收到的声波信号转变为电压信号。
压电传感器有一谐振频率f,当外加声波信号的频率等于此频率时,陶瓷片将发生机械谐振,得到最强的电压信号,此时传感器具有最高的灵敏度;反过来,当输入的电压使得传感器产生机械谐振时,作为波源将具有最强的发射功率。
实验装置中使用两个压电传感器,其一作为超声发射器,另一个作为接收器。
1.驻波法测声速实验装置如图。
图中S1和S2为压电陶瓷超声换能器,S1作为超声源(发射头),由信号源输出的正弦交变电压接到S1上,使得S1发出一平面超声波;S2作为超声波的接收头,把接收到的声压转变成交变的正弦电压信号后输入示波器观察。
S2在接收超声波的同时,还向S1反射一部分超声波,这样由S1发出的超声波和由S2反射的超声波就在S1和S2之间的区域干涉形成驻波。
驻波相邻两波峰(或波节)之间的距离为半波长。
S2可以移动,其位置由游标卡尺读出。
当改变S2到S1之间的距离时,在一系列特定位置上,S2面接收到的声压达到极大值(或极小值),相邻两极大值(或极小值)之间的距离皆为半波长。
此时,在示波器荧光屏上所显示的波形幅值发生周期性的变化,即由一个极大值变到极小值,再变到极大值。
大学物理实验声速测量实验报告

声速测量一、实验项目名称:声速测量二、实验目的1.学会测量超声波在空气中的传播速度的方法2.理解驻波和振动合成理论3.学会逐差法进行数据处理4.了解压电换能器的功能和培养综合使用仪器的能力三、实验原理声波的传播速度与声波频率和波长的关系为:可见,只要测出声波的频率和波长,即可求出声速。
可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。
根据超声波的特点,实验中可以采用几种不同的方法测出超声波的波长:1. 驻波法(共振干涉法)如右图所示,实验时将信号发生器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。
接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。
由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。
如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。
此时,两换能器之间的距离恰好等于其声波半波长的整数倍。
在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。
当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。
移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:就可算出超声波在空气中的传播速度,其中超声波的频率可由信号发生器直接读得。
2.相位比较法实验接线如下图所示。
波是振动状态的传播,也可以说是位相的传播。
在声波传播方向上,所有质点的振动位相逐一落后,各点的振动位相又随时间变化。
大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告一实验目的1.了解超声波的物理特性及其产生机制;2.学会用相位法测超声波声速并学会用逐差法处理数据;3.测量超声波在介质中的吸收系数及反射面的反射系数;4.并运用超声波检测声场分布。
5.学习超声波产生和接收原理,6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。
7.观察和测量声波的双缝干涉和单缝衍射二实验条件HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪三实验原理1、超声波的有关物理知识声波是一种在气体。
液体、固体中传播的弹性波。
声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。
声波频谱分布图振荡源在介质中可产生如下形式的震荡波:横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。
纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。
表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。
板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。
超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。
2、理想气体中的声速值声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为μrRT=V (1)式中R 为气体普适常量(R=),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0 K T 15.2730=代入式(1)得,00001V 1)(V T t T t T rRt T rR++⋅+===μμ (2) 对于空气介质,0℃时的声速0V =m s 。
超声波传播速度的测量

超声波传播速度的测量超声波传播速度的测量【教学⽬的】1.学习⽤驻波共振法和相位⽐较法测量超声波在空⽓中的传播速度。
2.了解压电换能器的功能。
3.学习⽤逐差法处理数据。
【教学重点】1. 掌握本实验的原理,熟悉各仪器的使⽤。
2. 能够运⽤驻波共振法和相位⽐较法准确的测出超声波在空⽓中的传播速度。
【教学难点】理解并掌握驻波共振法和相位⽐较法测量超声波在空⽓中的传播速度的原理及⽅法。
【课程讲授】提问:1. 本实验中的超声波是如何获得的?2. 如何利⽤驻波共振法和相位⽐较法测量超声波在空⽓中的传播速度?⼀、实验原理频率介于20Hz ~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kHz ~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,⽽超声波具有波长短,易于定向发射和会聚等优点,声速实验所采⽤的声波频率⼀般都在20KHz ~60kHz 之间。
在此频率范围内,采⽤压电陶瓷换能器作为声波的发射器、接收器、效果最佳。
根据声波各参量之间的关系可知f ?=λυ,其中υ为波速, λ为波长,f 为频率。
图1共振法测量声速实验装置在实验中,可以通过测定声波的波长λ和频率f 求声速。
声波的频率f 可以直接从低频信号发⽣器(信号源)上读出,⽽声波的波长λ则常⽤相位⽐较法(⾏波法)和共振⼲涉法(驻波法)来测量。
图2 相位⽐较法测量声速实验装置1.相位⽐较法实验装置接线如图2所⽰,置⽰波器功能于X -Y ⽅式。
当S1发出的平⾯超声波通过媒质到达接收器S2,合成振动⽅程为:22见图(a)0=?? (b)4π?=(c)2π?=? (d)43π?=? (e)π?=? 图3 合成振动长λ和频率f ,根据式f ?=λυ即可计算出声⾳传播的速度。
改变S1和S2之间的距离L ,相当于改变了发射波和接收波之间的相位差,荧光屏上的图形也随L 不断变化。
显然,当S1、S2之间距离改变半个波长2/λ=?L ,则??=π。
测量超声波在空气中的传播速度实验报告

测量超声波在空气中的传播速度实验报告一、实验目的本实验旨在通过测量超声波在空气中的传播速度,了解超声波的特性及其在实际应用中的重要性。
二、实验原理超声波是指频率高于人类能听到的20kHz的机械波。
它具有穿透力强、反射能力弱等特点,在医学、工业等领域有广泛应用。
超声波在介质中传播速度与介质密度和弹性模量有关,而空气是一种低密度、低弹性模量的介质,因此其传播速度较慢。
三、实验器材和药品1. 超声波发生器2. 超声波接收器3. 示波器4. 计时器5. 电源线四、实验步骤及结果分析1. 实验前准备:将超声波发生器和接收器连接至示波器上,并将电源线插入电源插座。
调整示波器至合适的状态。
2. 实验过程:a) 将发生器和接收器分别放置于两个固定距离内(如10cm)。
b) 开启发生器,使其发出一个持续时间为1s的超声波信号。
c) 记录接收器接收到该信号所需的时间t。
d) 将发生器和接收器的距离增加一定值(如5cm),重复以上步骤,直至距离达到一定范围(如50cm)。
3. 结果分析:根据公式v=d/t,计算出每组数据的超声波在空气中的传播速度,并绘制出速度与距离之间的关系图。
实验结果表明,超声波在空气中的传播速度随着距离的增加而减小,且其变化趋势符合理论预期。
五、实验注意事项1. 实验时应保持环境安静,以免干扰实验结果。
2. 实验过程中要注意安全,避免发生意外伤害。
3. 实验结束后要将设备清洁干净,并妥善保管。
六、实验总结本实验通过测量超声波在空气中的传播速度,深入了解了超声波在介质中传播的规律及其在医学、工业等领域中的应用。
同时,在实验过程中也提高了我们的动手能力和科学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量超声波在空气中的传播速度【实验目的】1. 学会使用共振干涉法和相位法测定超声波在空气中的传播速度。
2. 学会用逐差法进行数据处理。
3. 了解声速与气体参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射等优点,所以在超声波段进行声速测量是比较方便的。
超声波的发射与接收一般是通过电磁振动与机械振动的相互转换来实现,最常见的是利用压电效应和磁致伸缩效应。
声波在空气中是以纵波传播的,其传播速度v和声源的振动频率f以及波长λ有如下关系:νfλ=( 1 ) 测出声波波长λ和声源的振动频率f就可以由式(1)求出声波的传播速度。
声波频率f可通过频率计测得,本实验的主要任务是测出声波波长λ。
1.共振干涉法实验装置如图图1 共振干涉实验装置图2图中s1和s2为压电晶体换能器,s1作为声波源,它被振荡频率可以调节的低频信号发生器输出的电信号激励后,由于逆压电效应发生受迫振动,并向周围空气定向发出一近似平面声波;s2为超声波接收器,声波传至它的接收面上时,再被反射。
当s1和s2的表面互相平行时,声波就在两个平面间反射,相互干涉。
经数学运算可知,在接收器s2表面,从振动位移来说是波节,从声压来说是波腹;在发射器s1表面,则情况较为复杂,其振幅与两个表面的间距有关,所以其振幅随s1和s2表面的间距L 而变,当∆+=2λnL ,n=0,1,2,3,....,λ≤∆,振幅为极大值,称为共振。
这是接收器s2接收到的声压也是极大值,经接收器转换成的电信号也是极大值(参见图2)。
图中各极大值之间的距离均为λ/2,由于衍射和其他消耗,各极大值幅值随距离增大而逐渐减少。
我们只要测出与各极大值对应的接收器s2的位置,就可以测出波长λ。
若用游标卡尺测出20个极大值的位置,并依次算出每经10个λ/2的距离:210111111λ=-=∆-L L L ,210212212λ=-=∆-L L L ,............................................21010201020λ=-=∆-L L L把等式两边各自相加,得∑∆=-+=101)10(2100i ii Lλ⎪⎭⎫⎝⎛=∑∆=-+101)10(501i i i L λ由低频信号发生器或频率计读得超声波的频率f 后,即可由下式求得声速f i i i L ⨯⎪⎭⎫⎝⎛=∑∆=-+101)10(501ν (2)若测不到20个极大值,则可少测几个。
列如测到12个极大值,可依次算出他们经6个2λ的距离,最后得 f i i i L ⨯⎪⎭⎫⎝⎛=∑∆=-+61)6(181ν (3)2. 相位法测声速相位法又称为行波法,是通过比较同一列波上两质点的相位差来进行测量的。
图3由声源发出的声波在沿其传播方向上,相位差为π的两质点之间的距离为半个波长2λ,因此,只要测出相位差为π的两质点之间的距离d ∆,就可由 2λ=∆d ( 4.2.4)计算出波长,从而由波长及声源振动频率计算出声速。
实验中保持声源的位置不变,改变反射面的位置,用示波器测声源和反射面处两质点的相位差,记下相位差每变化π时反射面的位置d ,求出相位差变化π时反射面位置的变化d ∆。
示波器测两信号的相位差有两种方法:双踪示波法和萨如图形法,本实验用萨如图形测L两点的相位差。
将声源和反射面处的信号分别输入至示波器的两个偏转板上,在示波器上观察到的萨如图形是一椭圆,当改变反射面的位置时,两信号的相位差发生变化,萨如图形由椭圆→直线→椭圆→直线发生周期性变化,如图4所示,其中相邻两次出现直线时反射面位置的变化就是相位差为π时两质点的距离d ∆。
与共振干涉法相类似,可测得20个或12个相应的数值,以便进行数据处理。
3.逐差法处理数据以上处理数据的方法称为逐差法,是试验中处理数据的一种基本方法。
逐差法的优点是充分利用数据,减少偶然误差。
因为若简单地取各次测量的平均值,中间各值将全部抵消,只剩始末两个读数,因而与单词测量等价。
如在本实验中按以下方法处理数据:20101λ=-=∆-L L L ,21212λ=-=∆-L L L ,....................................219201920λ=-=∆-L L L其平均值为()L L L L ∆∆∆---+++=∆19201201 (201)=()2201020λ=-L L 得到结果就只与L 20,L 0两个读数有关。
这样就失去了多次测量的优点。
012=-ϕϕ 212πϕϕ=-πϕϕ=-122312πϕϕ=- 图4从误差理论可知,多次测量时算术平均值为最近真值。
为避免以上情况,一般在连续测量数据的情形时,长把数据分为两组,两组逐次求差再算平均值。
这样得到的结果保持了多次测量的优点,但应注意,只有在连续测量的自变量为等距变化,相应两个量之差是均匀的情况下,才可用逐差法处理数据。
【实验容与步骤】1. 共振干涉法测声速1. 将信号发生器输出的正弦波信号加在声速测试仪的发射端,声速测试仪的接收端与示波器相连(y1通道)。
如图5所示。
图52. 转动距离调节手把,使声速测试仪的发射端和接收端的两个端面相距为1cm左右,并使两个端面保持平行。
调节信号发生器的频率(换能器的谐振频率为40KHz左右),观察示波器上波形幅度的变化,当接收到的信号幅度最大时,记录5次信号发生器的频率f(f 为共振频率)并取平均值f’,并在实验中保持f’不变。
3. 缓慢转动距离调节手把,使声速测试仪的接收端远离发射端,观察示波器上图形的变化。
当示波器上波形幅度最大时,记录声速测试仪接收端的位置读数。
转动手把连续读取20个波形幅度最大时测试仪接收端的位置读数。
相邻读数的差值即为λ/2 。
4. 用逐差法求波长λ,将f和λ代入( 1 )式求出声波的速度。
同时用下列校正公式算出ν校:tttpt125.3313192.01125.331p+≈⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛+=ων干校式中,t0=273.15℃;pω为水蒸气压,单位为mmHg;p为大气压,单位为mmHg(1mmHg=133.322pa)。
最后算出百分误差=%100⨯∆νν校。
2. 相位法测声速1. 在驻波法测声速的连线基础上,将信号发生器输出端再引出一根线接入示波器的Y 端口(y2通道),将示波器的“扫描频率”旋钮旋至“x-y”位置,即将示波器调至观察萨如图形的状态,如图6所示。
图62. 缓慢转动距离调节手把,观察示波器上图形的变化。
当出现图4中的直线时,记录声速测试仪接收端的位置读数。
转动手把连续读取20个直线(包括一、三象限的直线和二、四象限的直线)出现时测试仪接收端的位置读数。
相邻读数的差值即为λ/2。
3. 用逐差法求波长λ,由(1)式计算声速。
【数据与结果】室温t=15℃。
1.测谐振频率计算得:=f37.611 kHz2.共振干涉法测声速i 1 2 3 4 5fi/kHz37.250 37.831 38.025 37.325 37.626由逐差法:10101510i iil lλ+=-=⨯∑λ=9.240 mm ,ν==⨯fλ347.529 m/s ,=ν校340.223 m/s ,百分误差=%100⨯∆ν校=2.15% 。
3.相位法测声速由逐差法得:101019.2161010i iil lmmλ+=-==⨯∑,=⨯=fλν346.606 m/s ,=ν校340.223 m/s ,百分误差=%100⨯∆ν校=1.88%【思考题】1.怎样才能知道接收器s2表面的声压为极大值?用什么仪器进行测量?怎么进行测量?解答:当示波器上显示的CH2通道波形的幅度最大时,S2表面的声压为极大值。
用示波器进行测量。
调节s1与s2距离,观察示波器,当CH2的输出波幅度显示为最大时即为s2表面声压极大值时刻。
2.什么是逐差法?它的优点是什么?解答:逐差法是针对自变量等量变化,因变量也做等量变化时,所测得有序数据等间隔相减后取其逐差平均值得到的结果。
优点是充分利用了测量数据,具有对数据取平均的效果,可及时发现差错或数据的分布规律,及时纠正或及时总结数据规律。
3.为什么换能器要在谐振频率条件下进行声速测定?解答:此时振幅大,便于观察,否则振动随距离衰减得很快,不能读出足够的数据。
因为在谐振频率下可形成驻波,根据驻波的情况可测量声波的波长,再用波长乘以谐振频率就可以获得声速的大小。
4.为什么在实验过程中改变L时,压电晶体换能器S1和S2的表面应保持互相平行?不平行会产生什么问题?解答:声波的正面反射压力与斜着的反射压力是不一样的,要求二者平行是为了保证声波的正面反射,以求得最大反射压力,使实验数据更精确。
如果二者不平行,则反射回来的声波不能正确打在S1的正中心,会有一部分声波能量没有打在S1上,也就不能正确测得反射回的能量。
会使实验不准确。
5.是否可以用此方法测定超声波在其他媒质(如液体和固体)中的声速?解答:可以。