3.2恒参信道及其对信号传输的影响

合集下载

恒参信道对信号传输的影响

恒参信道对信号传输的影响

恒参信道对信号传输的影响信道响应函数为H (f )=|H (f )|e −j∅(f ),输入信号为x (t )=∑a n g (t −nT s ),其中T s =1,g (t )={1,0≤T s0,else ,用Matlab 画出如下情况时的信道输出信号,H(f)可自定义。

(1) 无失真信道,如H (f )=e −jπf (2) 幅度失真信道,如H (f )=sinπf πfe −jπf(3) 相位失真信道,如H (f )={e −π(f−1),f ≥0e −π(f+1),f <0一. 实验原理本次仿真主要通过Matlab 仿真图形直观的观察不同信道对信号的影响,并且总结分析归纳其中的原因。

通过已有的知识,我们知道输入信号过无失真信道,对其幅频、相频均无影响,也就是说在接收端可以直接获得原发送信号。

输入信号过幅度失真信号会产生幅度失真,信道可想象成其幅度产生变化而相位性质不变。

相位失真信道则在相位上对信号产生影响,幅度性质无改变。

二. Matlab 仿真图像及分析(1) 输入信号过无失真信道:(a ) 无失真信道幅频、相频图像:(b ) 信号过无失真信道后的输入、输出比较:信道幅频(c)小结:由图可知,无失真信道对信号不产生大的影响,但仔细观察会发现输出信号相对于输入信号有略微延迟,这是由于信号过系统产生时延造成的,满足无失真条件。

(2)输入信号过幅度失真信道:(a)幅度失真信道的幅频、相频图像:信道幅频信道相频(b)信号过幅度失真信道后的输入、输出比较:输出信号(c)小结:输出波形相对于输入信号失真了,产生原因是信道幅频响应不是常数,故信号经信道传输会产生明显的幅度失真。

(3)输入信号过相位失真信道:(a)相位失真信道的幅频、相频图像:信道相频(b)信号过幅度失真信道后的输入、输出比较:输入信号输出信号小结:由图可知信号过系统后其幅度大小不变,但相位发生变化,输出信号相对于输入信号将产生反向。

恒参信道及其对所传信号的影响

恒参信道及其对所传信号的影响
相频畸变对模拟话音通道影响并不显著,这是因为人耳对 相频畸变不太灵敏;但对数字信号传输却不然,尤其当传输速 率比较高时,相频畸变将会引起严重的码间串扰,给通信带来 很大损害。
信道的相位—频率特性还经常采用群迟延—频率特性来衡 量。所谓群迟延—频率特性,它被定义为相位—频率特性的导 数,即若相位—频率特性用φ(ω)表示,则群迟延—频率特性 (通常称为群迟延畸变或群迟延)τ(ω)为
地球
微波中继信道的构成
微波中继信道具有传输容量大、长途传输质量稳定、 节约有色金属、 投资少、维护方便等优点。因此,被 广泛用来传输多路电话及电视等。
卫星中继信道
人造卫星中继信道可视为无线电中继 信道的一种特殊形式。
轨道在赤道平面上的卫星,当它离地 面高度为35860Km时,绕地球一周的时 间恰好为24小时,--同步通信卫星
使用同步通信卫星作为中继站,可以 实现地球上18000Km范围内的多点联接。 三颗可以覆盖全球(两极为盲区)。
具有传输距离远、覆盖地域广、传播 稳定可靠、传输容量大等优点。广泛用 于传输多路电话、电报、数据、电视。
卫星中继信道示意图
B 地球 A
目前卫星中继信道主要工作频段有:L频段 (1.5/1.6GHz) 、 C 频 段 (4/6GHz) 、 Ku 频 段 (12/14GHz)、Ka频段(20/30GHz)。 卫星中继信道 的主要特点是通信容量大、传输质量稳定、传输 距离远、覆盖区域广等。另外,由于卫星轨道离 地面较远信号衰减大,电波往返所需要的时间较 长。对于静止卫星, 由地球站至通信卫星,再回 到地球站的一次往返需要0.26s 左右,传输话音 信号时会感觉明显的延迟效应。目前卫星中继信 道主要用来传输多路电话、 电视和数据。
对称电缆--在同一保护套内有许多对相互绝缘 的双导线的传输媒质。传输损耗比明线大得多,但传 输特性比较稳定。

恒参信道对信号传输的影响

恒参信道对信号传输的影响

通信原理仿真实验报告实验名称:恒参信道对信号传输的影响姓名:专业:年级:学号:201X年 X 月X日1. 恒参信道对信号传输的影响信道响应函数为()()|()|j f H f H f e φ-=,输入信号为()()n s nx t a g t nT =-∑,其中1,01,()0,ss t T T g t else≤<⎧==⎨⎩,用matlab 画出如下情况时的信道输出信号,()H f 自定义为如下● 无失真信道,如2()j f H f e π-= ● 幅度失真信道,如sin ()j ff H f e fπππ-=● 相位失真信道,如(1)(1),2(),2j f j f Fs e f H f Fs e f ππ---+⎧≤⎪⎪=⎨⎪>⎪⎩一、程序代码clear allN=10; %码元个数 Ts=1; %持续时间 Fs=100;dt=1/Fs; %采样频率与间隔a=randi(N,1,N*Ts/dt); %生成0到10随机均匀分布数组 x=zeros(1,N*Ts/dt); for i=1:length(x)x(i)=a(ceil(i/Ts*dt)); %生成输入时域信号 endft=2048; %fft 点数 Xw=fft(x,ft); %输入信号频域 f=0:Fs/ft:Fs -Fs/ft; %频率离散 %无失真信道Hw1=exp(-j*f*2*pi); %无失真信道频域 Yw1=Hw1.*Xw; %无失真信道输出频域信号 yt1=ifft(Yw1,ft); %无失真信道输出时域信号 figure(1); subplot(2,1,1);plot(abs(Hw1));title('无失真信道幅频特性'); axis([1 400 0 1.2]);subplot(2,1,2);plot(angle(Hw1));title('无失真信道相频特性');axis([1 100 -5 5]);figure(2);subplot(2,1,1);plot(x);title('输入信号');axis([1 1100 0 12]);subplot(2,1,2);plot(abs(yt1));title('无失真信道输出信号'); axis([1 1100 0 12]);%幅度失真信道Hw2=(sin(f*pi)./(f*pi)).*(exp(-j*f*pi));%幅度失真信道Yw2=Hw2.*Xw; %幅度失真信道输出频域信号Yw2(1)=0; %零点添加定义yt2=ifft(Yw2,ft);figure(3);subplot(2,1,1);plot(abs(Hw2));title('幅度失真信道幅频特性');axis([1 400 0 1.2]);subplot(2,1,2);plot(angle(Hw2));title('幅度失真信道相频特性');axis([1 100 -5 5]);figure(4);subplot(2,1,1);plot(x);title('输入信号');axis([1 1100 0 12]);subplot(2,1,2);plot(abs(yt2));title('幅度失真信道输出信号'); axis([1 1100 0 12]);%相位失真信道Hw3(1:ft/2)=exp(-j*(pi*f(1:ft/2)-pi));Hw3(ft/2+1:ft)=exp(-j*(pi*f(ft/2+1:ft)+pi));%相位失真信道Yw3=Hw3.*Xw; %相位失真信道输出信号yt3=ifft(Yw3,ft);figure(5);subplot(2,1,1);plot(abs(Hw3));title('相位失真信道幅频特性');axis([1 400 0 1.2]);subplot(2,1,2);plot(angle(Hw3));title('相位失真信道相频特性');axis([1 100 -5 5]);figure(6);subplot(2,1,1);plot(x);title('输入信号');axis([1 1100 0 12]);subplot(2,1,2);plot(abs(yt3));title('相位失真信道输出信号'); axis([1 1100 0 12]);二、实验结果与分析(1)无失真信道—2()j fH fe π-=1、无失真信道的幅频、相频响应由图知,无失真信道2()j fH f eπ-=是一个全通网络,增益为1,相位做周期性变化。

号传输的影响35随参信道及其对信号传输的影响36加性噪声37信

号传输的影响35随参信道及其对信号传输的影响36加性噪声37信

各种无线传输方式的频率分布
类别
频率
无线电,中波
300~3000kHz
无线电,短波
3~30MHz
无线电,超短波
30~1000MHz
微波
1~300GHz
亚毫米波
300~3000GHz
红外波
750~4×105GHz
可见光
4×105 ~ 7.5 ×105 GHz
波长 100~1000m
10~100m 0.3~10m 30~0.1cm 1~0.1mm 0.4~7.5×10-4mm 7.5×10-4 ~4 ×10-4 mm
狭义信道是广义信道十分重要的组成部分,通信 效果的好坏,在很大程度上将依赖于狭义信道 的特性即传输媒质的特性。因此,在研究信道 的一般特性时, “传输媒质”仍是讨论的重点。
今后,为了叙述方便,常把广义信道简称为信 道。
⑵广义信道:除了包括传输媒质外,还包括通信系统有 关的变换装置,这些装置可以是发送设备、接收设备、 馈线与天线、调制器、解调器等等。这相当于在狭义 信道的基础上, 扩大了信道的范围。它的引入主要是 从研究信息传输的角度出发,使通信系统的一些基本 问题研究比较方便。
塑料外皮 双绞线(5对)
图 3 – 8 对称电缆结构图
同轴电缆
同轴电缆与对称电缆结构不同,单根同轴电缆的结构图如 图 3 - 9(a)所示。同轴电缆由同轴的两个导体构成,外导 体是一个圆柱形的导体,内导体是金属线,它们之间填 充着介质。 实际应用中同轴电缆的外导体是接地的,对 外界干扰具有较好的屏蔽作用,所以同轴电缆抗电磁干 扰性能较好。在有线电视网络中大量采用这种结构的同 轴电缆。为了增大容量,也可以将几根同轴电缆封装在 一个大的保护套内,构成多芯同轴电缆,另外还可以装 入一些二芯绞线对或四芯线组,作为传输控制信号用。

周炯盘《通信原理》第3版名校考研真题(信道)【圣才出品】

周炯盘《通信原理》第3版名校考研真题(信道)【圣才出品】

周炯槃《通信原理》第3版名校考研真题第8章信道一、选择题1.恒参信道特性不理想,会引起信号的()畸变和()畸变。

[南京邮电大学2007研] A.低频,甚高频B.高频,相频C.幅频,相频D.码间,倒相【答案】C【解析】恒参信道不理想会引起信号的幅度和相位畸变,因此会造成幅频畸变和相频畸变。

2.以下不属于随参信道中多径效应的是()。

[南京邮电大学2007研]A.瑞利衰落B.频率选择性衰落C.频率畸变D.幅度频率畸变【答案】D【解析】随参信道中的多径效率有:瑞利衰落;频率选择性衰落;频率弥散。

二、填空题1.对于900MHz的移动无线通信GSM系统,信号传输环境受到很多因素限制,其信道特性为______,且限制带外辐射和移动终端(手机)的信号功率尽可能小,因此调制方式中GSM不宜采用______等调制方式;又因信道拥挤,也不宜采用______调制方式,较适宜的调制方式有______等,现普遍采用______调制。

[同济大学2006研]【答案】衰落特性、多径特性、非线性;ASK、MASK;FSK、MFSK;QAM、MSK、QPSK、OQPSK;GMSK调制2.在数字通信中,当信号带宽超过多径传播随参信道的相干带宽时,会产生衰落。

为了对抗此衰落,在TDMA系统中常用的措施是,在CDMA系统中常用的措施是。

[北京邮电大学2005研]【答案】频率选择性;均衡;Rake接收3.恒参信道对信号传输的影响主要表现在:______,______,______。

[南京邮电大学2003研]【答案】幅频畸变;相频畸变;多径传播【解析】所谓幅度-频率畸变,是指信道的幅度-频率特性偏离如图8-1所示关系所引起的畸变。

图8-1所谓相位-频率畸变,是指信道的相位-频率特性或群迟延-频率特性偏离如图8-2所示关系而引起的畸变。

图8-24.宽频带信号在短波电离层反射信道中传输时,可能遇到的主要衰落类型是。

[西安电子科技大学2002研]【答案】频率选择性衰落【解析】因为传输信号的频谱宽于信道的相关带宽△f,则该信号传输将产生明显的频率选择性衰落,指的就是发生在一小组频率上的信号衰落,它是由频率中的多路径成分引起的。

恒参信道及其特性

恒参信道及其特性

模块2 恒参信道及其特性(ZY3200102002)【模块描述】本模块介绍了恒参信道及其特性,包含几种恒参信道及其特性、均衡的基本概念。

通过概念介绍、图形讲解,掌握恒参信道的特性及其对信号传输的影响。

【正文】恒参信道是指由电缆、光导纤维、人造卫星、中长波地波传播、超短波及微波视距传播等传输媒质构成的信道。

一、有线电信道1.对称电缆对称电缆是指在同一保护套内有许多对相互绝缘的双导线的传输媒质。

导线材料主要是铜或铝,直径为0.4~1.4mm 。

为了减小各线对之间的干扰,每一对线都拧成扭绞状。

对称电缆的传输损耗相对较大但其传输特性比较稳定。

2.同轴电缆如图ZY3200102002-1所示。

同轴电缆由同轴的两个导体构成,外导体是一个圆柱形的空管,在可弯曲的同轴电缆中,它可以由金属丝编织而成。

内导体是金属线。

它们之间填充着塑料或空气等介质。

图ZY3200102002-1同轴电缆的基本结构二、光纤信道光纤信道是以光导纤维(简称光纤)为传输媒质、以光波为载波的信道。

它能够实现大容量的传输。

光纤具有损耗低、频带宽、线径细、重量轻、可弯曲半径小、不怕腐蚀以及不受电磁干扰等优点。

三、无线电视距中继无线电视距中继是指工作频率在超短波和微波波段时,电磁波基本上是沿视线传播,通信距离依靠中继方式延伸的无线电电路。

相邻中继站之间的距离一般在40~50公里。

图ZY3200102002-2 无线电中继信道 图ZY3200102002-5 卫星中继信道 无线电中继信道的构成如图ZY3200102002-2所示。

它由终端站、中继站及各站间的电波传播路径构成。

具有传输容量大、发射功率小、通信稳定可靠等优点。

主要用于长途干线、移动通信网以及某些数据收集系统。

四、卫星中继信道 保护层 外导体 绝缘层 内导体卫星中继信道是无线电中继信道的一种特殊形式。

它是航天技术与通信技术相结合的产物。

卫星中继信道由通信卫星、地球站、上行线路及下行线路构成。

恒参信道特性

恒参信道特性

频率Hz制畸变,或使用畸变较小的区域 (2)加补偿网络——即均衡 均衡
300 1100
实际的幅频特性
二、相—频畸变
1.影响 .
(1)对模拟通信影响不大 (2)对数字通信会引起码间串扰,误码
迟延:τ(ω)
2.特性衡量 .
用迟延——频率特征来衡量 注意:迟延不一定会引起码间串扰
恒参信道特性及其对信号传输的 影响
模型 非时变线性网络 特性——从系统的观点 从系统的观点 特性 幅频特性、 幅频特性、相频特性
一、幅—频畸变
1.定义 .
由于幅度—频率特性不理想引起的畸变为 频率失真 衰耗
2.畸变例子 .
以电话传输为例:
dB
3.影响 .
(1)信号失真 (2)形成码间串扰 码间串扰
相位:φ(ω)
ω 实际
ω
迟延:τ(ω)
不同延迟
ω 理想特性
三次谐波
基波
合成波
三、其他畸变
1、非线性畸变:不易消除 2、频率偏移 3、相位抖动

恒参信道及其对信号传输的影响(1)

恒参信道及其对信号传输的影响(1)

d
d
t0
0
25
信号无失真传播条件
2021/4/7
恒参信道并不是理想网络,其参数随时间 不变化或变化特别缓慢,不可避免会产生 线性畸变 线性畸变是由于网络特性不理想所造成的 畸变,主要是因为网络幅频特性和相频特 性不理想造成的,线性畸变与非线性畸变 的区别是线性畸变不会产生新的频率成分。 线性畸变对信号的主要影响可用幅度—频 率畸变和相位—频率畸变(群迟延—频率 特性)来衡量
2:1
基波 谐波
合成波
信号的基波和三次谐波 经信道传输后的迟延
分别为π和2π
谐波 合成波
基波
34
拖尾
相频畸变特性
2021/4/7
信道中的带通滤波器和电感线圈是带来相 频畸变的主要因素 相频畸变在信道频带边缘表现得更为严重 这种畸变不会产生新的频率成分,是一种 线性畸变
可以采取相位均衡补偿技术补偿群迟延畸变 可以严格限制已调信号的频谱,使它保持在信 道的线性相移范围内传输。 可采用均衡器对不是线性的相频特性加以补偿。
衰耗(dB)
k
0
28
幅度-频率畸变
2021/4/7
实际中的信道不可能有这样理想的幅频特 性。
典型音频电话信道的相对衰耗曲线
dB 30
20
10
1200
2400
29
3600 f(Hz)
幅度-频率畸变
2021/4/7
一般数字信号是矩形波或升余弦波,具有丰富的 频率成分,如果信道幅频特性不均匀,将使各频 率受到不同的衰耗,从而使波形发生畸变
7
典型的恒参信道
2021/4/7
明线 双绞线 同轴电缆 光缆 地面微波视距传播 卫星中继信道
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆大学通信工程学院
地面微波视距传播
数字通信原理
微波接力通信的主要优点
微波波段频率高,频段范围宽,信道容量大。 微波波段频率高,频段范围宽,信道容量大。 因为工业干扰和天电干扰的主要频谱成分比微波频率低得多, 因为工业干扰和天电干扰的主要频谱成分比微波频率低得多,对 微波通信的危害比对短波和米波通信小得多, 微波通信的危害比对短波和米波通信小得多,因而微波传输质量 较高。 较高。 微波接力信道能够通过有线线路难于通过或不易架设的地区( 微波接力信道能够通过有线线路难于通过或不易架设的地区(如 高山、水面),故有较大的机动灵活性, ),故有较大的机动灵活性 高山、水面),故有较大的机动灵活性,抗自然灾害的能力也较 因而可靠性较高。 强,因而可靠性较高。 微波接力通信与相同容量和长度的电缆载波通信相比, 微波接力通信与相同容量和长度的电缆载波通信相比,建设投资 见效快。 少,见效快。
重庆大学通信工程学院
卫星中继通信
数字通信原理
卫星中继通信的优点
通信距离远,且通信费用与通信距离无关 通信距离远, 卫星通信的频带很宽,通信容量很大, 卫星通信的频带很宽,通信容量很大,信号 所受的干扰也小, 所受的干扰也小,通信比较稳定
卫星中继通信的缺点
卫星通信有较大的传播时延
重庆大学通信工程学院
重庆大学通信工程学院
典型的恒参信道
数字通信原理
明线 双绞线 同轴电缆 光缆 地面微波视距传播 卫星中继信道
重庆大学通信工程学院
双绞线
数字通信原理
最古老但又是最常用的传输媒体。 最古老但又是最常用的传输媒体。把两根互相绝缘的铜导线并排放在 一起,然后用规则的方法扭绞起来就构成了双绞线。 一起,然后用规则的方法扭绞起来就构成了双绞线。 模拟传输和数字传输都可以使用双绞线, 模拟传输和数字传输都可以使用双绞线,其通信距离一般为几到十几 公里。 公里。 双绞线的价格便宜,性能良好,使用广泛。双绞线采用的导线越粗, 双绞线的价格便宜,性能良好,使用广泛。双绞线采用的导线越粗, 通信距离就越远,但导线的价格也越高。 通信距离就越远,但导线的价格也越高。 为了提高双绞线的抗电磁干扰的能力, 为了提高双绞线的抗电磁干扰的能力,可在双绞线的外面再加上一个 用金属丝编织成的屏蔽层,这种加屏蔽层的双绞线称为屏蔽双绞线, 用金属丝编织成的屏蔽层,这种加屏蔽层的双绞线称为屏蔽双绞线, 相对于无屏蔽双绞线来说,价格要贵一些。 相对于无屏蔽双绞线来说,价格要贵一些。
dϕ ( ω ) τ (ω ) = dω
τ (ω )
t0
0
ω
重庆大学通信工程学院
信号无失真传播条件
数字通信原理
恒参信道并不是理想网络, 恒参信道并不是理想网络,其参数随时间 不变化或变化特别缓慢, 不变化或变化特别缓慢,不可避免会产生 线性畸变 线性畸变是由于网络特性不理想所造成的 畸变, 畸变,主要是因为网络幅频特性和相频特 性不理想造成的, 性不理想造成的,线性畸变与非线性畸变 的区别是线性畸变不会产生新的频率成分。 的区别是线性畸变不会产生新的频率成分。 线性畸变对信号的主要影响可用幅度—频 线性畸变对信号的主要影响可用幅度 频 率畸变和相位—频率畸变 群迟延—频率 频率畸变( 率畸变和相位 频率畸变(群迟延 频率 特性) 特性)来衡量
恒参信道 典型的恒参信道 信号无失真传输条件 幅度-频率畸变 幅度- 相位-频率畸变 相位- 其他影响ຫໍສະໝຸດ 重庆大学通信工程学院恒参信道
数字通信原理
恒参信道对信号传输的影响是固定的, 恒参信道对信号传输的影响是固定的,或者随时 间缓慢变化的,通常情况下,若在数字信号几个 间缓慢变化的,通常情况下, 最长的符号时间内,信道特性基本不变, 最长的符号时间内,信道特性基本不变,即可认 为此信道为恒参信道。 为此信道为恒参信道。 信道模型可以等效为一个线性时不变网络, 信道模型可以等效为一个线性时不变网络,其传 输函数为K( K(ω 它和一般线性时不变网络一样, 输函数为K(ω) 。它和一般线性时不变网络一样, 可用幅频特性和相频特性来表征它的传输特性。 可用幅频特性和相频特性来表征它的传输特性。 从理论上讲,只要得到这个网络的传输特性, 从理论上讲,只要得到这个网络的传输特性,利 用信号通过线性系统的分析方法, 用信号通过线性系统的分析方法,就可求得已调 信号通过恒参信道后的变化规律。 信号通过恒参信道后的变化规律。
50Ω同轴电缆 50Ω同轴电缆 75Ω同轴电缆 75Ω同轴电缆
重庆大学通信工程学院
典型的恒参信道
数字通信原理
明线 双绞线 同轴电缆 光缆 地面微波视距传播 卫星中继信道
重庆大学通信工程学院
光缆
数字通信原理
光纤通信是利用光导纤维(简称光纤) 光纤通信是利用光导纤维(简称光纤)传递光脉 冲来进行通信。有光脉冲相当于1 没有相当于0 冲来进行通信。有光脉冲相当于1,没有相当于0, 由于可见光的频率非常高,约为每秒108量级, 108量级 由于可见光的频率非常高,约为每秒108量级,因 此光纤通信系统的传输带宽远远大于目前其他各 种传输媒体的带宽。 种传输媒体的带宽。
重庆大学通信工程学院
典型的恒参信道
数字通信原理
明线 双绞线 同轴电缆 光缆 地面微波视距传播 卫星中继信道
重庆大学通信工程学院
卫星中继通信
数字通信原理
卫星通信是在地球站之间利用位于3 卫星通信是在地球站之间利用位于3万6千公里高 空的人造同步地球卫星作为中继器的一种微波接 力通信。 力通信。 卫星是在太空的无人值守的微波通信中继站。 卫星是在太空的无人值守的微波通信中继站。 卫星通信的主要优缺点和地面微波通信差不多。 卫星通信的主要优缺点和地面微波通信差不多。
有线信道为典型的恒参信道 无线信道中的中、长波通信, 无线信道中的中、长波通信,超短波及微波视距通信 等基本上也属于恒参信道。 等基本上也属于恒参信道。
重庆大学通信工程学院
3.2 恒参信道及其对信号传输的影响
数字通信原理
1 2 3 4 5 6
恒参信道 典型的恒参信道 信号无失真传输条件 幅度-频率畸变 幅度- 相位-频率畸变 相位- 其他影响
H (ω )
ϕ (ω )
k
ϕ = kω
ω
0
ω
0
重庆大学通信工程学院
信号无失真传播条件
数字通信原理
信道的相频特性还经常用群迟延——频率特性 频率特性 信道的相频特性还经常用群迟延 来衡量,所谓群迟延——频率特性,就是相位 来衡量,所谓群迟延 频率特性, 频率特性 特性对频率的导数,若相位频率特性用φ 特性对频率的导数,若相位频率特性用φ(ω) 表示,群迟延用τ 表示, 表示,群迟延用τ(ω)表示,则系统函数的幅 频特性是一个不随频率变化的常数。 频特性是一个不随频率变化的常数。
重庆大学通信工程学院
典型的恒参信道
数字通信原理
明线 双绞线 同轴电缆 光缆 地面微波视距传播 卫星中继信道
重庆大学通信工程学院
明线
数字通信原理
明线导线通常采用铜线、铝线或钢线( 明线导线通常采用铜线、铝线或钢线(铁 ),线径为3mm左右 线径为3mm左右。 线),线径为3mm左右。 对铜、铝线来说, 对铜、铝线来说,长距传输的最高允许频 率为150kHz左右,可复用16个话路;短距 率为150kHz左右,可复用16个话路; 150kHz左右 16个话路 传输时,有时传输频率可达300kHz左右, 300kHz左右 传输时,有时传输频率可达300kHz左右, 可再增开12个话路。 12个话路 可再增开12个话路。 明线信道易受天气变化和外界电磁干扰, 明线信道易受天气变化和外界电磁干扰, 通信质量不够稳定,信道容量较小, 通信质量不够稳定,信道容量较小,不能 传输视频信号和高速数字信号。 传输视频信号和高速数字信号。
重庆大学通信工程学院
光缆
数字通信原理
光纤的优点: 光纤的优点:
传输频带非常宽,通信容量大。 传输频带非常宽,通信容量大。 传输损耗小,中继距离长,对远距离传输特别经济。 传输损耗小,中继距离长,对远距离传输特别经济。 抗雷电和电磁干扰性能好。 抗雷电和电磁干扰性能好。这在有大电流脉冲干扰的 环境下尤为重要。 环境下尤为重要。 无串音干扰,保密性好,不易被窃听或截取数据。 无串音干扰,保密性好,不易被窃听或截取数据。 体积小,重量轻。 体积小,重量轻。 这在现有电缆管道已拥挤不堪的情 况下特别有利。 况下特别有利。
系统函数的幅频特性H(ω 系统函数的幅频特性H(ω)是一个不随频率变 H( 化的常数。 化的常数。 系统函数的相频特性φ 系统函数的相频特性φ(ω)为一过原点的直 即群时延为常数。 线,即群时延为常数。
重庆大学通信工程学院
信号无失真传播条件
数字通信原理
系统函数的幅频特性H(ω)是一个不随频 系统函数的幅频特性H(ω H( 率变化的常数。 率变化的常数。 系统函数的相频特性φ 系统函数的相频特性φ(ω)为一过原点的 直线,即群时延为常数。 直线,即群时延为常数。
重庆大学通信工程学院
典型的恒参信道
数字通信原理
明线 双绞线 同轴电缆 光缆 地面微波视距传播 卫星中继信道
重庆大学通信工程学院
同轴电缆
数字通信原理
同轴电缆由内导体铜制芯线( 同轴电缆由内导体铜制芯线(单股实心线或多股 绞合线)、绝缘层、 )、绝缘层 绞合线)、绝缘层、网状编织的外导体屏蔽层以 及保护塑料外层组成
CCEE
第三章 信道与干扰
数字通信原理
主要内容
数字通信原理
3.1 概 述 3.2 恒参信道及其对信号传输的影响 3.3 变参信道及其对信号传输的影响 3.4 变参信道特性的改善 3.5 信道噪声 3.6 信道容量
重庆大学通信工程学院
3.2 恒参信道及其对信号传输的影响
数字通信原理
1 2 3 4 5 6
光纤的缺点
相关文档
最新文档