红外热成像技术应用与发展
红外线与红外成像技术的发展应用综述

红外线与红外成像技术的发展应用综述由于红外线近距离通讯不受干扰、成本低、实时监测等特点,红外线与红外成像技术得到了越来越广泛的应用。
红外线及红外成像技术国内外发展状况:国外研究较早,拥有许多不外传的关键性技术;国内虽起步较晚,但随着热像仪在我国各行业的普及,对红外成像技术各方面的研究也呈现逐年上升的趋势,红外产品与应用市场日趋成熟,正逐渐普及。
本文综述了红外成像技术的发展和应用,并对其发展和应用提出了新展望。
经过分析,目前红外热像技术还存在不能检测仪器内部缺陷问题,本文也提出了针对问题解决的方案。
预测未来红外成像技术将会朝着高检测力、智能化的方向继续发展。
标签:红外线;红外成像技术;红外热像仪红外线是一种电磁波,具有与无线电波和可见光一样的本质。
红外热成像技术利用红外热像仪将物体表面的温度分布转换成人眼可见的图像,并以不同颜色显示物体表面温度分布。
红外热像仪广泛应用于地质、医疗、公安、交通、农业等领域。
如森林火灾探测、建筑热漏搜索、海上救援、火源搜索、矿石断裂鉴定、导弹发动机检查、公安侦察、各种材料和产品的无损检测等。
以下介绍红外线与红外成像技术的发展与应用。
1 国内外研究发展情况1.1国内红外线与红外成像技术的研究发展情况1.1.1国内红外线与红外成像技术的历史发展情况我国的红外技术研究工作是在新中国成立后开展的。
改革开放以来,红外技术得到了迅速发展,探测器的研究工作从单元、线阵到红外胶接面都在进行。
上世纪90年代初,我国研制出第一台热像仪。
其技术性能与国外相当,对我国红外技术的升级起着重要作用。
我国对电力设备红外检测诊断技术始于70年代,主要检查运行中电气设备的外露过热接头。
1990年,有人在国际大电网会议上指出,该技术在电力设备状态预测维修中发挥了重要作用。
08年修订、颁布的《带电设备红外诊断应用规范》(DL/T 664 2008)对电气设备各部分的校准、操作、检测和诊断标准进行明确规范,进一步推动了红外热像仪在电力系统中的应用。
红外热成像的原理与应用

红外热成像的原理与应用1. 红外热成像的基本原理红外热成像技术是一种通过测量物体本身所辐射的红外辐射来获取物体表面温度分布的非接触式测温技术。
其基本原理是根据物体的温度不同,会辐射不同强度的红外辐射,通过红外热成像仪捕获物体所辐射的红外辐射图像并进行处理,得到物体表面温度的分布图。
2. 红外热成像的工作原理红外热成像仪利用红外传感器接收物体所辐射的红外辐射能量,并通过电子元件将红外辐射转换为电信号,然后再经过信号处理和图像处理,最终将物体的红外辐射图像显示在显示屏上。
其工作原理主要有以下几个步骤:•步骤1:红外辐射接收红外热成像仪通过红外传感器接收物体所发出的红外辐射能量,不同温度的物体会辐射出不同强度的红外辐射。
•步骤2:辐射能量转换红外辐射能量通过光学系统传导到红外传感器上,红外传感器会将红外辐射能量转换为电信号。
•步骤3:信号处理红外热成像仪对传感器发出的电信号进行放大和滤波等处理,以提高信号质量。
•步骤4:图像处理通过图像处理算法,对处理后的信号进行处理,得到物体的红外辐射图像。
可以根据图像的灰度变化来判断物体表面的温度分布。
•步骤5:图像显示将物体的红外辐射图像显示在热成像仪的显示屏上,便于用户进行观察和分析。
3. 红外热成像的应用领域红外热成像技术在多个领域都有广泛的应用,以下是几个常见的应用领域:•电力行业通过红外热成像技术可以快速、准确地检测电力设备和线路存在的异常问题,如过热、短路等,避免了因电力故障造成的人员伤亡和设备损坏。
•建筑行业在建筑行业,红外热成像技术可以用于检测建筑物中的热桥、漏水、隔热材料缺陷等问题,帮助人们提前发现隐患,避免不必要的损失。
•工业行业在工业领域,红外热成像技术可以用于设备的预防性维护,实时监测设备的温度分布,提前发现设备存在的问题,避免设备损坏和生产事故的发生。
•医疗行业在医疗领域,红外热成像技术可以用于辅助诊断疾病,如检测体表温度异常、血液供应不足等,帮助医生及时发现疾病并采取相应治疗措施。
红外热成像技术在建筑工程中的应用

红外热成像技术在建筑工程中的应用红外热成像技术是一项热成像学技术,广泛应用于建筑工程中。
这项技术可以对建筑物的热量分布进行实时分析,从而及早发现潜藏的问题并及时解决。
一、红外热成像技术的基本原理红外热成像技术是建立在热辐射基础上的。
建筑物表面释放的热量反映了物体表面的温度分布。
在热红外成像技术中,将物体摄像头采集到的热辐射信号转换为图像信息,以色彩不同的形式直观地表现了物体表面的热量分布情况。
二、红外热成像技术在建筑工程中的应用1.建筑物维护与检测红外热成像技术可以帮助建筑工程师及时发现建筑物的潜在问题。
例如,可以使用该技术对建筑物的电气系统进行检测,尤其对于不容易被发现的接触不良、半导体设备故障、绝缘损坏等问题有较好的检测效果。
此外,红外热成像技术也可以帮助检测水管的渗漏问题,以及对建筑物的结构安全进行评估。
2.建筑物节能设计红外热成像技术可以帮助建筑师设计更加节能的建筑。
通过对建筑物进行热成像测试,可以发现建筑物表面的温差,进而修改建筑设计方案,例如增加透明隔热屏障、改善建筑材料等。
3.建筑物物流管理在建筑工程中,红外热成像技术也可以被用于物流管理。
例如,可以使用该技术对建筑物内部的货物等物品进行检测。
假设货物随着时间长时间放在室内,有可能会导致温差较大,因此进行红外热成像检测可以及时发现该物品的状态是否正常。
三、红外热成像技术的发展方向未来,随着技术的持续推动,红外热成像技术将有更加广泛的应用。
例如,目前有很多更加精准的红外热成像设备。
同时,该技术也有望通过与其他技术的融合进一步促进建筑工程的智能化。
总之,红外热成像技术是一项智能化、高效化的技术,其在建筑工程中有着广泛的应用。
未来,将有更多关于该技术的创新涌现,助力建筑工程的不断发展。
红外技术的应用和发展

红外技术的应用和发展红外技术是指利用人眼无法看到的红外辐射信号进行通讯、探测等用途的技术。
红外技术在军事、民用等领域都具有广泛的应用,同时也是近年来快速发展的一项技术。
一、红外技术的应用领域1.军事红外技术在军事领域的应用非常广泛,特别是在夜视野战、导航、目标识别、热成像、掩护和防护等方面。
目前,国际上军事上广泛应用的“精确制导武器系统”就是利用红外技术实现对目标的精确定位和识别。
2.安防在安防领域,红外技术应用最广泛的就是红外监控系统。
红外摄像头能够在夜间或者光线较暗环境下拍摄清晰的照片,而且不会被当事人察觉。
3.医疗在医疗领域,红外技术也发挥着重要作用。
红外成像技术可用于诊断疾病,如结肠癌、皮肤病等,而红外治疗则可用于缓解疼痛、消炎杀菌等。
4.工业红外技术在工业上也具有重要应用。
工业生产中的红外加热、红外干燥、红外焊接等技术,极大地提升了工业生产效率和产品质量。
二、红外技术的发展趋势1.红外成像技术的发展从传统的红外热成像到现代的红外光谱成像,红外成像技术已经发展成为了一项十分成熟的技术。
随着科技的不断进步,红外成像技术也会逐步普及到更多的领域。
2.红外激光技术的应用红外激光技术是指利用激光器产生的红外激光进行物质化学成分的识别和定位。
红外激光技术可以通过反射或吸收的方式获得物质的化学信息,并可以对病毒、细菌等进行检测和灭活。
3.红外雷达技术的发展红外雷达技术是指通过红外信号进行跟踪和定位目标的技术。
红外雷达技术具有隐蔽性好、抗干扰能力强等优点。
在军事、空间探索等领域中都有广泛应用。
4.红外热成像技术的延伸红外热成像技术主要应用在军事、安防、工业等领域。
未来,随着人类对红外技术的深入了解,红外热成像技术的应用领域将会不断扩大。
三、结语总之,红外技术的应用和发展不断推动着人类社会的进步和发展。
随着技术的不断发展,红外技术将会在更多的领域发挥着重要作用。
(注:本文所涉及内容仅供参考,具体应用需根据实际情况综合考虑。
红外线技术在热成像方面的应用

红外线技术在热成像方面的应用红外线技术是一种非接触式测温技术,与传统接触式测温方法相比,具有测温快速、准确性高、安全性强等优点,因此在热成像方面广泛应用。
本文将分别从红外线技术的测温原理、应用领域、优缺点三个方面介绍红外线技术在热成像方面的应用。
一、红外线技术的测温原理红外线技术是一种通过检测物体发出或反射的红外辐射来测量物体表面温度的技术,其原理基于物质对热辐射的吸收和反射特性。
物体表面的红外辐射是与物体表面温度直接相关的,当物体表面温度升高时,其发射的红外辐射也会随之增强。
使用红外线相机可以捕捉到微弱的红外辐射信号,并通过算法计算出物体表面的温度分布图。
二、红外线技术的应用领域红外线技术的应用领域非常广泛,其中热成像技术是其主要应用之一。
以下是热成像技术在不同领域的应用:1. 建筑领域在建筑领域,热成像技术可以用来检测建筑墙体、窗户、屋顶等部位的隐蔽缺陷,如漏水、渗水、漏热等。
通过对建筑物的热成像检测,可以及时发现和修复隐蔽缺陷,提高建筑物的能源利用效率。
2. 电力领域在电力领域,热成像技术主要应用于发电机、变压器、电缆等设备的故障诊断和维护。
通过对设备的热成像检测,可以准确发现并诊断其温升异常和故障。
3. 机械制造领域在机械制造领域,热成像技术主要用于机器设备、轴承、齿轮等部件的检测和维护,及时发现并修复设备的故障和异常,提高生产效率和设备寿命。
4. 医疗领域在医疗领域,热成像技术可以用来检测人体表面器官的温度分布,诊断患者是否存在疾病。
比如,对于肿瘤患者,热成像技术可以在早期发现其异常的温升情况,从而提高治疗效果。
三、红外线技术在热成像方面的优缺点红外线技术在热成像方面具有许多优点,但同时也存在一定的缺点。
1. 优点①非接触式测温:红外线技术可以在不接触物体的情况下,快速准确地测量物体表面的温度,无需暴露于有害的温度环境中,更符合安全、环保要求。
②画面直观:热成像技术可以直观地呈现出物体表面的温度分布和变化趋势,便于操作者分析和诊断异常情况。
2024年红外技术市场前景分析

2024年红外技术市场前景分析引言红外技术作为一种无线电波技术,已经广泛应用于军事、安防、医疗、工业等领域。
随着科技的不断进步和市场需求的增加,红外技术市场正呈现出蓬勃发展的前景。
本文旨在对红外技术市场前景进行分析,探讨其市场规模、应用领域以及发展趋势。
市场规模根据市场研究机构的数据,红外技术市场规模在过去几年持续增长。
预计到2025年,全球红外技术市场规模将达到数十亿美元。
这一巨大的市场规模主要得益于红外技术在安防领域的广泛应用,例如夜视仪、红外相机等。
同时,红外技术在军事、医疗、工业等领域的应用也在不断拓展。
应用领域安防领域红外技术在安防领域有着广泛的应用。
夜视仪是其中最常见的应用之一,可以通过红外传感器捕捉到人眼无法察觉的红外光,以增强暗光环境下的监控能力。
此外,红外相机也被广泛应用于安防摄像领域,通过红外热成像技术可以实现对目标温度的检测和识别。
军事领域红外技术在军事领域的应用也非常重要。
红外导引系统可以用于导弹、飞机和舰船等军事装备中,通过红外成像技术实现目标的锁定和跟踪。
此外,红外探测器也可以用于监测敌方目标的热量辐射,实现情报收集和目标识别。
医疗领域红外技术在医疗领域的应用主要集中在体温检测和红外医学成像等方面。
特别是在疫情防控中,红外体温检测仪成为了一种非接触式测温手段,为大规模人群的体温监测提供了便利。
此外,红外医学成像技术也可以用于观察人体内部的温度分布,帮助医生诊断一些疾病。
工业领域在工业领域,红外技术可以应用于热成像检测、物体计数、液位测量等方面。
通过红外热成像技术,可以在设备运行过程中及时发现异常热源,预防潜在的故障。
此外,红外物体计数器也可以通过对红外光信号的检测,实现对物体的计数和监控。
发展趋势红外技术市场未来的发展将会受到多个因素的影响。
首先,随着传感器技术的不断进步,红外探测器的灵敏度和分辨率将得到提高,为红外技术的应用拓展提供更多可能。
其次,随着人工智能和大数据技术的发展,红外技术与其他领域的融合将会加速,形成更加智能化的应用场景。
红外热成像技术应用与发展

红外热成像技术应用与发展红外热成像技术是一种能够测量和显示目标物体表面温度分布的先进技术。
通过红外热成像技术,可以将目标物体的表面温度以不同的颜色进行表示,从而反映目标物体的热分布情况。
该技术在许多领域都有广泛的应用,并且正在不断发展和完善。
首先,红外热成像技术在军事领域中得到了广泛的应用。
军事人员可以利用红外热成像技术来探测并追踪敌人的活动,实现夜间侦察和监视。
另外,红外热成像技术还可以用于导弹制导系统,提高射击命中率。
在无人机领域,红外热成像技术可以用于目标识别和跟踪,提高作战的效果。
其次,红外热成像技术在公共安全领域中也有重要的应用价值。
例如,在火灾救援中,红外热成像技术可以帮助消防人员快速地找到火源和寻找受困人员,提高救援的效率和成功率。
另外,红外热成像技术还可以在边境安全、反恐等领域中用于实时监控和追踪可疑人员。
此外,红外热成像技术在工业领域也有广泛应用。
在电力设备和输电线路的巡检中,利用红外热成像技术可以及时发现异常温度,避免设备突然故障和火灾事故。
在机械设备维护中,红外热成像技术可以用于检测设备的磨损和故障,及时采取措施进行维修和保养,延长设备的使用寿命。
另外,红外热成像技术还可以在产品质量控制中应用,及时发现产品缺陷和质量问题,提高产品的质量和竞争力。
最后,随着科技的不断进步,红外热成像技术还有很大的发展潜力。
目前,传统的红外热成像技术已经可以实现高清晰度图像的获取,但仍存在一些限制,如分辨率较低、成像速度较慢等。
未来,随着红外成像器件和算法的进一步发展,红外热成像技术将实现更高的分辨率和更快的成像速度,从而更好地满足各个领域的需求。
综上所述,红外热成像技术在军事、公共安全、工业等领域中都有广泛的应用,且具有很大的发展潜力。
随着技术的不断创新和完善,相信红外热成像技术将为各个领域带来更多的应用和突破。
红外热成像技术

。
环境监测
监测大气、土壤、水资源等环 境指标,助力环境保护和治理
。
THANK YOU
感谢观看
环境质量监测
利用红外热成像技术可以监测城市空气质量、工业污染等环境问题 ,帮助政府部门制定环境保护政策。
生态保护
红外热成像技术可以观察动植物体的温度分布,为生态保护域,红外热成像技 术可以用于火灾监测、救援和灭 火,提高安全保障水平。
交通安全
在交通安全领域,红外热成像技 术可以用于夜间和恶劣天气下的 道路监测,提高交通安全保障能 力。
未来红外热成像技术的发 展方向
提高图像质量
高分辨率
提高红外热成像的分辨率,使得能够更清晰地识 别目标细节。
灵敏度提升
增强红外探测器的灵敏度,提高对微弱热辐射的 检测能力。
动态范围扩展
增大红外热成像的动态范围,使其能够适应更广 泛的温度变化。
降低成本
1 2
批量生产
通过规模化生产,降低红外热成像设备的制造成 本。
红外热成像技术的应用领域
• 医疗领域:红外热成像技术在医疗领域的应用包括无创检测、疾病诊断、理疗 等。例如,通过红外热成像技术可以检测出肿瘤、炎症等病变部位的温度异常 ,为医生提供有价值的诊断信息。
• 工业领域:在工业领域,红外热成像技术可用于检测设备故障、评估产品质量 等。例如,对电力设备进行红外热成像检测,能够发现潜在的故障和隐患,提 高设备运行的安全性和稳定性。
材料成本降低
研发低成本、高性能的红外材料,降低设备采购 成本。
3
技术创新
持续推动红外热成像技术的创新与优化,降低维 护与升级成本。
发展新型应用领域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外热成像摄象机在智能视频监控中的应用与发展一、引言1672年,牛顿使用分光棱镜把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光,证实了太阳光(白光)是由各种颜色的光复合而成。
1800年,英国物理学家 F. W. 赫胥尔从热的观点来研究各种色光时,偶然发现放在光带红光外的一支温度计,比其他色光温度的指示数值高。
经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。
于是他宣布:太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。
这种红外线,又称红外辐射,是指波长为0.78~1000μm的电磁波。
其中波长为0.78 ~1.5μm 的部分称为近红外,波长为1.5 ~10μm的部分称为中红外,波长为10~1000μm的部分称为远红外线。
而波长为2.0 ~1000μm的部分,也称为热红外线。
红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
这种红外线辐射是,基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量。
分子和原子的运动愈剧烈,辐射的能量愈大;反之,辐射的能量愈小。
在自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。
同一目标的热图像和可见光图像不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布的图像。
或者可以说,它是人眼不能直接看到目标的表面温度分布,而是变成人眼可以看到的代表目标表面温度分布的热图像。
运用这一方法,便能实现对目标进行远距离热状态图像成像和测温,并可进行智能分析判断。
众所周知,海湾战争已成为展示高科技武器使用先进技术的平台。
在这些新科技中,红外热成像技术就是其中最为闪亮的高科技技术之一。
红外热成像技术(Infrared thermal imaging technology)是利用各种探测器来接收物体发出的红外辐射,再进行光电信息处理,最后以数字、信号、图像等方式显示出来,并加以利用的探知、观察和研究各种物体的一门综合性技术。
它涉及光学系统设计、器件物理、材料制备、微机械加工、信号处理与显示、封装与组装等一系列专门技术。
该技术除主要应用在黑夜或浓厚幕云雾中探测对方的目标,探测伪装的目标和高速运动的目标等军事应用外,还可广泛应用于工业、农业、医疗、消防、考古、交通、地质、公安侦察等民用领域。
如果将这种技术大量地应用到安防监控领域中,将会引起安防监控领域的变革。
智能视频监控技术是计算机视觉和模式识别技术在视频监控领域的应用,它能对视频图像中的目标进行自动地监测、识别、跟踪和分析,从而为用户提供对监控和预警有用的关键信息。
国外智能视频监控技术的发展动力是来源于对特殊监控场所的监控需求,特别是自2001年9·11事件之后,出于反恐、国家安全、社会安定等多方面的需要,智能视频监控与预警技术已逐渐成为国际上最为关注的前沿研究领域。
尤其是在一些特殊的应用场所,如在恶劣天气下24h全天候监控、边防与周界入侵自动报警、火灾隐患的自动识别、被遗弃的行李和包裹等遗留物体检测、盗窃赃物查找、被埋尸体查找等等,若利用红外热成像技术作智能视频监控探测与识别,更显得方便而容易。
下面就介绍一下这种红外热成像技术的发展、优缺点,新一代红外热成像系统的组成与工作原理,以及它在智能视频监控中的应用等。
二、红外热成像技术的发展从1800年,英国物理学家赫胥尔发现了红外线后,开辟了人类应用红外技术的广阔道路。
在第二次世界大战中,德国人用红外变像管,研制出了主动式夜视仪和红外通信设备,为红外技术的发展奠定了基础。
二次世界大战后,首先由美国德克萨斯仪器公司(TI)在1964年首次开发研制成功第一代用于军事领域的红外成像装置,称之为红外寻视系统(FLIR)。
它是利用光学机械系统对被测目标的红外辐射扫描,由光子探测器接收两维红外辐射,经光电转换及处理,最后形成热图像视频信号,并在荧屏上显示。
六十年代中期,瑞典AGA公司和瑞典国家电力局,在红外寻视装置的基础上,开发了具有温度测量功能的热红外成像装置。
这种第二代红外成像装置,通常称为热像仪。
七十年代,法国汤姆荪公司又研制出,不需致冷的红外热电视产品。
1986年,瑞典研制出工业用的实时成像系统,它无须液氮或高压气,而以热电方式致冷,可用电池供电;1988年又推出全功能热像仪,它将温度的测量、修改、分析、图像采集、存储合于一体,重量小于7kg,使仪器的功能、精度和可靠性都得到了显著的提高。
九十年代中期,美国FSI公司首先研制成功由军用转民用并商品化的新一代红外热像仪,它是属焦平面阵列式结构的一种凝视成像装置,技术功能更加先进,现场测温时只需对准目标摄取图像,并存储到机内的PC卡上。
各种参数的设定,可回到室内用软件进行修改和分析,最后直接得出检测报告。
由于取代了复杂的机械扫描,仪器重量已小于2kg,如同手持摄像机一样,单手即可操作使用。
随着红外焦平面阵列技术的迅速发展,美、英、法、德、日、加拿大、以色列等西方发达国家都在竞相研制和生产先进的红外焦平面阵列摄像仪,其中美国在红外焦平面阵列传感器的发展水平方面处于遥遥领先地位,其焦平面阵列规模已大达2048×2048元,已接近于可见光硅CCD摄像阵列的水平。
日本在世界上最先实现了100万像元集成度的单片式红外焦平面阵列,在品种方面,从HgCdTe、InSb、GaAlAs/GaAs量子阱和PtSi到非致冷红外焦平面阵列等种类产品推向市场,抢占商机; 法国、荷兰、瑞典、英国、德国和意大利等在非致冷红外热摄像仪技术的发展方面,已显出其处于前沿的竞争地位,如AGEMA公司的热视570,AGEMA520和德国STNATLAS电子公司驾驶员视觉增强系统,都具有很高的水平和市场竞争实力。
此外,加拿大、以色列、韩国、澳大利亚、波兰、新加坡的一些公司和机构都在尽力发展先进红外焦平面阵列热摄像仪技术,竞争已遍及全球几大洲。
七十年代,中国有关单位已经开始对红外热成像技术进行研究。
八十年代末,中国已经研制成功了实时红外成像样机,其灵敏度、温度分辨率都达到很高的水平。
进入九十年代,中国在红外成像设备上使用低噪声宽频带前置放大器,微型致冷器等关键技术方面有了发展,并且从实验走向应用。
如用于部队的便携式野战热像仪,反坦克飞弹、防空雷达以及坦克、军舰火炮等。
近几年来,中国的红外成像技术得到突飞猛进的发展,与西方的差距正在逐步缩小,有些设备的先进性也可同西方同步。
如目前己能生产面积小于30μm2的1000×1000像素的探测器阵列,由于采用了基于锑化銦的新器件,目前己达到了分辨率小干0.01℃的温差,使对目标的识别达到更高的水平。
红外热成像仪,可以分为致冷型和非致冷型两大类。
红外电视产品和非致冷焦平面热成像仪是非致冷型产品,其他为致冷型红外热成像仪。
前一代的热像仪主要由带有扫描装置的光学仪器和电子放大线路、显示器等部件组成,已经成功装备部队,并己用于夜间的地面观察、空中侦查、水面保险等方面。
目前,新的热成像仪主要采用非致冷焦平面阵列技术,集成数万个乃至数十万个信号放大器,将芯片置于光学系统的焦平面上,无须光机扫描系统而取得目标的全景图像,从而大大提高了灵敏度和热分辨率,并进一步地提高目标的探测距离和识别能力。
三、最新的红外热成像系统的组成及工作原理红外热成像技术是一种被动红外夜视技术,其原理是基于自然界中一切温度高于绝对零度(-273℃)的物体,每时每刻都辐射出红外线,同时这种红外线辐射都载有物体的特征信息,这就为利用红外技术判别各种被测目标的温度高低和热分布场提供了客观的基础。
利用这一特性,通过光电红外探测器将物体发热部位辐射的功率信号转换成电信号后,成像装置就可以一一对应地模拟出物体表面温度的空间分布,最后经系统处理,形成热图像视频信号,传至显示屏幕上,就得到与物体表面热分布相对应的热像图,即红外热图像。
非致冷焦平面红外热成像系统由光学系统、光谱滤波、红外探测器阵列、输入电路、读出电路、视频图像处理、视频信号形成、时序脉冲同步控制电路、监视器等组成。
系统的工作原理是,由光学系统接受被测目标的红外辐射经光谱滤波将红外辐射能量分布图形反映到焦平面上的红外探测器阵列的各光敏元上,探测器将红外辐射能转换成电信号,由探测器偏置与前置放大的输入电路输出所需的放大信号,并注入到读出电路,以便进行多路传输。
高密度、多功能的CMOS多路传输器的读出电路能够执行稠密的线阵和面阵红外焦平面阵列的信号积分、传输、处理和扫描输出,并进行A/D转换,以送入微机作视频图像处理。
由于被测目标物体各部分的红外辐射的热像分布信号非常弱,缺少可见光图像那种层次和立体感,因而需进行一些图像亮度与对比度的控制、实际校正与伪彩色描绘等处理。
经过处理的信号送入到视频信号形成部分进行D/A转换并形成标准的视频信号,最后通过电视屏或监视器显示被测目标的红外热像图。
红外焦平面阵列的工作性能除了与探测器性能如量子效率、光谱响应、噪声谱、均匀性等有关外,还与探测器探测信号的输出性能有关,如输入电路中的电荷存储、均匀性、线性度、噪声谱、注入效率,读出电路中的电荷转移效率、电荷处理能力、串扰等。
焦平面阵列结构有四种类型:单片式、准单片式、平面混合式和Z型混合式。
单片式焦平面阵列是指在同一芯片上即含有探测器又含有信号处理电路的Si器件;准单片式焦平面阵列器件是将探测器和读出线路分别制备,然后把它们装在同一个衬底上,通过引线焊接将两部分连在一起 ; 平面混合式采用铟柱将探测器阵列正面的每个探测器与多路传输器一对一地对准配接起来 ; Z型混合式则将许多集成电路芯片一个一个地层叠起来以形成一个三维的电路层叠结构。
平面混合和Z型混合方法的优点是由于将多路传输器与探测器直接混合,因而具有很高的封装密度,较快的工作效率,并使总的设计得以简化。
由于信号处理是在焦平面阵列中进行的,所以减少了器件的引线数目,光学孔径和频谱带宽也得以减小。
读出电路的电荷处理能力直接控制焦平面的动态范围,它的电荷转移效率影响焦平面的非均匀性、数据率、串扰和噪声,这些都综合影响焦平面的空间、时间和辐射能量的极限分辨能力以及空间和时间频率传递特性。
因此,读出电路的设计要求为 : 高电荷容量、高转移效率、低噪声和低功率耗散 ; 其次考虑抗光晕控制和降低交叉串扰。
据报道,GaAs可作为一种潜在的焦平面阵列读出技术,其原因是:GaAs的热膨胀系数与HgCdTe的匹配要比硅好得多,这样便有可能可靠地制备大型混合焦平面阵列 ; GaAs技术的辐射硬度比硅好得多 ; n型GaAs器件的施主能级比硅更接近导带边缘,这就使得GaAs器件在4K时更不受冻结效应的影响。