各类微分方程的解法大全
微分方程式的经典解法

信号与系统信号与系统n阶常系数微分方程的求解法 the solution method forconstant-coefficient difference equation of Nth-order全响应=齐次方程通解 + 非齐次方程特解(自由响应) (受迫响应)全响应=零输入响应 + 零状态响应(解齐次方程) (卷积法)时域分析法(经典法)变换域法(第四章拉普拉斯变换法)微分方程求解信号与系统n 阶线性时不变系统的描述一个线性系统,其激励信号与响应信号之间的关系,可以用下列形式的微分方程式来描述()x t()r t阶次:方程的阶次由独立的动态元件的个数决定。
-1101-1101d d()()()d dd d()()()d dn nn nn nm mm mm ma y t a y t a y tt tb x t b x t b x tt t----+++=+++若系统为时不变的,则,均为常数,此方程为常系数的n 阶线性常微分方程。
kakb信号与系统一般将激励信号加入的时刻定义为t =0 ,响应为 时的方程的解, 初始条件:0t +≥齐次解:由特征方程→求出特征根→写出齐次解形式1ek ntkk Cλ=∑注意:重根情况处理方法(修改齐次解的形式)特 解:根据微分方程右端函数式(自由项)形式,设含待定系 数的特解函数式,代入原方程,比较系数 定出特解。
+2+n-1++2n-1dy(0)d y(0)d y(0)y(0)dt dtdt,,,,经典法kC 完全 解:齐次解+特解,由初始条件定出齐次解系数线性时不变系统经典求解齐次微分方程1ek ntkk Cλ=∑特征方程特征根)()()(011-n 1n =+++--t y a t y dtda t y dt d a n n n n a a a a n n n n λλλ++++=--11100齐次解形式:(和特征根有关)λλλ12,,,n齐次解特征根齐次解的形式rλ=rtk k rtrtetC te C e C 121-+++λ12,=±a bj bte C bt e C atatsin cos 21+bte tD bt te D bt e D bt e tC bt te C bt e C atk k atatatk k atatsin sin sin cos cos cos 121121--+++++++k rλ=对于每一个单根k 重实根a jbλ=±1,2k 重复根rtCe给出一项信号与系统3232d d d()7()16()12()()d d dr t r t r t r t e tt t t+++=解:系统的特征方程为32716120λλλ+++=()()2230λλ++=()122 , 3λλ=-=-重根()tthAAt At r33221ee)(--++=特征根因而对应的齐次解为求微分方程齐次解解:系统的齐次方程为3232d d d()7()16()12()0d d dr t r t r t r tt t t+++=例信号与系统e sin()a tt ωe cos()a tt ω12[cos()B sin()]ate B ωt ωt +自由项响应函数 r (t ) 的特解E B p t 1121p p p p B t B t B t B -+++++ea tek a tBt cos()t ωsin()t ω12cos()sin()B t B t ωω+e sin()p a t t t ωe cos()p a tt t ω11211121()e cos()()e sin()p p tp p pp tp p B t B tB t B t D t D tD t D t ααωω-+-++++++++++或12[cos()sin()]atte B t B t ωω+当 a 是 k 重特征根时当a +jb 不是特征根当a +jb 是特征根线性时不变系统经典求解如果已知: 分别求两种情况下此方程的特解。
微分方程的解法

微分方程的解法微分方程是数学中的重要概念,被广泛应用于各个领域。
解微分方程是找到满足给定条件的函数表达式或数值解的过程。
在本文中,我将介绍微分方程的几种解法,并说明其具体应用。
一、一阶微分方程的解法一阶微分方程是最基础的微分方程类型,通常形式为dy/dx=f(x,y),其中f(x,y)是已知函数。
下面介绍两种常见的一阶微分方程的解法:1. 分离变量法:分离变量法适用于可以将微分方程中的变量分开的情况。
具体步骤如下:(1) 将方程变形,将含有dy和dx的项分别放在等式两边;(2) 将等式两边分别关于y和x进行积分;(3) 解得y的表达式,得到方程的通解。
2. 齐次微分方程的解法:齐次微分方程是形如dy/dx=f(y/x)的微分方程。
具体步骤如下:(1) 令v=y/x,将原微分方程化为关于v的方程;(2) 求得关于v的方程的通解;(3) 代入v=y/x,得到原微分方程的通解。
二、二阶微分方程的解法二阶微分方程是更加复杂的微分方程类型,形如d²y/dx²=f(x,y,dy/dx)。
下面介绍两种常见的二阶微分方程的解法:1. 特征方程法:特征方程法适用于二阶常系数线性齐次微分方程。
具体步骤如下:(1) 假设原方程的解为y=e^(rx),代入原方程,求得r的值;(2) 根据r的不同情况分别求得通解。
2. 变量替换法:变量替换法适用于二阶非齐次微分方程,通过适当的变量替换将原方程化简为一阶方程。
具体步骤如下:(1) 假设y=v/u,将原方程变形;(2) 求出v和u的关系式,将原方程转化为v和u的一阶方程组;(3) 解一阶方程组,得到u的表达式;(4) 代入y=v/u,得到原方程的通解。
三、应用案例微分方程作为数学工具,在物理学、生物学、工程学等领域有广泛的应用。
以下是一些实际应用案例:1. 弹簧振动方程:假设弹簧的振动满足y''+k/m*y=0,其中k是弹簧的劲度系数,m是弹簧的质量。
微分方程解的形式

微分方程解的形式一、一阶微分方程1. 可分离变量的微分方程- 形式:(dy)/(dx)=f(x)g(y)。
- 解法:将方程变形为(dy)/(g(y)) = f(x)dx,然后两边分别积分∫(dy)/(g(y))=∫f(x)dx + C,其中C为常数。
- 解的形式:一般得到G(y)=F(x)+C,其中G(y)和F(x)分别是(1)/(g(y))和f(x)的原函数。
例如对于方程(dy)/(dx)=ysin x,变形为(dy)/(y)=sin xdx,积分得到ln|y|=-cos x + C,进一步可写成y = e^-cos x + C=Ce^-cos x(C = e^C为任意常数)。
2. 一阶线性微分方程- 形式:(dy)/(dx)+P(x)y = Q(x)。
- 解法:先求对应的齐次方程(dy)/(dx)+P(x)y = 0的通解,其通解为y = Ce^-∫ P(x)dx(通过分离变量法得到)。
然后利用常数变易法,设原非齐次方程的解为y = C(x)e^-∫ P(x)dx,代入原方程求出C(x),C(x)=∫ Q(x)e^∫ P(x)dxdx + C。
- 解的形式:y = e^-∫ P(x)dx(∫ Q(x)e^∫ P(x)dxdx + C)。
例如对于方程(dy)/(dx)+ycos x=cos x,这里P(x)=cos x,Q(x)=cos x。
先求齐次方程(dy)/(dx)+ycos x = 0的通解,(dy)/(y)=-cos xdx,y = Ce^-sin x。
设原方程的解为y = C(x)e^-sin x,代入原方程可得C(x)=x + C,所以原方程的通解为y=(x + C)e^-sin x。
二、二阶线性微分方程1. 二阶常系数齐次线性微分方程- 形式:y''+py'+qy = 0(其中p,q为常数)。
- 解法:设y = e^rx,代入方程得到特征方程r^2+pr + q=0。
微分方程几种求解方法

微分方程几种求解方法微分方程是数学中重要的概念之一,用于描述变量之间的函数关系。
求解微分方程是数学和工程中的常见问题。
根据问题的性质和条件,有多种方法可以用来求解微分方程,下面将介绍几种常见的求解方法。
1.变量分离法:变量分离法是求解一阶常微分方程的常用方法。
它的基本思想是将微分方程中的变量分离,然后进行积分。
具体步骤是将微分方程写成形式dy/dx=f(x)g(y),然后将方程变换为g(y)dy=f(x)dx,再两边同时积分,即可得到方程的解。
这种方法适用于一阶常微分方程,如y'=f(x)。
2.齐次方程方法:齐次方程是指微分方程中不包含任意常数项的方程。
对于齐次方程可以使用变量代换法进行求解。
具体的步骤是将微分方程中y的函数形式换成u,然后进行代换,将微分方程变为可分离变量的形式。
然后用变量分离法来求解,最后再进行反代还原,得到原方程的解。
这种方法适用于一阶齐次常微分方程,如dy/dx=f(y/x)。
3.线性方程方法:线性微分方程是指微分方程中只有一阶导数,并且函数关系是线性的。
线性方程可以使用常数变易法或者待定系数法来进行求解。
常数变易法的基本思想是假设方程的解具有特定的形式,然后将其带入方程,通过确定待定的常数来求解。
待定系数法的基本思想是假设方程的解是一组形式已知的函数的线性组合,然后通过确定待定系数来求解。
这些方法适用于一阶线性常微分方程,如dy/dx+a(x)y=b(x)。
4.积分因子法:积分因子法是一种用于求解一阶非齐次线性常微分方程的方法。
它的基本思想是通过引入一个合适的因子,将一阶非齐次线性微分方程转化为恰当微分方程,从而利用变量分离法来求解。
具体步骤是先将非齐次方程写成标准形式dy/dx+p(x)y=q(x),然后通过选择合适的积分因子μ(x)来将方程转为恰当微分方程(即满足(dμ(x)/dx)y+p(x)μ(x)=q(x)),再对该恰当微分方程进行积分,即可得到原方程的解。
微分方程常用解法

对于非齐次的线性微分方程,可以用常数变易法来求
常系数二阶齐次线性微分方程: y py qy 0
令 y erx
y re rx , y r 2erx
r 2 pr q erx 0
可分离变量的微分方程:
gydy f xdx
gydy f xdx
Gy Fx C
齐次方程: 引进新函数
dy y dx x
u y x
y ux, dy u x du
dx
dx
u x du u
dx
du
u
u Qxe Pxdx
u
Qx
e
P
x
dx
dx
C
y
e
P x dx
Q x e Pxdxdx C
y
Ce
P
x
dx
e
P
x
dx
Q x e Pxdxdx
伯努利方程: 引进新函数
dy Pxy Qxyn
ah bk c 0
a1h
b1k
c1
0
如果 a1 b1 ,那么可给出 h, k 满足上述方程组,那么 ab
dY aX bY dX a1 X b1Y
当 a1 b1 ,令 a1 b1
ab
ab
dy dx
ax by c
ax by c1
一. f x ex Pm x 型
各类微分方程的解法

各类微分方程的解法一、常微分方程的解法。
1. 分离变量法。
分离变量法是解常微分方程的一种常见方法,适用于一阶微分方程。
其基本思想是将微分方程中的变量分离开来,然后对两边分别积分得到解。
例如,对于形如dy/dx = f(x)g(y)的微分方程,可以将其化为dy/g(y) = f(x)dx,然后对两边积分得到解。
2. 积分因子法。
积分因子法适用于一阶线性微分方程,通过求解积分因子来将微分方程化为恰当微分方程,进而求解。
其基本思想是通过乘以一个适当的函数来使得微分方程的系数函数具有某种特殊的性质,使得微分方程变为恰当微分方程。
3. 特征方程法。
特征方程法适用于二阶线性常系数齐次微分方程,通过求解特征方程来得到微分方程的通解。
其基本思想是将二阶微分方程化为特征方程,然后求解特征方程得到微分方程的通解。
4. 变量替换法。
变量替换法是一种常见的解微分方程的方法,通过引入新的变量替换原微分方程中的变量,从而将原微分方程化为更简单的形式,然后求解。
例如,对于形如dy/dx = f(ax+by+c)的微分方程,可以通过引入新的变量u=ax+by+c来简化微分方程的形式,然后求解得到解。
二、偏微分方程的解法。
1. 分离变量法。
分离变量法同样适用于偏微分方程,其基本思想是将偏微分方程中的变量分离开来,然后对各个变量分别积分得到解。
例如,对于形如∂u/∂t = k∂^2u/∂x^2的一维热传导方程,可以将其化为∂u/∂t = k∂^2u/∂x^2,然后对各个变量分别积分得到解。
2. 特征线法。
特征线法适用于一些特殊的偏微分方程,通过引入特征线变量来化简偏微分方程的形式,然后求解。
例如,对于一维波动方程∂^2u/∂t^2 = c^2∂^2u/∂x^2,可以通过引入特征线变量ξ=x-ct和η=x+ct来化简方程的形式,然后求解得到解。
3. 分析法。
分析法是一种常见的解偏微分方程的方法,通过分析偏微分方程的性质和特征来求解。
微分方程常见题型解法

微分方程常见题型攻略一、一阶微分方程1.可分离变量的微分方程及或化为可分离变量的微分方程(齐次)(略)2.一阶线性微分方程(1)一阶线性齐次微分方程:0)( y x P y 法一:分离变量,积分;法二:套公式dxx P Ce y )(.(2)一阶线性非齐次微分方程:)()(x Q y x P y 法一:常数变易法①先求出对应齐次微分方程的通解 dxx P Ce y )(;②常数变易(设原方程的通解为) dx x P e x u y )()(;③代入原方程求出)(x u 即得原方程的通解。
法二:公式法])([)()(C dx e x Q e y dx x P dx x P 。
例1【2011年考研】微分方程x ey y xcos 满足条件0)0( y 的解为_________。
解:此为一阶线性微分方程,其中1)( x P ,x ex Q xcos )( ,通解为])([)()(C dx e x Q e y dx x P dx x P ]cos [11C dx xe e e dxx dx ]cos [C dx xe e e x x x ]cos [C xdx e x )(sin C x e x 。
由初始条件0)0( y ,得0 C ,故所求特解为x ey xsin 。
注:对于微分方程,经常以积分方程的形式出现,即给出的方程中含有积分上限函数。
(1)对于积分方程,方法是两边同时求导,化为微分方程。
但是在求导过程中要注意,如果两边同时求一阶导后还是含有积分上限函数,那么需要再一次求导,直到方程中不再求有积分上限函数,并且也要注意有时候需要对方程进行恒等变换后再求导。
(2)注意积分方程中隐含的初始条件。
例2已知函数)(x f 满足1)(21)(1x f du ux f ,1)(10 dx x f ,求)(x f 。
解:设ux t ,则dt x du 1,于是 10)(du ux f xdt t f x 0)(1。
微分方程解法

微分方程解法微分方程是数学中非常重要的一种方程,它描述了变量之间的变化率关系。
解微分方程是找到满足给定条件的函数,使得该函数满足微分方程。
本文将探讨微分方程的解法,并介绍一些常用的解法方法。
一、常微分方程的解法常微分方程是只含有一个未知函数的微分方程。
常微分方程的解法方法主要有以下几种:1. 可分离变量法对于形如dy/dx=f(x)g(y)的方程,如果能将其分离成f(x)dx=g(y)dy 的形式,那么可以通过分别对方程两边进行积分来求得解。
这种方法适用于大部分可分离变量的微分方程。
2. 齐次方程法对于形如dy/dx=F(y/x)的方程,如果能将其转化为F(z)=z的形式,其中z=y/x,那么可以通过引入新变量z来简化微分方程的求解。
这种方法适用于一类具有齐次性质的微分方程。
3. 线性微分方程法对于形如dy/dx+p(x)y=q(x)的方程,如果p(x)和q(x)都是已知函数,那么可以通过求解一阶线性常系数齐次微分方程的解,再利用特解和齐次解的线性组合求得原方程的解。
线性微分方程是常微分方程中最常见的一类方程。
对于形如dy/dx=F(ax+by+c)的方程,如果通过适当的变量替换,将方程化为直线的斜率不变的形式,那么可以通过直线积分求解。
这种方法适用于一类具有特殊形式的微分方程,在求解过程中可通过合适的变换将其转化为更简单的方程。
5. 特殊类型方程法除了上述常见的解法方法外,还有一些特殊类型的微分方程有自己独特的解法。
例如,一阶线性微分方程、二阶常系数线性齐次微分方程、二阶线性方程等都有一些特殊性质和求解方法。
二、偏微分方程的解法偏微分方程是含有多个未知函数及其偏导数的方程。
相对于常微分方程,偏微分方程的求解更加复杂,常用的解法方法有以下几种:1. 分离变量法对于形如u_t=F(x)G(t)的方程,如果能将其分离为F(x)/G(t)=h(u)=h(x)+k(t)的形式,那么可以通过分别对方程两边进行积分来求得解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各类微分方程的解法
1.可分离变量的微分方程解法
一般形式:g(y)dy=f(x)dx
直接解得∫g(y)dy=∫f(x)dx
设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解
2.齐次方程解法
一般形式:dy/dx=φ(y/x)
令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x
两端积分,得∫du/[φ(u)-u]=∫dx/x
最后用y/x代替u,便得所给齐次方程的通解
3.一阶线性微分方程解法
一般形式:dy/dx+P(x)y=Q(x)
先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce-
∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C]
即y=Ce-∫P(x)dx
+e-
∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解
4.可降阶的高阶微分方程解法
①y(n)=f(x)型的微分方程
y(n)=f(x)
y(n-1)= ∫f(x)dx+C1
y(n-2)= ∫[∫f(x)dx+C1]dx+C2
依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程
令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1)
即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2
③y”=f(y,y’) 型的微分方程
令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1)
即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2
5.二阶常系数齐次线性微分方程解法
一般形式:y”+py’+qy=0,特征方程r2+pr+q=0
6.二阶常系数非齐次线性微分方程解法
一般形式: y”+py’+qy=f(x)
先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x)
则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解
求y”+py’+qy=f(x)特解的方法:
①f(x)=P m(x)eλx型
令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数
②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型
令y*=x k eλx[Q m(x)cosωx+R m(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m(x)和R m(x)的m+1个系数。