信道特性对信号传输的影响

合集下载

通信原理第4章信道

通信原理第4章信道
1
第4章 信道
4.0 信道的定义及分类 4.1 无线信道 4.2 有线信道 4.3 信道数学模型 4.4 信道特性及其对信号传输的影响 4.5 信道中的噪声 4.6 信道容量
2
本章教学目的:了解各种实际信道、信
道的数学模型和信道容量的概念。

本章的讨论思路:通过介绍实际信道的例
子,在此基础上归纳信道的特性,阐述信道的 数学模型,最后简介了信道容量的概念。
信道模型的分类: 调制信道 编码信道
信 息 源 信 源 编 码 加 密 信 道 编 码 数 字 调 制 数 字 解 调 信 道 译 码 解 密 信 源 译 码 受 信 者
信道 噪声源
调制信道 编码信道
31
4.3.1 调制信道模型
有一对(或多对)输入端和一对(或多对)输出端; 绝大多数的信道都是线性的,即满足线性叠加原理;
41
相位-频率畸变
指相位-频率特性偏离线性关系所引起的畸变。
1、理想相频特性是一直线
群延迟-频率特性
|H( )|
d ( ) ( ) d

( ) td
O (b) td
K0
O (a)

O (c)

42
2、实际电话信道的群延迟特性 一种典型的音频电话信道的群延迟特性。
25
光纤呈圆柱形,由芯、封套和外套三部分组成(如 图所示)。芯是光纤最中心的部分,它由一条或多 条非常细的玻璃或塑料纤维线构成,每根纤维线都 有它自己的封套。由于这一玻璃或塑料封套涂层的 折射率比芯线低,因此可使光波保持在芯线内。环 绕一束或多束有封套纤维的外套由若干塑料或其它 材料层构成,以防止外部的潮湿气体侵入,并可防 止磨损或挤压等伤害。

第4章_信道

第4章_信道

32
4.3 信道的数学模型
内蒙古大学电子信息工程学院 《通信原理》
4.3.2 编码信道模型
由于信道噪声或其它因素的影响,将导致输出数字序列发生 错误,因此输入输出数字序列之间的关系可以用一组 转移概率 来表征。 转移概率:在二进制系统中,就是“0”转移为“1”的 概率和“1”转移为“0”的概率。
8
4.1 无线信道
内蒙古大学电子信息工程学院 《通信原理》
地波
频率在2MHz以下的电磁波,趋于沿弯曲的地球表面传 播,有一定的绕射能力。 地波在传播过程中要不断损失能量,而且频率越高损 失越大,因此传播距离不大,一般在数百千米到数千千米。
传播路径 传播路径
发射天线 发射天线
地面 地面
接收天线 接收天线
导体 绝缘层
图4-9 双绞线
21
4.2 有线信道
内蒙古大学电子信息工程学院 《通信原理》
传输电信号的有线信道主要有三类:
明线、对称电缆和同轴电缆。 同轴电缆
由内外两根同心圆柱导体构成,两根导体之间用绝缘体 隔离开。内导体多为实心导线,外导体是一根空心导电管或 金属编织网,在外导体外面有一层绝缘保护层。其优点是抗 干扰特性好。
增大视线传播距离的途径 卫星中继(卫星通信)
利用三颗地球同步卫星可以覆盖全球,从而实现全球通信。
利用卫星作为中继站能够增大一次 转发的距离,但是却增大了发射功 率和信号传输的延迟。 此外,发射卫星也是一项巨大的工 程。 故开始研究使用平流层通信。 图4-5 卫星中继
15
4.1 无线信道
发射天线 发射天线
地面 地面
接收天线 接收天线
图4-4
无线电中继
特点:容量大、发射功率小、稳定可靠等。

第3章 信 道

第3章  信    道

图3-12 非线性特性
频率偏移是指信道输入信号的频谱经 过信道传输后产生了平移。 相位抖动是由于振荡器的频率不稳定 产生的。
3.4.2 随参信道对信号传输的 影响
无线信道中有一些是随参信道,例如 依靠天波传播或地波传播的无线信道。 随参信道的特性是“时变”的,即随 时间改变的。
一般说来,各种随参信道具有的共同 特性是:第一,信号的传输衰减随时间而 变;第二,信号的传输时延随时间而变; 第三,信号经过几条路径到达接收端,而 且每条路径的长度(时延)和衰减都随时 间而变,即存在多径传播现象。 多径传播对信号的影响称为多径效应。
i 1
i 1
X c (t ) i (t ) cos i (t )
i 1
n
(3-7)
X s (t ) i (t )sin i (t )
i 1
n
(3-8)
则 X c (t )和X s (t ) 都是缓慢随机变化
的。 将式(3-7)和式(3-8)代入式(36),得出
R(t ) X c (t )cos 0t X s (t )sin 0t V (t )cos[0t (t )]
3.同轴电缆
同轴电缆由内外两根同心导体构成, 在这两根导体间用绝缘体隔离开。 如图3-6所示。

图3-6 同轴电缆结构图
4.光纤
光纤是由折射率不同的两种玻璃纤维 制成的。 光纤的中心称为纤芯,外面包有折射 率较低的一层玻璃,称为包层。 按照光波在光纤中传播的方式不同, 光纤又分为多模光纤和单模光纤两类。
经过接收滤波器后的噪声双边功率谱 密度为Pn( f ),如图3-16所示,则此噪声的 功率等于 ∞ (3-18) Pn Pn ( f )df

通信原理樊昌信第七版

通信原理樊昌信第七版

1. 传输特性
H ()H ()ej ()
H() ~ 幅频特性
()~相频特性
2. 无失真传输
H ( )K ejtd
H() K
()td
n 无失真传输(理想恒参信道)特性曲线:
恒参信道
|H()|
K
() td
td
0
H() K
幅频特性
0
0
()td ()dd ()td
相频特性
群迟延特性
n 理想恒参信道的冲激响应:
定义·分类
模型·特性
影响·措施
信道噪声 信道容量
20
§4.3 信道数学模型
1. 调制信道模型 n 模型: 叠加有噪声的线性时变/时不变网络:
si (t)
C()
输入
r(t)
+
输出
n 共性:
信道
n(t)
有一对(或多对)输入端和输出端
大多数信道都满足线性叠加原理
对信号有固定或时变的延迟和损耗
无信号输入时,仍可能有输出(噪声)
地球
对流层散射通信
r 流星余迹散射
无线信道
流星余迹
特性: 高度80 ~ 120 km,长度15 ~ 40 km 存留时间:小于1秒至几分钟
频率: 30 ~ 100 MHz 距离: 1000 km以上 用途: 低速存储、高速突发、断续传输
12
§4.2 有线信道
n 明线 n 对称电缆 n 同轴电缆 n 光纤
本章内容:
第4章 信道
信道分类
信道模型
恒参/随参信道特性对信号传输的影响
信道噪声
信道容量
定义·分类
模型·特性
影响·措施
信道噪声 信道容量

无线通信中信号传输延迟影响因素

无线通信中信号传输延迟影响因素

无线通信中信号传输延迟影响因素在当今高度互联的世界中,无线通信已成为我们日常生活和工作不可或缺的一部分。

从手机通话、视频会议到物联网设备之间的数据传输,无线通信的高效性和可靠性至关重要。

然而,在无线通信过程中,信号传输延迟是一个不可忽视的问题,它可能会影响通信质量,甚至导致某些应用无法正常运行。

那么,究竟有哪些因素会影响无线通信中的信号传输延迟呢?首先,信号传播的距离是一个关键因素。

当信号从发送端传输到接收端时,它需要穿越一定的空间距离。

距离越远,信号传播所需的时间就越长,从而导致传输延迟增加。

这就好比我们向远处的人喊话,距离越远,声音到达对方耳朵的时间就越晚。

在无线通信中,信号通常以电磁波的形式传播,其传播速度接近光速,但即使如此,长距离的传输仍会带来明显的延迟。

其次,无线信道的特性对信号传输延迟有着重要影响。

无线信道是信号传输的媒介,但其具有时变、衰落和多径等复杂特性。

时变特性意味着信道的参数会随时间变化,例如信号的强度和相位可能会因为移动终端的位置改变、周围环境的变化而不断变化。

衰落则是指信号在传播过程中出现的强度减弱现象,这可能导致信号需要多次重传,从而增加了传输延迟。

多径传播是指信号通过多条不同的路径到达接收端,这些路径的长度不同,导致信号到达的时间也不同,从而引起信号的叠加和干扰,进一步增加了延迟。

信号的调制方式也会影响传输延迟。

调制是将信息加载到载波上以便传输的过程。

不同的调制方式具有不同的效率和复杂度。

例如,一些简单的调制方式可能传输速度较慢,但处理过程相对简单,延迟较低;而复杂的调制方式虽然可以提高传输效率,但可能需要更多的处理时间和计算资源,从而导致传输延迟增加。

在实际应用中,需要根据通信需求和系统性能来选择合适的调制方式,以平衡传输效率和延迟。

网络拥塞是另一个导致信号传输延迟的重要因素。

当大量的数据同时在网络中传输时,网络的带宽可能会被耗尽,数据就会在路由器和交换机等设备中排队等待处理,从而造成延迟。

知识要点随参信道传输媒质的特点,随参信道特性对信号传输的影响及改善

知识要点随参信道传输媒质的特点,随参信道特性对信号传输的影响及改善

《通信原理》 第六讲知识要点:随参信道传输媒质的特点,随参信道特性对信号传输的影响及改善方法§3. 3 随参信道及其传输特性随参信道是指信道传输特性随时间随机快速变化的信道。

常见的随参信道有陆地移动信道、短波电离层反射信道、超短波流星余迹散射信道、超短波及微波对流层散射信道、超短波电离层散射以及超短波超视距绕射等信道。

一、随参信道举例1. 陆地移动信道陆地移动通信工作频段主要在VHF 和UHF 频段,电波传播特点是以直射波 为主。

但是,由于城市建筑群和其它地形地物的影响,电波在传播过程中会产生反射波、散射波以及它们的合成波,电波传输环境较为复杂,因此移动信道是典型的随参信道。

1) 自由空间传播当移动台和基站天线在视距范围之内,这时电波传播的主要方式是直射波。

设发射机输入给天线功率为T P (W),则接收天线上获得的功率为24⎪⎭⎫ ⎝⎛=d G G P P R T T R πλ (3.3-1) 式中,T G 为发射天线增益,R G 为接收天线增益,d 为接收天线与发射天线之间直线距离,πλ42为各向同性天线的有效面积。

当发射天线增益和接收天线增益都等于1时,式(3.3-1)简化为24⎪⎭⎫⎝⎛=d P P T R πλ (3.3-2)自由空间传播损耗定义为 RTfs P P L =(3.3-3) 代入式(3.3-2)可得24⎪⎭⎫⎝⎛=λπd L fs (3.3-4)用dB 可表示为 []λπdL fs 4lg20=f d lg 20lg 2044.32++= (dB) (3.3-5)式中,d 为接收天线与发射天线之间直线距离,单位为km ;f 为工作频率,单位为MHz 。

2) 反射波与散射波当电波辐射到地面或建筑物表面时,会发生反射或散射,从而产生多径传播现象,如图3-17所示。

图3-17 移动信道的传播路径3) 折射波电波在空间传播中,由于大气中介质密度随高度增加而减小,导致电波在空间传播时会产生折射、散射等。

通信原理第7版第4章(樊昌信版)课件

通信原理第7版第4章(樊昌信版)课件

正确
错误
Pe P(0)P(1/ 0) P(1)P(0 /1)
学习交流PPT
24
四进制 无记忆 编码信道

0
1
发 送 端2
3
学习交流PPT
0
1
接 收 2端
3
25
§4.4
恒参/随参信道特性 对信号传输的影响
学习交流PPT
26
恒参信道 特性及其对信号传输的影响
线性时不变系统
• 特点:传输特性随时间缓变或不变。
传播路径 天波传播方式
学习交流PPT
6
无线信道
视线传播 line-of-sight
d
频率: > 30 MHz
h
发射
特性:直线传播、穿透电离层 天线 r
用途:卫星和外太空通信
传播途径
d
D
接收 天线
r
超短波及微波通信
视线传播方式
距离:与天线高度有关
D2 D2 h (m)
8r 50
D 为收发天线间距离(km)
So()C()Si()
C n (t )
学习交流PPT
22
不同的物理信道具有不同的特性C() = 常数(可取1)
加性高斯白噪声信道模型
学习交流PPT
23
§4.3.2 编码信道模型 模型: 可用 转移概率来描述。
二进制 无记忆 编码信道 模型
P(0/0) + P(1/0) = 1
P(1/1) + P(0/1) = 1
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
D = 44.7 km
学习交流PPT
7
微波中继(微波接力) 卫星中继(静止卫星、移动卫星) 平流层通信

第三章 信道 信道是通信系统必不可少的组成部分.一般来说,实.

第三章 信道 信道是通信系统必不可少的组成部分.一般来说,实.


在信道有效的传输带宽内, | H(ω) |不是恒定不变的,而是 随频率的变化有所波动。这种振幅频率特性的不理想导致信 号通过信道时波形发生失真,又称为幅度频率失真。
如有线电话信道的衰减—频率特性就是不理想的,
产生原因:信道中存在各种滤波器、混合线圈、串联电 容、分布电感等。 影响: 对模拟信号,使波形失真,如语音信号,不同频率 强弱变化; 对数字信号,会引起相邻码元波形在时间上相互重 叠(因信道特性变化),从而造成码间串扰、误码。 1. 相位——频率畸变: 经常用群迟延——频率特性来描述相频特性: 群迟延——频率特性为:τ(ω)=dφ(ω)/d ω,当φ(ω) =-ωtd 即τ(ω)=-td时,无相频畸变。
3.克服措施: 模拟通信: 利用线性补偿网络进行频域均衡,使衰耗特性曲 线平坦,联合频率特性无畸变。 数字通信:合理设计收、发滤波器,消除信道产生的码间串扰; 信 道特性缓慢变化时,用时域均衡器,使码间串扰降到最小且可自适 应信道特性变化。

三、随参信道特性及其对信号传输的影响
随参信道包括短波电离层反射信道、超短波流星余迹散射、超短 波及微波对流层散射、超短波电离层散射等。 对流层:10km~12km以下大气层 电离层:60~600km大气层
如果传输特性不好(即上述两个条件不满足),会使信号传输产 生失真(也称畸变)。 1. 幅度——频率畸变
幅度——频率畸变是信道的幅度——频率特性不理想引起的,主 要是
三、参信道特性及其对信号传输的影响
当前大多数的数据通信都是通过恒参信道(或近 似恒参信道)进行传输的,如有线信道、微波视距信 道、卫星信道等都是恒参信道。恒参信道的主要特点 是可以把信道等效成一个线性时不变网络,传输技术 主要解决由线性失真引起的符号间干扰和由信道引入 的加性噪声所造成的判断失误。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信道特性对信号传输的影响
一、恒参信道及其对所传信号的影响 二、随参信道及其对所传信号的影响
一、恒参信道及其对所传信号的影响
本节知识要点: 信号不失真传输的条件 幅度—频率失真 相位—频率失真 减小失真的措施 非线性失真 频率偏移 相位抖动
由于恒参信道对信号传输的影响是固定 不变的或者是变化极为缓慢的,因而可 以等效为一个非时变的线性网络。
它对信号的主要影响可用幅度-频率失 真和相位-频率失真(群迟延-频率特性) 来 衡量。
下面我们以典型的恒参信道――有线电 话的音频信道和载波信道为例,来分析 恒参信道等效网络的幅度-频率特性和 相位-频率特性,以及它们对信号传输 的 影响。
1、幅度-频率失真
所谓幅度-频率失真,是指信道的幅度频率特性偏离图(a)所示关系所引起 的畸变。这种畸变又称为频率失真。
频率偏移通常是由于载波电话系统中接收 端解调载波与发送端调制载波之间的频率 有偏差(例如,解调载波可能没有锁定在 调制载波上),而造成信道传输的信号之 每一分量可能产生的频率变化;
相位抖动也是由调制和解调载波发生器的 不稳定性造成的,这种抖动的结果相当于 发送信号附加上一个小指数的调频。
以上的非线性失真一旦产生,一般均难以 排除。
图示出的是一个典型 的电话信道的群 迟延-频率特性。不难看出,当非单一 频率的信号通过该电话信道时,信号频 谱中的不同频率分量将有不同的迟延, 即它们到达的时间先后不一,从 而引 起信号的失真。
群( 延 迟)
ms
频率(kHz)
(b) 群延迟~频率特性
相频失真对模拟话音通道影响并不显著, 这是因为人耳对相频失真不太灵敏;但 对数字信号传输却不然,尤其当传输速 率比较高时,相频失真将会引起严重的 码间串 扰,给通信带来很大损害。
这一补偿措施通常称之为“均衡”。在 载波电话信道上传输数字信号时,通常 要采用均衡措施。
相位-频率失真(群迟延失真)如同幅 频失真一样,也是一种线性失真。
因此,也可采取相位均衡技术补偿群迟 延失真。即为了减小相移失真,在调制 信道内采取相位均衡措施,使得信道的 相频特性尽量接近图 (b)所示线性。
或者严格限制已调信号的频谱,使它保 持在信道的线性相移范围内传输。
恒参信道幅度-频率特性及相位-频率特 性的不理想是损害信号传输的重要因素。
此外,也还存在其它一些因素使信道的 输出与输入产生差异(亦可称为失真), 例如非线性失真、频率偏移及相位抖动 等。
非线性失真主要由信道中的元器件(如 磁芯,电子器件等)的非线性特性引起, 造成谐波失真或产生寄生频率等;
网络的相位-频率特性还经常采用群迟
延-频率特性 ()来衡量。
所谓群迟延-频率特性就是相位-频率特
性对频率的导数,即 () d()
d
可以看出,上述相位-频
率理想条件,等同于要
求群迟延-频率特性 应是
一条水平直线,如图(ቤተ መጻሕፍቲ ባይዱ)
所示。
一般情况下,恒参信道并不是理想网络, 其参数随时间不变化或变化特别缓慢。
此时若要传输数字信号,还会引起相邻 数字信号波形之间在时间上的相互重叠, 即造成码间串扰(码元之间相互串扰)。
相位-频率失真(群迟延失真)
所谓相位-频率失真,是指信道的相位频率特性或群迟延-频率特性偏离 (b)、 (c)所示关系而引起的失真。
电话信道的相位-频率失真主要来源于 信道中的各种滤波器及可能有的加感线 圈,尤其在信道频带的边缘,相频失真 就更严重。
虽然,随参信道中包含着除媒质外的其 它转换 器,自然也应该把它们的特性 算作随参信道特性的组成部分。
但是,从对信号传输影响来看,传输媒 质的影响是主要的,而转换器特性的影 响是次要的,甚至可以忽 略不计。因 此,本节仅讨论随参信道的传输媒质所 具有的一般特性以及它对信号传输的影 响。
属于随参的传输媒质主要以电离层反射、 对流层散射等为代表,信号在这些媒质 中传输的示意图如图8所示。
从理论上讲,只要得到这个网络的传输 特性,则利用信号通过线性系统的分析 方法,就可求得已调信号通过恒参信道 后的变化规律。
1、信号不失真传输条件
对于信号传输而言,我们追求的是 信号通过信道时不产生失真或者失 真小到不易察觉的程度。
由《信号与系统》课程可知,网络
的传输特性 H ()通常可用幅度-频
在通常的有线电话信道中可能存在各 种滤波器,尤其是带通滤波器,还可能 存在混合线圈、串联电容器和分路电感 等,因此电话信道的幅度-频率特性总 是不理想的。
如图示出了典型音频电话信道的总衰耗 -频率特性。
(a) 插入损耗~频率特性
十分明显,有线电话信道的此种不均匀 衰耗必然使传输信号的幅度-频率发生 失真,引起信号波形的失真。
这就需要在进行系统设计时从技术上加以 重视。
二、随参信道及其对所传信号 的影响
本节知识要点: 多径传播 多径衰落 频率弥散 选择性衰落 相关带宽 分集接收:空间分集,频率分集,角度分集,
极化分集
随参信道的特性比恒参信道要复杂得多, 对信号的影响也要严重得多。
其根本原因在于它包含一个复杂的传输 媒质。
所以,在模拟通信系统内往往只注意幅 度失真和非线性失真,而将相移失真放 在忽略的地位。但是,在数字通信系统 内一定要重视相移失 真对信号传输可 能带来的影响。
减小失真的措施
为了减小幅度-频率失真,在设计总的 电话信道传输特性时,一般都要求把幅 度-频率失真控制在一个允许的范围内。
这就要求改善电话信道中的滤波性能, 或者再通过一个线性补偿网络,使衰耗 特性曲线变得平坦,接近于图(a)。
率特性 H() 和相位-频率特性 ()
来表征
H () H () e j()
要使任意一个信号通过线性网络不产 生波形失真,网络的传输特性应该具 备以下两个理想条件:
(1)网络的幅度-频率特性 H () 是 一个不随频率变化的常数,如图(a) 所示;
(2)网络的相位-频率特性 ()应
与频率成直线关系,如图(b)所示。 其中t0为传输时延常数。
图8(a)为电离层反射传输示意图,图 8(b)为对流层散射传输示意图。
相关文档
最新文档