推荐-四川省绵阳市高中2018级第一次诊断性考试数学(理) 精品

合集下载

推荐-绵阳市高2018级第一次诊断性考试 精品

推荐-绵阳市高2018级第一次诊断性考试 精品

绵阳市高2018级第一次诊断性考试数学 (理工农医类)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上.1.已知集合P ={-1,0,1},Q ={y ︱y =sin x ,x ∈P },则P ∩Q 是C A .{-1,0,1} B .{0,1} C .{0} D .{1}2.设两个集合A ={1,2,3,4,5},B ={6,7,8},那么可以建立从A 到B 的映射个数是 BA .720B .243C .125D .153.若不等式∣ax + 2∣<6的解集为(-1,2),则实数a 等于 A A .-4 B .4 C .-8 D . 84.已知函数f (x )的图象恒过点(1,1),则f (x -4)的图象过 D A .(-3,1) B .(1,5) C .(1,-3) D .(5,1) 5.已知x x f x f 26log )()(=满足函数 ,那么f (16) 等于 DA .4B .34C .16D .326.定义在实数集R 上的函数y =f (-x )的反函数是)(1x f y -=-,则 A A .y =f (x )是奇函数 B .y =f (x )是偶函数C .y =f (x )既是奇函数,也是偶函数D .y =f (x )既不是奇函数,也不是偶函数 7.下列求导正确的是 BA .211)1(xx x +='+ B .2ln 1)(log 2x x ='C .)3('x =3x ·log 3eD .)cos (2'x x =-2x sin x8.设随机变量ξ的分布列为,3,2,1,)31()(===i a i P i ξ则a 的值是 DA .1B .139C .131 D .13279.)321132112111(lim nn +++++++++++∞→ 的值为 AA . 2B . 0C . 1D . 不存在10.已知z ∈C ,满足不等式0<-+z i iz z z 的点Z 的集合用阴影表示为CA .B .C .D .11.甲、乙两名篮球队员轮流投篮直至某人投中为止,每次投篮甲投中的概率为0.4,乙投中的概率为0.6,且不受其它投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则==)(k P ξ BA .4.06.01⨯-kB .76.024.01⨯-kC .6.04.01⨯-kD .24.076.01⨯-k12.我们用记号θi e 来表示复数cos θ +i sin θ,即θθθsin cosi e i += (其中e = 2.71828…是自然对数的底数,θ 的单位是弧度).则:① i e i 222=π; ②θθθsin 2=+-i i ee ; ③ 01=+πi e . 其中正确的式子代号为 CA .①B .①②C .①③D .②③第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.一个公司有N 个员工,下设一些部门,现采用分层抽样方法从全体员工中抽取一个容量为n 的样本 (N 是n 的倍数).已知某部门被抽取了m 个员工,那么这一部门的员工数是 .nmN14.=+-+-→)1311(lim 31x x x .- 1 15.计算:=-3)2321(i . -116.关于函数⎪⎩⎪⎨⎧<≥=)0(2)0(21)(x ax x ax x f )0(≠a a 是实常数且,下列表述不正..确.的是 .(填写答案序号) ① ③ ④① 它是一个奇函数; ② 它在每一点都连续;③ 它在每一点都可导;④ 它是一个增函数; ⑤ 它有反函数.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分) 设随机变量ξ 服从正态分布:ξ ~ N (1,22),试求:(Ⅰ) )20(≤<ξP ;(Ⅱ) 求常数c , 使 )(32)(c P c P >=≤ξξ.参考数据:Φ(0)=0.5;Φ(1)=0.8413;Φ(2)=0.9772;Φ(0.5)= 0.6915;Φ(1.88)=0.9697;Φ(3)=0.9987.17.解: (Ⅰ) 由)0()2()20(F F P -=≤<ξ=)210()212(-Φ--Φ =)5.0()5.0(-Φ-Φ=21)5.0(-Φ =216915.0-⨯=0.3830.(Ⅱ) 由已知可得 )](1[32)(c P c P ≤-=≤ξξ, ∴ 32)(33=≤c P ξ,即 32)2133=-Φc (, ∴ 9697.0)21(=-Φc , ∴ 88.121=-c , c =4.76.18.(本题满分12分) 已知函数332+-=x x a y 在[0,2]上有最小值8,求正数a 的值.解:设43)23(3322+-=+-=x x x u ,当x ∈[0,2]时,可得]3,43[∈u .(1) 若a >1时,则843mi n ==a y ,解得a =16>1.(2) 若0<a <1时,则83mi n ==a y ,解得a =2,此与0<a <1矛盾,舍去.故正数a =16.19.(本题满分12分) 已知p :∣1-2x ∣≤ 5,q :x 2-4x +4-9m 2 ≤ 0 (m >0),若⌝p 是⌝q 的充分而不必要条件,求实数m 的取值范围.解:解不等式可求得:p :-2≤x ≤3, q :2-3m ≤x ≤2+3m (m >0). 则 ⌝p :A ={x ∣x <-2或x >3},⌝q :B ={x ∣x <2-3m 或x >2+3m ,m >0}.由已知 ⌝p ⇒⌝q ,得A B ,从而 310.0,332,232≤<⇒⎪⎩⎪⎨⎧>≤+-≥-m m m m . (上述不等式组中等号不能同时取).经验证..310≤<m 为所求实数m 的取值范围.20.(本题满分12分) 已知f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,当x <0时,f (x )=x 2-x -2,解不等式f (x )>0.解: 设x >0,则 -x <0.∴ f (-x )=(-x )2-(-x )-2=x 2+x -2. 而f (x ) 是奇函数, ∴ f (-x )=-f (x ),于是 f (x )=-x 2-x +2,x >0.∴ ⎪⎩⎪⎨⎧<-->+--=.0,2;0,2)(22x x x x x x x f(1) 由 ⎩⎨⎧>+-->02,02x x x 得 )1,0(0)1)(2(,0∈⇒⎩⎨⎧<-+>x x x x .(2) 由 ⎩⎨⎧>--<02,02x x x 得 10)1)(2(,0-<⇒⎩⎨⎧>+-<x x x x .综上所述,不等式f (x )>0的解集为{x ∣x <-1或0<x <1}.21.(本题满分12分) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ表示公司每年的收益额,则ξE ξ=x (1-p )+(x -a )·p =x -ap .为使公司收益的期望值等于a 的百分之十, 只需E ξ=0.1a ,即x -ap =0.1a , 故可得x =(0.1+p )a .即顾客交的保险金为(0.1+p )a 时,可使公司期望获益10%a .说明:当事件E 发生的概率较小时,即使赔偿数目较大,保险公司仍可获益.例如当P =0.001,a =10000元时,根据上述赔偿办法,顾客只需交纳(0.1+0.001)×10000=1010元保险金,但保险公司仍可期望获益10%a=1000元,当保险公司的顾客较多时,其效益十分可观.22.(本题满分14分) 已知函数ax x x f +-=)2ln()(在开区间(0,1)内是增函数.(Ⅰ) 求实数a 的取值范围;(Ⅱ) 若数列{a n }满足a 1∈(0,1),)()2ln(*1N ∈+-=+n a a a n n n ,证明:101<<<+n n a a .(Ⅲ) 若数列{b n }满足b 1∈(0,1),)()2ln(2*1N ∈+-=+n b b b n n n ,问数列{b n }是否单调?(Ⅰ) 解:a x x f +--='21)(,由于f (x )在(0,1)内是增函数, ∴ 0)(>'x f ,即 021>+--a x在x ∈(0,1)时恒成立. ∴ 21-->x a 恒成立,而 -2<x -2<-1,∴ 21211-<-<-x , 即 12121<--<x , ∴ a ≥1即为所求.(Ⅱ) 证明:由题设知,当n =1时,a 1∈(0,1).假设当n =k 时,有a k ∈(0,1),则当n =k +1时,有0)2ln(1>+-=+k k k a a a 且1)2ln(1<+-=+k k k a a a (由第一问知f (x )=ln(2-x )+x 在(0,1)上是增函数),∴ n =k +1时命题成立,故0<a n <1,n ∈N *. 又 ∵ 0)2ln(1>-=-+n n n a a a ,∴ 101<<<+n n a a .(Ⅲ) 数列{b n }不具有单调性.令 211=b , 则 )2,1(2149ln 21)212ln(2)2ln(2112∈+=+-=+-=b b b ,∴ b 2>b 1.又 ∵ 1<b 2<2,0<2-b 2<1, ∴ ln(2-b 2)<0, ∴ 2223)2ln(2b b b b <+-=. 由此表明数列{b n }没有单调性.。

绵阳市高中2018届第一次诊断性考试数学(文)(解析版)

绵阳市高中2018届第一次诊断性考试数学(文)(解析版)

绵阳市高中2015级第一次诊断性考试数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

共4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将答题卡交回。

第Ⅰ卷(选择题,共60分)注意事项:必须使用2B铅笔在答题卡上经所选答案对应的标号涂黑。

第Ⅰ卷共12小题。

1. 设集合,集合B=,则=A. (2,4)B. {2.4}C. {3}D. {2,3}【答案】D【解析】由条件得,∴。

选D。

2. 若x>y,且x+y=2,则下列不等式成立的是A. B. C. x>1 D. y<0【答案】C【解析】由得,∵,∴,解得。

选C。

3. 已知向量=(x-1,2),=(x,1),且∥,则x的值是A. -1B. 0C. 1D. 2【答案】A【解析】∵,∴,解得。

答案:A。

4. 若A. -3B. 3C.D.【答案】D【解析】∵,∴,5. 某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费。

某职工某月缴水费55元,则该职工这个月实际用水为()立方米。

A. 13B. 14C. 15D. 16【答案】C【解析】设该职工的月实际用水为x立方米,所缴水费为y元,由题意得,即。

根据题意得该职工这个月的实际用水量超过10立方米,所以,解得。

选C。

6. 已知命题,则a-b=-1,下列命题为真命题的是A. pB.C.D.【答案】B【解析】对都有,所以命题p为假命题;由得,即或,所以命题q为假命题。

结合各选项得B正确。

选B。

7. 函数f(x)满足f(x+2)=f(x),且当-1≤x≤1时,f(x)=|x|。

若函数y=f(x)的图象与函数g(x)=(a>0,且a≠1)的图象有且仅有4个交点,则a的取值集合为A. (4,5)B. (4,6)C. {5}D. {6}【答案】C【解析】由得函数的周期为2,又当-1≤x≤1时,f(x)=|x|,故函数的值域为。

绵阳市2018届高三(上)一诊数学试卷(理科)(解析版)

绵阳市2018届高三(上)一诊数学试卷(理科)(解析版)

2017-2018学年四川省绵阳市高三(上)一诊数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.设集合A={x∈Z|(x﹣4)(x+1)<0},B={2,3,4},则A∩B=()A.(2,4) B.{2,4}C.{3}D.{2,3}2.若x>y,且x+y=2,则下列不等式成立的是()A.x2<y2B.C.x2>1 D.y2<13.已知向量=(x﹣1,2),=(x,1),且∥,则||=()A.B.2 C.2 D.34.若,则t an2α=()A.﹣3 B.3 C.D.5.某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A.13 B.14 C.15 D.166.已知命题p:∃x0∈R,使得e x0≤0:命题q:a,b∈R,若|a﹣1|=|b﹣2|,则a﹣b=﹣1,下列命题为真命题的是()A.p B.¬q C.p∨q D.p∧q7.在△ABC中,“C=”是“sinA=cosB”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.已知函数f(x)=sinϖx+cosϖx(ϖ>0)图象的最高点与相邻最低点的距离是,若将y=f(x)的图象向右平移个单位得到y=g(x)的图象,则函数y=g (x)图象的一条对称轴方程是()A.x=0 B.C.D.9.已知0<a<b<1,给出以下结论:①;④log a>log b.则其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个10.已知x1是函数f(x)=x+1﹣ln(x+2)的零点,x2是函数g(x)=x2﹣2ax+4a+4的零点,且满足|x1﹣x2|≤1,则实数a的最小值是()A.2﹣2B.1﹣2C.﹣2 D.﹣111.已知a,b,c∈R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则a+c的取值范围是()A.[﹣2,2]B. C. D.12.若存在实数x,使得关于x的不等式+x2﹣2ax+a2≤(其中e为自然对数的底数)成立,则实数a的取值集合为()A.{} B.[,+∞)C.{}D.[,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.已知变量x,y满足约束条件,则z=2x+y的最小值是.14.已知偶函数f(x)在[0,+∞)上单调递增,且f(2)=1,若f(2x+1)<1,则x的取值范围是.15.在△ABC中,AB=2,AC=4,cosA=,过点A作AM⊥BC,垂足为M,若点N满足=3,则=.16.如果{a n}的首项a1=2017,其前n项和S n满足S n+S n=﹣n2(n∈N*,n≥2),﹣1则a101=.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,,D是边BC上一点,且,BD=2.(1)求∠ADC的大小;。

四川省绵阳市2018届高三第一次诊断性考试理科综合

四川省绵阳市2018届高三第一次诊断性考试理科综合

绵阳市高中2015级第一次诊断性考试理科综合能力测试可能用到的相对原子质量:H 1 C 12 N 14 O 16 K 39 Mn 55 Fe 56一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于细胞物质组成和结构的描述,不正确的是A.C、H、O、N、P是磷脂、基因、RNA共有的化学元素B.线粒体中的DNA,能进行自我复制并控制某些蛋白质的合成C.细菌代谢速率快,与细胞膜和细胞器膜为酶提供了附着位点有关D.在细胞周期中,染色质变成染色体有利于核内遗传物质的平均分配2.下列有关果蝇(染色体组成2N=8)的说法,正确的是A.果蝇基因组测序,测定的是4条染色体上的DNA序列B.果蝇的一个次级精母细胞中,有可能含有2条X染色体C.果蝇经正常减数分裂形成的配子中,染色体数目为2对D.性染色体异常XXY的果蝇,其体细胞中有3个染色体组3.下列有关实验现象的描述,正确的是A.分离绿叶中色素时,若色素带重叠,可能是因为滤液细线画得过粗B.由于蔗糖是非还原糖,故向蔗糖溶液中加入斐林试剂后无颜色变化C.高倍镜观察洋葱鳞片叶内表皮细胞,可观察到细胞核和线粒体均有双层膜结构D.以菠菜叶肉细胞为材料观察叶绿体,可观察到椭球形的叶绿体围绕在细胞核周围4.人类干细胞的研究一直是科技热点之一,利用干细胞在体外培育出组织和器官,对治疗癌症和其他多种恶性疾病具有重要意义。

下列有关干细胞的描述正确的是A.干细胞比受精卵分化程度低B.干细胞中也存在与癌有关的基因C.干细胞培育出组织和器官,体现了干细胞的全能性D.干细胞分化成相应组织的过程中,细胞内核酸种类和数量不变5.为探究加酶洗衣粉的洗涤效果。

实验分甲乙丙三组,甲组用普通洗衣粉,乙组使用加入蛋白酶的洗衣粉,丙组使用加入了脂肪酶的洗衣粉。

在不同温度下清洗同种布料上的2种污渍,其它条件均相同,实验结果如下表。

下列说法错误的是A.实验布料不宜选用毛织品或蚕丝制品B.乙、丙两组洗涤效果的差异,与酶的专一性有关C.实验结果表明,加酶和适当提高温度可以提高洗衣粉的去污能力D.为确定加酶洗衣粉的最佳洗涤温度,需在40-50℃之间划分更细的温度梯度进一步揉究6.某鳞翅目昆虫的性别决定方式为ZW型,其成年个体有白色、浅黄和深黄三种颜色。

四川省绵阳市高中2018级第一次诊断性考试理科数学(含答案)

四川省绵阳市高中2018级第一次诊断性考试理科数学(含答案)

1秘密★启用前【考试时间: 2020年11月1日15: 00— 17: 00】四川省绵阳市高中2018级第一次诊断性考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题 答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后, 将答题卡交回。

一 、 选择题:本大题共12小题, 每小题5分,共60分。

在每小题给出的四个选项中, 只有一项是符合题目要求的。

1. 已知A = {x |0< x <2}, B = {x |x (l −x )≥0}, 则A B =A.∅B.(−∞,1]C. [l, 2)D.(0,1]2. 下列函数中,既是奇函数又是增函数的是A.y =tan xB.y =ln xC.y =x 3D.y =x 23. 若log a b > 1, 其中a >0且a ≠1, b >1, 则A.0<a <l<bB.1<a <bC.1<b <aD.1<b <a 24. 函数ππ()sin()24f x x =+的图象的一条对称轴是A.x =−3B. x =0C.x=π2D. x=32−5. 函数2()ln ||f x x x x=+的大致图象是6. 已知命题p : 在△ABC 中,若cos A =cos B , 则A =B ;命题q : 向量a 与向量b相等的充要条件2是|a |=| b |且a //b .下列四个命题是真命题的是 A.p ∧(⌝q )B. (⌝p ) ∧(⌝q )C.(⌝p )∧qD. p ∧q7.若曲线y =(0, −1)处的切线与曲线y =ln x 在点 P 处的切线垂直,则点 P 的坐标为A.(e,1)B.(1,0)C. (2, ln2)D. 1(,ln 2)2−8. 已知菱形ABCD 的对角线 相交于点O , 点E 为AO 的中 点, 若AB =2, ∠BAD =60°,则AB DE ⋅= A.−2B. 12−C. 72−D. 129. 若a <b < 0, 则下列不等式中成立的是A. 11a b a<− B. 11a b b a+>+C.11b b a a −<−D. (1)(1)a b a b −>−10. 某城市要在广场中央的圆形地面设计 一块浮雕,彰显城市积极向上的活力.某公司设计方案如图, 等腰△PMN 的顶点P 在半径为20m 的大⊙O 上, 点M , N 在半径为10m 的小⊙O 上, 圆心O 与点P 都在弦MN 的同侧. 设弦MN 与对应劣弧所围成的弓形面积为S , △OPM 与△OPN 的面积之和为S 1,∠MON =2α, 当S 1−S 的值最大时,该设计方案最美, 则此时cos α= A. 12C.11. 数列{a n }满足21121n n n a a a ++=−,2411,59a a ==,数列{b n }的前n 项和为S n ,若b n =a n a n +1,则使不等式427n S >成立的n 的最小值为 A. 11B. 12C. 13D. 1412. 若1823,23a b +==,则以下 结论正确的有 ①b −a <1 ②112a b+> ③34ab > ④22b a > A.1个B.2个C.3个D.4个二、填空题:本大题共4小题, 每小题5分, 共20分.313. 已知向量a =(l, 0), b =(l, 1), 且a +λb 与a 垂直,则实数λ= .14. 若实数x ,y 满足0,,22,x x y x y ≥⎧⎪≤⎨⎪+≥⎩则z =2x +y 的最大值为 .15. 已知sin x +cos y =14, 则sin x −sin 2y 的最大值为 .16. 若函数f (x )=(x 2 +ax +2a )e x 在区间(−2, 1)上恰有一个极值点,则实数a 的取值范围为 .三、解答题:共70分。

高三数学试题-四川省绵阳市高中2018届高三第一次诊断性考试数学文试题 最新

高三数学试题-四川省绵阳市高中2018届高三第一次诊断性考试数学文试题 最新

四川省绵阳市高中2018届高三第一次诊断性考试数学文试题本试卷分为试题卷和答题卷两部分,其中试题卷由第I 卷(选择题)和第Ⅱ卷(非选择题) 组成,共4页;答题卷共4页.全卷满分150分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.参考公式:如果事件A 、B 互斥,那么P (A + B )= P (A )+ P (B ); 如果事件A 、B 相互独立,那么P (A ·B )= P (A )·P (B );如果事件A 在一次试验中发生的概率为P ,那么在n 次独立重复试验中恰好发生k 次的概率:k n k k n n P P C k P --⋅⋅=)1()(.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合M ={x ∈Z|-2<x <1},N ={-1,0,1},则集合M 与N 的关系是A .M ∈NB .M ⊆NC .M ⊇ND .M =N2.)(x f '是函数f (x )=x 3-x +1的导数,则)1()1(f f '的值是 A .0B .1C .2D .33.下列函数中,与函数11-=x y 有相同定义域的是A .1-=x yB .11-=x y C .()1ln -=x y D .1-=x e y 4.数列{a n }中,a n =2n -12,S n 是其前n 项和,则当S n 取最小值时,n =A .5或6B .6或7C .11或12D .12或13 5.如果命题“p 且q ”与“非p ”都是假命题,则A .命题p 不一定是真命题B .命题q 不一定是假命题C .命题q 一定是真命题D .命题q 一定是假命题 6.函数f (x )=x 4-x 2+1在点x=1处的切线方程为A .y =x +1B .y =x -1C .y =2x +1D .y =2x -17.集合A ={-1,1},集合B ={-2,2},从A 到B 的映射f 满足f (1)+f (-1)=0,则此映射表示的函数是A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 8.函数y =lg|x -1|的图象大致为xyO 1 2 x yO 1 2 x yO 1 xyO -1 -2 2A .B .C .D .9.函数⎩⎨⎧<+≥=-,,,,)0()1()0(2)(1x x f x x f x 则)2(-f 的值为A .21B .1C .2D .0 10.已知{a n }是公比q >1的等比数列,a 1和a 7是方程2x 2-7x +4=0的两根,则log 2a 3-log 2a 4+log 2a 5=A .2B .2C .21D .011.已知2b 是1-a 和1+a 的等比中项,则a +4b 的取值范围是A .(-∞,45)B .⎥⎦⎤ ⎝⎛∞-45,C .(-1,45)D .⎥⎦⎤ ⎝⎛-451,12.已知定义在R 上的偶函数f (x )的图象关于直线x =1对称,且当0≤x ≤1时,f (x )=x 2,若直线y =x +a与曲线y =f (x )恰有三个交点,则a 的取值范围为 A .)041(,- B .)2412(k k ,-(k ∈Z ) C .)021(,-D .)21(k k ,-(k ∈Z )第Ⅱ卷 (非选择题 共90分)注意事项:答第Ⅱ卷前,考生务必将自己的姓名、准考证号用钢笔或圆珠笔(蓝、黑色)写在答题卷密封线内相应的位置.答案写在答题卷上,不能答在试题卷上. 二、填空题:本大题共4小题,每小题4分,共16分. 13.在等差数列{a n }中,如果a n =a n +2,那么公差d = .14.为庆祝祖国母亲60华诞,教育局举行“我的祖国”歌咏比赛,某中学师生踊跃报名参加.据统计,报名的学生和教师的人数之比为5∶1,学校决定按分层抽样的方法从报名的师生中抽取60人组队参加比赛,已知教师甲被抽到的概率为101,则报名的学生人数是 . 15.写出“函数f (x )=x 2+2ax +1(a ∈R)在区间(1,+∞)上是增函数”成立的一个..充分不必要条件:_________. 16.已知二次函数f (x )=x 2-mx +m (x ∈R )同时满足:(1)不等式f (x )≤0的解集有且只有一个元素;(2)在定义域内存在0<x 1<x 2,使得不等式f (x 1)>f (x 2)成立.设数列{a n }的前n 项和S n =f (n ),nn a mb -=1.我们把所有满足b i ·b i +1<0的正整数i 的个数叫做数列{b n }的异号数.给出下列五个命题:① m =0; ② m =4;③ 数列{a n }的通项公式为a n =2n -5;④ 数列{b n }的异号数为2; ⑤ 数列{b n }的异号数为3.其中正确命题的序号为 .(写出所有正确命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)已知函数()23log 1)(2-=x x f 的定义域为集合A ,不等式x-21≥1的解集为B .(1)求(R A )∩B ;(2)记A ∪B =C ,若集合M ={x ∈R||x -a |<4}满足M ∩C =∅,求实数a 的取值范围.18.(本题满分12分)有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A ,B 两个班各被随机抽取5名学生接受问卷调查,A 班5名学生得分为:5、8、9、9、9;B 班5名学生得分为:6,7,8,9,10. (1)请你估计A ,B 两个班中哪个班的问卷得分要稳定一些;(2)如果把B 班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.19.(本题满分12分)已知等差数列{a n }的前n 项和为S n ,且S 10=120,S 20=440.(1)求数列{a n }的通项公式; (2)记数列{nS 1}的前n 项和为T n ,求T n . 20.(本题满分12分)已知函数f (x )=a x +2-1(a >0,且a ≠1)的反函数为)(1x f -.(1)求)(1x f -;(2)若)(1x f -在[0,1]上的最大值比最小值大2,求a 的值; (3)设函数1log )(-=x a x g a,求不等式g (x )≤)(1x f -对任意的⎥⎦⎤⎢⎣⎡∈2131,a 恒成立的x 的取值范围.21.(本题满分12分)已知x 1,x 2是函数x a x b x a x f 22323(-+=)(a >0)的两个极值点. (1)若a =1时,x 1=21,求此时f (x )的单调递增区间; (2)若x 1,x 2满足|x 1-x 2|=2,请将b 表示为a 的函数g (a ),并求实数b 的取值范围.22.(本题满分14分)已知数列{a n }共有2k 项(k ∈N*,k ≥2),首项a 1=2.设{a n }的前n 项的和为S n ,且a n +1=(a -1)S n +2(n =1,2,3,…,2k -1),其中常数a >1.(1)求证{a n }是等比数列,并求{a n }的通项公式; (2)若数列{b n }满足)(log 1212n n a a a nb =(n =1,2,3,…,2k ),求{b n }的通项公式; (3)令a =1222-k ,对(2)中的{b n }满足不等式231-b +232-b +…+2312--k b +232-k b ≤4,求k 的值.绵阳市高中2018届高三第一次诊断性考试数学(文)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BCCAD DABAC DB二、填空题:本大题共4小题,每小题4分,共16分.13.0 14.500 15.a =-1(答案不唯一)16.②⑤三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:由⎩⎨⎧≠->-123023x x ,解得32>x 且x ≠1,即A ={x |32>x 且x ≠1},由x-21≥1解得1≤x <2,即B ={x |1≤x <2}. ………………………………4分 (1)于是R A ={x |x ≤32或x =1},所以(R A )∩B ={1}. ……………………7分(2)∵ A ∪B ={x |32>x },即C ={x |32>x }.由|x -a |<4得a -4<x <a +4,即M ={x |a -4<x <a +4}. ∵ M ∩C =∅,∴ a +4≤32,解得a ≤310-.…………………………………………………12分18.解:(1)∵ A 班的5名学生的平均得分为(5+9+9+9+9)÷5=8,方差4.2])89()89()89()88()58[(512222221=-+-+-+-+-=S ;B 班的5名学生的平均得分为(6+7+8+9+10)÷5=8,方差2])108()98()88()78()68[(512222222=-+-+-+-+-=S .∴ S 12>S 22,∴ B 班的预防知识的问卷得分要稳定一些.…………………………………8分(2)共有1025=C 种抽取样本的方法,其中样本6和7,6和8,8和10,9和10的平均数满足条件,故所求的概率为52104=.………………………………………………………12分 19.解:(1)设{a n }的公差为d ,由题设有⎪⎪⎩⎪⎪⎨⎧=⨯⨯+=⨯⨯+.440219202012029101011d a d a ,解得a 1=3,d =2.……………………………………5分 a n =a 1+(n -1)d =3+(n -1)×2=2n +1,即{a n }的通项公式为a n =2n +1. ………………………………………………6分(2)由)2(2)123(+=++=n n n n S n ,得)2(11+=n n S n , ……………………8分 ∴ T n )2(1531421311+++⨯+⨯+⨯=n n )21151314121311(21+-++-+-+-=n n)2111211(21+-+-+=n n , =)2(21)1(2143+-+-n n . …………………………………………………12分20.解:(1)令y =f (x )=a x +2-1,于是y +1=a x +2,∴ x +2=log a (y +1),即x =log a (y +1)-2,∴ )(1x f -=log a (x +1)-2(x >-1).………………………………………………3分 (2)当0<a <1时,)(1x f -max =log a (0+1)-2=-2,)(1x f -min =log a (1+1)-2=log a 2-2,∴ -2-(2log a -2)=2,解得22=a 或22-=a (舍). 当a >1时,)(1x f -max =log a 2-2,)(1x f -min =-2,∴ 2)2()22(log =---a ,解得2=a 或2-=a (舍).∴ 综上所述,22=a 或2=a .……………………………………………7分 (3)由已知有log a 1-x a≤log a (x +1)-2,即1log -x a a ≤21log a x a +对任意的]2131[,∈a 恒成立.∵ ]2131[,∈a ,∴ 21ax +≤1-x a .①由21ax +>0且1-x a >0知x +1>0且x -1>0,即x >1,于是①式可变形为x 2-1≤a 3,即等价于不等式x 2≤a 3+1对任意的]2131[,∈a 恒成立.∵ u =a 3+1在]2131[,∈a 上是增函数,∴ 2728≤a 3+1≤89,于是x 2≤2728,解得9212-≤x ≤9212. 结合x >1得1<x ≤9212. ∴ 满足条件的x 的取值范围为⎥⎥⎦⎤⎝⎛92121,.…………………………………12分 21.解:(1)∵ a =1时,x x b x x f -+=23231(), ∴ 1)(2-+='x b x x f .由题知21是方程012=-+x b x 的根,代入解得23=b , 于是123)(2-+='x x x f .由0)(>'x f 即01232>-+x x ,可解得x <-2,或x >21,∴ f (x )的单调递增区间是(-∞,-2),(21,+∞).…………………………4分(2)∵ 22)(a x b ax x f -+=',∴ 由题知x 1,x 2是方程ax 2+b x -a 2=0的两个根. ∴ abx x -=+21,x 1x 2=-a , ∴ |x 1-x 2|=244)(221221=+=-+a abx x x x . 整理得b =4a 2-4a 3.……………………………………………………………8分 ∵ b ≥0, ∴ 0<a ≤1.则b 关于a 的函数g (a )=4a 2-4a 3(0<a ≤1). 于是)32(4128)(2a a a a a g -=-=',∴ 当)320(,∈a 时,0)(>'a g ;当⎥⎦⎤⎝⎛∈132,a 时,.0)(<'a g∴ g(a )在)320(,上是增函数,在⎥⎦⎤⎝⎛132,上是减函数.∴ 2716)32()(max ==g a g ,0)1()(min ==g a g , ∴ 0≤b ≤2716. ………………………………………………………………12分 22.解:(1)n =1时2)1(12+-=S a a 2)1(1+-=a a a 2=,∴a aa a ==2212(常数). n ≥2时,由已知a n +1=(a -1)S n +2有a n =(a -1)S n -1+2, 两式相减得a n +1-a n =(a -1)a n ,整理得a n +1=a ·a n ,即a a ann =+1(常数)即对n =1,2,3,…,2k -1均有a a a nn =+1(常数) 故{a n }是以a 1=2,a 为公比的等比数列.∴ a n =2a n -1.……………………………………………………………………5分 (2))]2()2()2[(log 1)(log 11102212-⋅⋅⋅==n n n a a a n a a a n b )2(log 112102-++++⋅=n n a n]2[log 12)1(2-⋅=n n n a na n 2log 211-+=.……………………………………………………9分(3)由已知1222-=k a ,得12112log 2111222--+=-+=-k n n b k n , 由02112123121123>---=---+=-k n k n b n 知21+>k n ,∴ 当n =1,2,…,k 时n n b b -=-23|23|,当n =k +1,k +2,…,2k 时23|23|-=-n n b b ,∴ |23||23||23||23|21221-+-++-+--k k b b b b23232323232322121-++-+-+-++-+-=++k k k k b b b b b b =]122)12([]122)10([+-+++--++-k k k k k k k k k =122-k k , ∴ 原不等式变为122-k k ≤4,解得324-≤k ≤324+,∵ k ∈N*,且k ≥2,∴ k =2,3,4,5,6,7.……………………………………………………14分绵阳市高中2018届高三第一次诊断性考试数学(第Ⅱ卷) 答题卷(文史类)题号 二 三 第Ⅱ卷总 分总分人总分 复查人 17 18 19 20 21 22 分数得 分 评卷人 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13. . 14. . 15. .16. .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 得 分 评卷人 17.(本题满分12分)得分评卷人18.(本题满分12分)得分评卷人19.(本题满分12分)得分评卷人20.(本题满分12分)得分评卷人21.(本题满分12分)得分评卷人22.(本题满分14分)。

四川省绵阳市2018届高三第一次诊断性考试数学文试题

绵阳市高中2015级第一次诊断性考试数学(文史类) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合()(){}410A x x x =∈-+<Z ,{}2,3,4B =,则A B =I ( ) A .()2,4 B .{}2,4 C .{}3 D .{}2,3 2.若x y >,且2x y +=,则下列不等式成立的是( ) A .22x y < B .11x y< C .1x > D .0y < 3..已知向量()1,2a x =-r ,(),1b x =r ,若a b ∥r r,则x 的值是( )A .1-B .0C .1D .2 4.若tan 24πα⎛⎫-= ⎪⎝⎭,则tan 2α=( ) A .3- B .3 C .34-D .345.某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为( )立方米. A .13 B .14 C .15 D .16 6.已知命题0:p x ∃∈R ,使得00x e≤;命题:,q a b ∈R ,若12a b -=-,则1a b -=-.下列命题为真命题的是( )A .pB .q ⌝C .p q ∨D .p q ∧7.函数()f x 满足()()2f x f x +=,且当11x -≤≤时,()f x x =.若函数()y f x =的图象与函数()log a g x x =(0a >,且1a ≠)的图象有且仅有4个交点,则a 的取值集合为( ) A .()4,5 B .()4,6 C .{}5 D .{}68.已知函数()()sin 0f x x x ωωω=>,若将()y f x =的图象向右平移16个单位得到()y g x =的图象,则函数()y g x =图象的一条对称轴方程是( ) A .56x =B .13x =C .12x = D .0x = 9.在ABC ∆中,“2C π=”是“sin cos A B =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 10.已知01a b <<<,给出以下结论:①1123a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;②1132a b >;③1123log log a b >. 则其中正确的结论个数是( )A .3个B .2个C .1个D .0个11.已知1x 是函数()()1ln 2f x x x =+-+的零点,2x 是函数()2244g x x ax a =-++的零点,且满足121x x -≤,则实数a 的最小值是( )A .1-B .2- C.2-.1-12.已知,,a b c ∈R ,且满足221b c +=,如果存在两条互相垂直的直线与函数()cos sin f x ax b x c x =++的图象都相切,则a 的取值范围是( )A .[]2,2- B.⎡⎣ C.⎡⎣ D.⎡-⎣第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知变量,x y 满足约束条件6,32,1,x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则2z x y =+的最小值是 .14.已知偶函数()f x 在[)0,+∞上单调递减,且()21f =,若()211f x +<,则x 的取值范围是 .15.在ABC ∆中,2AB =,4AC =,3A π∠=,且,M N 是边BC 的两个三等分点,则AM AN ⋅=u u u r u u u r.16.已知数列{}n a 的首项1a m =,且121n n a a n ++=+,如果{}n a 是单调递增数列,则实数m 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.若函数()()sin f x A x ωϕ=+0,0,22A ππωϕ⎛⎫>>-<<⎪⎝⎭的部分图象如下图所示.(1)求函数()f x 的解析式; (2)设0,3πα⎛⎫∈ ⎪⎝⎭,且()65f α=,求sin 2α的值. 18.设公差大于0的等差数列{}n a 的前n 项和为n S .已知315S =,且1413,,a a a 成等比数列,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .(1)求n T ;(2)若对于任意的*n ∈N ,11n n tT a <+恒成立,求实数t 的取值范围. 19.在ABC ∆中,23B π∠=,D 是边BC上一点,且AD =2BD =. (1)求ADC ∠的大小;(2)若AC =ABC ∆的面积. 20.已知函数()()32f x x x x a a =+-+∈R .(1)求()f x 在区间[]1,2-上的最值;(2)若过点()1,4P 可作曲线()y f x =的3条切线,求实数a 的取值范围. 21.函数()()()21ln 122f x x ax a x a =-++--∈R .(1)求()f x 的单调区间; (2)若0a >,求证:()32f x a≥-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程是35cos ,45sin x y αα=+⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)求曲线C 的极坐标方程; (2)设1:6l πθ=,2:3l πθ=,若12,l l 与曲线C 分别交于异于原点的,A B 两点,求AOB ∆的面积.23.选修4-5:不等式选讲 已知函数()2123f x x x =-++. (1)解不等式()6f x ≥;(2)记()f x 的最小值是m ,正实数,a b 满足22ab a b m ++=,求2a b +的最小值.绵阳市高2015级第一次诊断性考试 数学(文史类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分. DCADC BCBAB AB二、填空题:本大题共4小题,每小题5分,共20分.13.3 14.)21()23(∞+--∞,,15.32016.(21,23)三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ)由图得,2=A . …………………………………………………1分43125343πππ=+=T ,解得π=T , 于是由T =πωπ=2,得2=ω.…………………………………………………3分 ∵ 2)32sin(2)3(=+=ϕππf ,即1)32sin(=+ϕπ, ∴2232ππϕπ+=+k ,k ∈Z ,即62ππϕ-=k ,k ∈Z , 又)22(ππϕ,-∈,所以6πϕ-=,即)62sin(2)(π-=x x f . …………………6分(Ⅱ) 由已知56)62sin(2=-πα,即53)62sin(=-πα, 因为)30(πα,∈,所以)26(62πππα,-∈-,∴ 54)62(sin 1)62cos(2=--=-παπα. …………………………………8分 ∴]6)62sin[(2sin ππαα+-=6sin )62cos(6cos )62sin(ππαππα-+-= =21542353⨯+⨯ 10334+=. ………………………………………………………12分 18.解:(Ⅰ)设{a n }的公差为d (d >0),由S 3=15有3a 1+d 223⨯=15,化简得a 1+d =5,① ………………………2分 又∵ a 1,a 4,a 13成等比数列,∴ a 42=a 1a 13,即(a 1+3d )2=a 1(a 1+12d ),化简3d =2a 1,② ………………4分 联立①②解得a 1=3,d =2,∴ a n =3+2(n -1)=2n +1. ……………………………………………………5分∴)321121(21)32)(12(111+-+=++=+n n n n a a n n , ∴ )32(3)32131(21)]321121()7151()5131[(21+=+-=+-+++-+-=n n n n n T n .……………………………………………………7分(Ⅱ) ∵ n n a tT <+11,即122)32(3+<+n n tn,∴ 90)9(12)36304(3)32)(122(32++=++=++<nn n n n n n n t ,………………9分又nn 9+≥6 ,当且仅当n =3时,等号成立, ∴ 90)9(12++nn ≥162, ……………………………………………………11分 ∴ 162<t .……………………………………………………………………12分 19.解:(Ⅰ)△ABD 中,由正弦定理BADBDB AD ∠=∠sin sin ,得21sin sin =∠⨯=∠AD B BD BAD , …………………………………………4分∴ 66326πππππ=--=∠=∠ADB BAD ,, ∴ 656πππ=-=∠ADC . ……………………………………………………6分 (Ⅱ)由(Ⅰ)知,∠BAD =∠BDA =6π,故AB =BD =2.在△ACD 中,由余弦定理:ADC CD AD CD AD AC ∠⋅⋅-+=cos 2222, 即)23(32212522-⋅⋅⨯-+=CD CD , ……………………………………8分 整理得CD 2+6CD -40=0,解得CD =-10(舍去),CD =4,………………10分 ∴ BC =BD +CD =4+2=6. ∴ S △ABC =33236221sin 21=⨯⨯⨯=∠⨯⨯⨯B BC AB . ……………………12分 20.解:(Ⅰ))1)(13(123)(2+-=-+='x x x x x f , ……………………………1分由0)(>'x f 解得31>x 或1-<x ;由0)(<'x f 解得311<<-x ,又]21[,-∈x ,于是)(x f 在]311[,-上单调递减,在]231[,上单调递增. …………………………………………………………………3分∵ a f a f a f +-=+=+=-275)31(10)2(1)1(,,,∴ )(x f 最大值是10+a ,最小值是a +-275.………………………………5分 (Ⅱ) 设切点)41()(23,,,P a x x x x Q +-+, 则14123)(232--+-+=-+='=x a x x x x x x f k PQ, 整理得0522223=-+--a x x x , ……………………………………………7分 由题知此方程应有3个解. 令a x x x x -+--=5222)(23μ, ∴ )1)(13(2246)(2-+=--='x x x x x μ,由0)(>'x μ解得1>x 或31-<x ,由0)(<'x μ解得131<<-x ,即函数)(x μ在)31(--∞,,)1(∞+,上单调递增,在)131(,-上单调递减. ……………………………………………………………………10分要使得0)(=x μ有3个根,则0)31(>-μ,且0)1(<μ,解得271453<<a , 即a 的取值范围为)271453(,. ………………………………………………12分 21.解:(Ⅰ)xx ax x x a ax a ax x x f )1)(1(1)1()1(1)(2+-=--+=-++-='. …1分 ① 当a ≤0时,0)(<'x f ,则)(x f 在)0(∞+,上单调递减;………………3分 ② 当0>a 时,由0)(>'x f 解得a x 1>,由0)(<'x f 解得ax 10<<. 即)(x f 在)10(a ,上单调递减;)(x f 在)1(∞+,a上单调递增; 综上,a ≤0时,)(x f 的单调递减区间是)0(∞+,;0>a 时,)(x f 的单调递减区间是)10(a ,,)(x f 的单调递增区间是)1(∞+,a . ……………………5分(Ⅱ) 由(Ⅰ)知)(x f 在)10(a ,上单调递减;)(x f 在)1(∞+,a上单调递增, 则121ln )1()(min --==aa a f x f . …………………………………………6分 要证)(x f ≥a 23-,即证121ln --a a ≥a 23-,即a ln +11-a≥0,即证a ln ≥a11-.………………………………………………………………8分 构造函数11ln )(-+=aa a μ,则22111)(a a a a a -=-='μ,由0)(>'a μ解得1>a ,由0)(<'a μ解得10<<a , 即)(a μ在)10(,上单调递减;)(a μ在)1(∞+,上单调递增; ∴ 01111ln )1()(min =-+==μμa ,即11ln -+aa ≥0成立. 从而)(x f ≥a23-成立.………………………………………………………12分 22.解:(Ⅰ)将C 的参数方程化为普通方程为(x -3)2+(y -4)2=25,即x 2+y 2-6x -8y =0. ……………………………………………………………2分 ∴ C 的极坐标方程为θθρsin 8cos 6+=. …………………………………4分 (Ⅱ)把6πθ=代入θθρsin 8cos 6+=,得3341+=ρ,∴ )6334(π,+A . ……………………………………………………………6分把3πθ=代入θθρsin 8cos 6+=,得3432+=ρ,∴ )3343(π,+B . ……………………………………………………………8分∴ S △AOB AOB ∠=sin 2121ρρ )63sin()343)(334(21ππ-++= 432512+=. ……………………………………………………10分 23.解:(Ⅰ)当x ≤23-时,f (x )=-2-4x , 由f (x )≥6解得x ≤-2,综合得x ≤-2,………………………………………2分当2123<<-x 时,f (x )=4,显然f (x )≥6不成立,……………………………3分当x ≥21时,f (x )=4x +2,由f (x )≥6解得x ≥1,综合得x ≥1,……………4分所以f (x )≥6的解集是)1[]2(∞+--∞,,.…………………………………5分 (Ⅱ))(x f =|2x -1|+|2x +3|≥4)32()12(=+--x x ,即)(x f 的最小值m =4. ………………………………………………………7分 ∵ b a 2⋅≤2)22(b a +, …………………………………………………………8分 由224ab a b ++=可得)2(4b a +-≤2)22(b a +, 解得b a 2+≥252-,∴ b a 2+的最小值为252-.………………………………………………10分。

推荐-四川省绵阳市高中2018级第一次诊断性数学(理) 精品

四川省绵阳市高中2018级第一次诊断性考试数 学(理工类)第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么 P (A +B )=P (A )+P (B ); 如果事件A 、B 相互独立,那么 P (A·B )=P (A )· P (B );如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率:Pn (k )=C kn ·Pk·(1-P )n -k正棱锥、圆锥的侧面积公式:S 锥侧=12Cl 球的体积公式V =43πR3其中R 表示球 的半径对数换底公式:log log log mNaN mO=0<a ,m ≠ 1,N > 0一、选择题:本大题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上。

1.右图中阴影部分表示的集合是A .P QB .P QC .(PQ )D .(PQ )2.用反证法证明命题:若P 则q ,其第一步是反设命题的结论不成立,这个正确的反设是A .若P 则非qB .若非P 则qC .非PD .非q3.已知数列{a n }的通项公式为2245n a n n =-+ 则{a n }的最大项是A .a 1B .a 2C .a 3D .a 44.右图是一个样本容量为50的样本频率分布直方图,据此估计数据落在 [15.5,24.5]的概率约为A .36%B .46%C .56%D .66%5.在点 x = a 处连续的是6.设a> 0,a ≠ 1,若y = a x 的反函数的图象经过点1()24-,则a=A .16B .2CD .47.若函数f (x )的图象经过点 A 、(1,12) B 、(1,0), C 、(2,-1),则不能作为函数f (x )的解析式的是A .12()log f x x =B .227()333f x x x =-+C .22,1()1,1x x f x x x -≤⎧=⎨->⎩D .2()sin[(1)]3f x x π=-8.计算:42233lim 32x x x x +-=-+ A .不存在 B .8 C .-8 D .189.函数3log 3xy =的图象大致是10.对数函数log a y x =和log b y x =的图象如图所示,则a 、b 的取值范围是A .1a b >>B .1b a >>C .10a b >>>D .10b a >>>11.已知复数 z ,条件P :“21z =-”是条件q :“21zR z ∈+”的 A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件12.函数(1)xy a a =>及其反函数的图象与函数(1/)y x =的图象交于A 、B 两点,若AB =,则实数a 的值等于(精确到0.1 ,参考数据 lg2.414 ≈ 0.3827 lg 8.392 ≈ 0.9293 lg 8.41 ≈ 0.9247 )A .3.8B .4.8C .8.4D .9.2第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡相应位置上。

2018届绵阳一诊理科数学部分试题解答

2018届绵阳一诊理科数学部分试题解答都江堰八一聚源高中 周军法一:由已知得11-=x ,由121≤-x x 得022≤≤-x 所以有二次函数根的分布有:⎪⎪⎩⎪⎪⎨⎧≥∆≤≤-≥-≥020)2(0)0(a g g 得2221-≤≤-a 所以1min -=a 法二:由已知得022≤≤-x 。

令0)(=x g 得4242-+=x x a ,设]0,2[,424)(2-∈-+=x x x x h ,由导数知识可得2221-≤≤-a 所以1min -=a解:由122=+c b 得)cos ,)(sin sin()(c b x ax x f ==++=ϕϕϕ,设函数图像上存在两点))(,()),(,(2211x f x x f x 处的切线相互垂直,则1)()(2'1'-=⋅x f x f 在R 上有解。

即01)cos()cos()]cos()[cos(21212=++++++++ϕϕϕϕx x a x x a 在R 上有解,由0≥∆得4)]cos()[cos(221≥+-+ϕϕx x ,由三角函数的有界性得,or x x ⎩⎨⎧-=+=+1)cos(1)cos(21ϕϕ⎩⎨⎧=+-=+1)cos(1)cos(21ϕϕx x 所以0=a 由122=+c b 得)(sin cos R c b ∈⎩⎨⎧==θθθ所以]5,5[)sin(532-∈+=++φθc b a解:设22222)()33(29)()(a x a e a ax x a e x f x x -+-=+-+-=表点),3(x e A x 与点),3(a a B 距离的平方。

原命题等价于101)(min ≤x f 即1012min ≤AB 。

),3(x e A x 在函数x x g 3ln )(=的图像上,),3(a a B 在直线x y 3=上。

所以2min AB 等价于与x y 3=平行且与x x g 3ln )(=相切的直线到x y 3=的距离的平方。

2018年四川省绵阳市游仙区中考数学一诊试卷(解析版)

2018年绵阳市游仙区中考数学一诊试卷一、选择题:本大题共12个小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一个符合题目要求.1.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】利用因式分解法把方程转化为x﹣3=0或x+4=0,然后解两个一次方程即可.【解答】解:x﹣3=0或x+4=0,所以x1=3,x2=﹣4.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4.【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.5.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.6.【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.7.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=AB tan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.8.【分析】根据90°的圆周角所对的弦是直径进行判断.【解答】解:A、不是圆周角,故本选项不能判断;B、根据90°的圆周角所对的弦是直径,本选项符合;C、不是圆周角,故本选项不能判断;D、不是圆周角,故本选项不能判断.故选:B.【点评】此题考查了圆周角定理的推论,即检验半圆的方法,90°的圆周角所对的弦是直径,所对的弧是半圆.9.【分析】先由a>0,得出函数有最小值,再根据点A、B、C到对称轴的距离的大小与抛物线的增减性解答.【解答】解:∵抛物线y=ax2﹣2ax+1=a(x﹣1)2﹣a+1(a>0),∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵a>0,∴抛物线开口向上,∵点A、B、C到对称轴的距离分别为3、1、2,∴y1>y3>y2.故选:B.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.【分析】连接OB,OA,得出△AOB是等边三角形,求出S△AOB 和S扇形AOB,那么阴影面积=(S扇形AOB﹣S△AOB)×6,代入计算即可.【解答】解:如图,连接OB,OA,作OM⊥AB于点M,则OM=.∵∠AOB==60°,AO=OB,∴BO=AB=AO,AM=AB=AO,OM=,∴,∴AO=1,∴BO=AB=AO=1,∴S△AOB=AB×OM=×1×=,∵S扇形AOB==,∴阴影部分面积是:(﹣)×6=π﹣.故选:A.【点评】此题主要考查了正六边形和圆以及扇形面积求法,注意圆与多边形的结合得出阴影面积=(S扇形AOB ﹣S△AOB)×6是解题关键.11.【分析】利用弧长公式,分别计算出L1,L2,L3,…的长,寻找其中的规律,确定L2011的长.【解答】解:L1==L2==L3==L4==按照这种规律可以得到:L n=∴L2011=.故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出L2011的长.12.【分析】根据图象的位置即可判断①,根据图象得出当x<﹣1时,M=﹣x2+1,当﹣1<x<0时,M =x+1,即可判断②,求出M=﹣2时,对应的x的值,即可判断③,根据二次函数的最值即可判断④.【解答】解:∵从图象可知:当x>0时,y1<y2,∴①错误;∵当x<0时,x值越大,M值越大;,∴②正确;∵抛物线与x轴的交点为(﹣1,0)(1,0),由图可知,x<﹣1或x>1时,M=y1=﹣x2+1,当M=﹣2时,﹣x2+1=﹣2,解得x=,故③正确;∵由图可知,x=0时,M有最大值为1,故④正确,故选:C.【点评】本题考查了二次函数的图象和性质的应用,主要考查学生的理解能力和观察图形的能力.二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接写在横线上.13.【分析】根据一元二次方程的解的定义,将x=0代入原方程,列出关于m的方程,通过解关于m的方程即可求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,∴x=0满足关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0,且m﹣1≠0,∴m2﹣1=0,即(m﹣1)(m+1)=0且m﹣1≠0,∴m+1=0,解得,m=﹣1;故答案是:﹣1.【点评】本题考查了一元二次方程的解.注意一元二次方程的二次项系数不为零.14.【分析】证明∠DCE=∠A即可解决问题.【解答】解:∵∠A+∠BCD=80°,∠BCD+∠DCE=180°,∴∠DCE=∠A,∵∠A=70°,∴∠DCE=70°,故答案为70°.【点评】本题考查圆内接四边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【分析】根据菱形的性质和含30°的直角三角形的性质解答即可.【解答】解:∵菱形ABCD的对角线交于坐标原点O,边AD∥x轴,OA=4,∠ABC=120°,∴∠AOD=90°,∠ADO=60°,∴∠OAD=30°,∴点A的坐标为(﹣2,2),∴点C的坐标是(2,﹣2),故答案为:(2,﹣2),【点评】本题考查了菱形的性质.含30°的直角三角形的性质,熟记各种特殊几何图形的判断方法和性质是解题的关键.16.【分析】成绩就是当高度y=0时x的值,所以解方程可求解.【解答】解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.【点评】此题把函数问题转化为方程问题来解,渗透了函数与方程相结合的解题思想方法.17.【分析】连接OC,作直角△ABO斜边中线OE,连接ED,当DE、AE共线时AD取最大值.【解答】解:由题意知OB=10连接OC,作直角△ABO斜边中线OE,连接ED,则DE=OC=2,AE=OB=5.因为AD<DE+AE,所以当DE、AE共线时AD=AE+DE最大为7cm.故答案为:7.【点评】本题考查最值问题.将AD转化为AE和DE的数量关系是解答关键.18.【分析】把已知条件转化为抛物线y=2x2﹣(k+1)x﹣k+2=0与x轴的两交点的横坐标为x1,x2,如图,利用函数图象得到当x=0时,y>0,即﹣k+2>0;当x=1时,y<0,即2﹣k﹣1﹣k+2<0;当x=2时,y>0,即8﹣2k﹣2﹣k+2>0;然后分别解不等式,最后确定它们的公共部分即可.【解答】解:∵关于x的一元二次方程2x2﹣(k+1)x﹣k+2=0有两个实数根x1,x2,∴抛物线y=2x2﹣(k+1)x﹣k+2=0与x轴的两交点的横坐标为x1,x2,如图,当x=0时,y>0,即﹣k+2>0,解得k<2;当x=1时,y<0,即2﹣k﹣1﹣k+2<0,解得k>;当x=2时,y>0,即8﹣2k﹣2﹣k+2>0,解得k<;∴k的范围为<k<2.故答案为<k<2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.三、解答题:本大题共7个小题,共86分.解答应写出文字说明,证明过程或演算步骤.19.【分析】(1)根据绝对值的性质、二次根式的性质、零指数幂、二次根式的混合运算法则计算;(2)利用配方法求解即可.【解答】解:(1)原式=1﹣(2﹣)+2﹣=1﹣2++2﹣=3﹣;(2)整理得:x2﹣4x=7,则x2﹣4x+4=7+4,即(x﹣2)2=11,∴x﹣2=±,∴x1=2+、x2=2﹣.【点评】本题考查了配方法解方程和实数的混合运算.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=﹣,由此计算即可;【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积=﹣=﹣=2π.【点评】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.【分析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可;(2)根据根与系数的关系得到x1+x2=5,x1x2=6﹣p2,再利用x1=4x2,可先求出x2=1,则可得到x1=4,然后根据x1x2=6﹣p2求p的值.【解答】(1)证明:原方程可化为x2﹣5x+6﹣p2=0,∵△=(﹣5)2﹣4×(6﹣p2)=4p2+1>0,∴不论p为任何实数,方程总有两个不相等的实数根;(2)解:根据题意得x1+x2=5,x1x2=6﹣p2,∵x1=4x2,∴4x2+x2=5,解得x2=1,∴x1=4,∴6﹣p2=4×1,∴p=±.【点评】此题考查根与系数的关系和一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.【分析】(1)解析式中令y=0求出x的值,确定出A与B坐标,化为顶点形式确定出顶点坐标即可;(2)连接AD,CD,与x轴交于点E,分别作DG⊥x轴,CF⊥x轴,如图所示,把x=4代入抛物线解析式确定出C 纵坐标,三角形ACD 面积等于三角形AED 面积加上三角形AEC 面积,求出即可.【解答】解:(1)令y =0,得到x 2﹣4x +3=0,解得:x =1或x =3,即A (1,0),B (3,0),抛物线y =x 2﹣4x +3=(x ﹣2)2﹣1,顶点D (2,﹣1);(2)连接AD ,CD ,与x 轴交于点E ,分别作DG ⊥x 轴,CF ⊥x 轴,如图所示,将x =4代入抛物线解析式得:y =3,即C (4,3),∴CF =3,设直线CD 解析式为y =kx +b ,把C (4,3),D (2,﹣1)代入得:,解得:,即直线CD 解析式为y =2x ﹣5, 令y =0,得到x =2.5,即E (2.5,0),AE =1.5,则S △ACD =S △AED +S △AEC =AE •DG +AE •CF =×1.5×1+×1.5×3=3.【点评】此题考查了抛物线与x 轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数性质是解本题的关键.23.【分析】(1)分别根据当0<x ≤20时,y =800,当20<x ≤40时,设BC 满足的函数关系式为y =kx +b ,分别求出即可;(2)利用当0<x ≤20时,老王获得的利润为:w =(800﹣280)x ,当20<x ≤40时,老王获得的利润为w =(﹣20x +12 00﹣280)x 分别求出即可.【解答】解:(1)当0<x ≤20时,y =800;当20<x ≤40时,设BC 满足的函数关系式为y =kx +b ,解得:,∴y 与x 之间的函数关系式为:y =﹣20x +1200;(2)当0<x≤20时,老王获得的利润为:w=(800﹣280)x=520x≤10400,此时老王获得的最大利润为10400元.当20<x≤40时,老王获得的利润为w=(﹣20x+12 00﹣280)x=﹣20(x2﹣46x)=﹣20(x﹣23)2+10580.∴当x=23时,利润w取得最大值,最大值为10580元.∵10580>10400,∴当小王租赁的商铺数量为23时,开发商在这次租赁中每个月所获的利润W最大,最大利润是10580元.【点评】此题主要考查了二次函数的应用以及分段函数的应用,根据数形结合以及分类讨论得出是解题关键.24.【分析】(1)结论:△ADC是等边三角形.想办法证明DA=DC,∠ADC=60°即可解决问题.(2)如图1﹣1中,在BA上截取BE,使得BE=BA.证明△ABE是等边三角形,△BAC≌△DAE(SAS)即可解决问题.(3)结论:BC﹣AB=BE.如图2中,连接EA,EC,作EF⊥BE交BC于点F.想办法证明△BEF,△AEC都是等腰直角三角形,△BEA≌△FEC(SAS)即可解决问题.【解答】(1)解:结论:△ADC是等边三角形.理由:如图1中,连接OA,OC,作OH⊥AC于H.∵OH⊥AC,∴AH=CH=AC=,在Rt△AOH中,∵OA=2,AH=,∴sin∠AOH=,∴∠AOH=60°,∵OA=OC,OH⊥AC,∴∠AOC=2∠AOH=120°,∴∠ADC=∠AOC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD,∴△ADC是等边三角形.(2)证明:如图1﹣1中,在BA上截取BE,使得BE=BA.∵△ADC是等边三角形,∴∠ACD=∠DAC=60°,AC=AD,∴∠ABE=∠ACD=60°,∵BA=BE,∴△ABE是等边三角形,∴AB=AE,∠BAE=60°,∴∠BAE=∠CAD,∴∠BAC=∠DAE,∴△BAC≌△DAE(SAS),∴BC=DE,∴BD=BE+DE=BA+BC.(3)解:结论:BC﹣AB=BE.理由:如图2中,连接EA,EC,作EF⊥BE交BC于点F.∵AC是直径,∴∠ABC=∠CBN=∠AEC=90°,∵BE平分∠CBN,∴∠EBC=∠CBN=45°,∴∠EAC=∠EBC=45°,△BEF,△AEC都是等腰直角三角形,∴EB=EF,EA=EC,∠BEF=∠AEC,∴∠BEA=∠FEC,∴△BEA≌△FEC(SAS),∴AB=CF,∴BC=BF+CF=BE+AB,∴BC﹣AB=BE.【点评】本题属于圆综合题,考查了等边三角形的判定和性质,等腰直角三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.【分析】(1)由点A,B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)分∠PAC=90°或∠PCA=90°两种情况考虑:①当∠PAC=90°时,设PA交y轴于点D,由点A,C的坐标可得出∠CAO=45°,结合∠PAC=90°可得出∠DAO=45°,进而可得出点D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,联立直线AD与抛物线的解析式成方程组,通过解方程组可求出点P的坐标;②当∠PCA=90°时,同理,直线PC的解析式,联立直线PC与抛物线的解析式成方程组,通过解方程组可求出点P的坐标.此问得解;(3)由⊙P与x轴相切且与抛物线的对称轴相交,可得出点P的纵坐标为﹣2,利用二次函数图象上点的坐标特征即可求出点P的坐标,过点P作PE⊥MN,垂足为点E,通过解直角三角形可求出ME的长度,再利用等腰三角形的三线合一可得出MN的长度.【解答】解:(1)设抛物线解析式为y=ax2+bx+c(a≠0),将A(3,0),B(﹣1,0),C(0,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3.(2)分∠PAC=90°或∠PCA=90°两种情况考虑,如图1所示.①当∠PAC=90°时,设PA交y轴于点D.∵OA=OC,∴∠CAO=45°,又∵∠PAC=90°,∴∠DAO=45°,∴OD=OA=3,∴点D的坐标为(0,3).设直线AD的解析式为y=kx+d(k≠0),将A(3,0),D(0,3)代入y=kx+d,得:,解得:,∴直线AD的解析式为y=﹣x+3.联立直线AD与抛物线的解析式成方程组,得:,解得:,(舍去),∴点P的坐标为(﹣2,5);②当∠PCA=90°时,同理,直线PC的解析式为y=﹣x﹣3.联立直线PC与抛物线的解析式成方程组,得:,解得:,(舍去),∴点P的坐标为(1,﹣4).综上所述:点P的坐标为(﹣2,5)或(1,﹣4).(3)存在,由题意可知:点P的纵坐标为﹣2.当y=﹣2时,x2﹣2x﹣3=﹣2,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,﹣2)或(1+,﹣2).过点P作PE⊥MN,垂足为点E,如图2所示.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∴PE=1+﹣1=或PE=1﹣(1﹣)=.在Rt△PEM中,PE=,PM=2,∴ME==.∵PM=PN,∴ME=NE,∴MN=2ME=2.∴点P的坐标为(1﹣,﹣2)或(1+,﹣2),抛物线的对称轴所截的弦MN的长度为2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绵阳市高中2018级第一次诊断性考试
数学(理工类)时间:120分钟 总分:150分
一、选择题:本小题12小题,每小题5分,共60分. 1. 设集合{2,1,0,1,2},{|12},()S S T x R x S T =--=∈+≤=则ð
A .∅
B .{2}
C .{1,2}
D .{0,1,2}
2.已知i 是虚数单位,则2007
1(
)1i i
-+= A .1 B .1- C .i D .i -
3.下列函数中,反函数是其自身的函数为
A .2()(0)f x x x =>
B .()ln f x x = ()x R ∈
C .()x
f x e = ()x R ∈ D .1
()f x x
=
()x R ∈ 4.设p :0m ≤, q :关于x 的方程2
0x x m +-=有实数根,则p ⌝是q 的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件 5.右图是正态分布(0,1)N 的正态曲线,现有:①1
()2
m Φ-
,②()m Φ-,
③1[()()]2
m m Φ-Φ-,这三个式子能表示图中阴影部分面积的是
A .①②
B .②③
C .①③
D . ①②③ 6.用数学归纳法证明等式

42
2
*123()2
n n n n N ++++
+-∈,则从n k =到1
n k =+时左边应添加的项为
A .2
1k + B .2
(1)k +
C . 42(1)(1)2
k k +++ D . 222
2(1)(2)(3)(1)k k k k ++++++
++
7.等差数列{}n a 的前项和为n S ,若81126a a =+,则9S = A .54 B .45 C .36 D .27
8.若函数282()1012x x f x x ⎧-⎪-⎪⎪
=⎨⎪⎪-⎪⎩ (2)(2)(2)
x x x <=>,则2lim ()x f x →-
的值是
A .不存在
B .12
C .10
D .5
4
9.如果我们定义一种运算:g g h h ⎧⊗=⎨⎩
(),
(),
g h g h ≥<已知函数()21x f x =⊗,那么函数
(1)f x -的大致图象是
10.已知等比数列{}n a 的前项和2
1
5
5
n n S t -=⋅-,则实数t 的值为 A .4 B .5 C .45
D .1
5
11.把数列依次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,
按第四个括号一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…则第50个括号内各数之和为 A .98 B .197 C .390 D .392
12.已知函数32
()g x ax bx cx d =+++ (0)a ≠的导函数为()f x ,0a b c ++=,
且(0)(1)0f f >,设12,x x 是方程()0f x =的两根,则12||x x -的取值范围为 A
.23⎫⎪⎭
⎣ B .14,39⎡⎫⎪⎢⎣⎭ C
.13⎡⎢⎣⎭ D 11,93⎡⎫
⎪⎢⎣⎭ 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.已知复数z 与2
(2)8z i --都是纯虚数,则z = .
14.我市某电器公司,生产G 、E 、F 三种不同型号的电器产品,这三种电器产品数
量之比依次为5:2:3,现用分层抽样方法抽出一个容量为n 的样本,若样本中型产品有24件,则n = .
15.函数()|1||1|f x x x =+--的值域是 .
16.已知二次函数2()(1)(21)1n f x n n x n x =+-++*()n N ∈,当n 取1,2,3,…,
n ,…时,()n f x 的图象是一系列的抛物线.设()i f x ,(1i =,2,…,n ,…)的图
象与轴的交点为i A 、i B ,||i i A B 为其在x 轴上截得线段的长度,则
112233lim(||||||||)n n A B A B A B A B ++++= .
三、解答题:本大题6个小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知集合{|||}E x x x m =-≥,10
{|1}6
F x R x =∈>+. (1)若3m =,求E F ;
(2)若E F R =,求实数m 的取值范围.
18.(本小题满分12分)已知{}n a 是等差数列,公差0d ≠,1a 、3a 、13a 且成等比数列,n S 是{}n a 的前n 项和. (1)求证:1S 、3S 、9S 成等比数列; (2)设n
n n
na b S =
,请问是否存在正整数m ,使得n m >当时, 1.99n b >恒成立?若存在,求出m 的最小值;若不存在,请说明理由. 19.(本小题满分12分)某科技公司遇到一个技术难题,紧急成立甲、乙两个攻关小组,按要求各自单独进行为期一个月的技术攻关,同时决定对攻关期满就攻克技术难题的小组给予奖励.已知此技术难题在攻关期满时被甲小组攻克的概率为2
3
,被乙小组攻克的概率为
34
. (1)设ξ为攻关期满时获奖的攻关小组数,求ξ的分布列及E ξ;
(2)设η为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函
数7()2
x
f x η=-在定义域内单调递减”为事件C ,求事件C 的概率.
20.(本小题满分12分)已知函数4
()12x f x a a
=-
+ (01)a a >≠且是定义在
(,)-∞+∞上的奇函数.
(1)求a 的值;
(2)求函数()f x 的值域;
(3)当(0,1]x ∈时,()22x tf x ≥-恒成立,求实数t 的取值范围.
21.(本小题满分12分)函数2
()ax f x axe =,其中0a R a ∈≠且,e 为自然对数的底数.
(1)判断函数()f x 的单调性;
(2)当0a <时,求[1,1]x ∈-时函数()f x 的最大值.
22.(本小题满分12分)函数()y f x =是定义在R 上的偶函数,且
(1)(1)f x f x -+=--,当[2,1]x ∈--时,2()(2)(2)()f x t x t x t R =+-+∈记函数()f x 的图象在处的切线为l ,1
()12
f =.
(1)求()f x 在[0,1]上的解析式;
(2)求切线l 的方程;
(3)点列11(,2)B b ,22(,3)B b ,…,(,1)n n B b n +在l 上,11(,0)A x ,22,(,0)A x ,…,(,0)n n A x 依次为x 轴上的点,如图,当*
n N ∈,点n A 、n B 、1n A +,构成以
1n n A A +为底边的等腰三角形,若1(01)x a a =<<,且
数列{}n x 是等差数列,求a 的值和数列{}n x 的通项公式.
2018届绵阳一诊理科参考答案
BCDAC DABBB DA
2i 80 [2,2]- 1
17.{|62}x x -<≤- 03m <≤ 18.(2)100m = 19.(1)151170*********E ξ=⨯
+⨯+⨯= (2)7
12
20.(1)2a = (2)()(1,1)f x ∈- (3)0t ≥ 21.(1)2
2()(12)ax f x ae ax '=+
当0a >时,()f x 在R 上是增函数;当0a <时,()f x 在(,-∞和
)+∞上是增函数;在(上是减函数
(2)综上所述:当12a <-
时,()f x 在[1,1]-上最大值为2e
;当102a -≤<时,()f x 在[1,1]-上最大值为a ae -
22.(1)3
()44f x x x =-+ ([0,1])x ∈
(2):1l y x =+ (3)1
2
n x n =-。

相关文档
最新文档