太原市2020年中考数学模拟试题及答案
太原市2020年(春秋版)数学中考模拟试卷B卷

太原市2020年(春秋版)数学中考模拟试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列叙述正确的是()①数轴上的点与实数一一对应;②若a<b,则<;③若五个数的积为负数,则其中正因数有2个或4个;④近似数3.70是由a四舍五入得到的,则a的范围为3.695≤a<3.705;⑤连接两点的线段叫两点间的距离.A . ①②③⑤B . ①②④C . ②④⑤D . ①④2. (2分) (2019八下·昭通期末) 的算术平方根是()A .B . ﹣C .D . ±3. (2分)(2020·青羊模拟) 在平直角坐标系中,如果抛物线y=4x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A . y=4(x﹣2)2+2B . y=4(x+2)2﹣2C . y=4(x﹣2)2﹣2D . y=4(x+2)2+24. (2分) (2019七下·蔡甸期末) 若关于的不等式组的解集是,则实数的值是()A . 4B . 3C . 2D . 15. (2分)二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b+c,N=a-b+c,P=4a+2b,则()A . M>0,N>0,P>0B . M>0,N<0,P>0C . M<0,N>0,P>0D . M<0,N>0,P<06. (2分)(2019·白云模拟) 若一组数据为:2,3,1,3,3.则下列说法错误的是()A . 这组数据的众数是3B . 事件“在这组数据中随机抽取1个数,抽到的数是“是不可能事件C . 这组数据的中位数是3D . 这组数据的平均数是37. (2分) (2018九上·番禺期末) 如图,点是反比例函数(>0)的图象上任意一点,轴交反比例函数的图象于点,以为边作平行四边形ABCD ,其中、在轴上,则S平行四边形ABCD=()A . 2B . 3C . 4D . 58. (2分)如图,在△ABC中,D是BC延长线上一点,∠B= 40°,∠ACD= 120°,则∠A等于()A . 90°B . 80°C . 70°D . 60°9. (2分)若O为△ABC的外心,I为三角形的内心,且∠BIC=110°,则∠BOC=()A . 70°B . 80°C . 90°D . 100°10. (2分) (2016九上·江北期末) 圆锥的母线长为4,侧面积为12π,则底面半径为()A . 6B . 5C . 4D . 3二、填空题 (共9题;共10分)11. (1分)(2016·张家界模拟) 在函数y= 中,自变量x的取值范围是________.12. (1分)(2020·九江模拟) 一元二次方程x2-5x+3=0的两个根为x1、x2 ,则3x1x2+x12-5x1的值为________.13. (1分) (2018九上·浙江月考) 如图,在平面直角坐标系中,抛物线y= 与直线交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:________.14. (1分)(2017·南充) 经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是________.15. (1分)在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO 缩小,则点B的对应点B′的坐标是________ .16. (1分)(2013·扬州) 如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为________.17. (1分) (2019九上·海淀期中) 若二次函数的图象上有两点 , 则________ .(填“>”,“=”或“<”)18. (1分)(2020·湖州模拟) 如图,∠AOB=30°,n个半圆依次外切,它们的圆心都在射线OA上并与射线OB相切,设半圆C1、半圆C2、半圆C3…、半圆∁n的半径分别是r1、r2、r3…、rn ,则=________.19. (2分) (2019九上·长春月考) 如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是________.三、解答题 (共8题;共67分)20. (10分) (2019八下·东台月考) 先化简,再求值,其中x=-1.21. (5分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tan∠PCD=).(1)求该建筑物的高度(即AB的长).(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)22. (10分)如图,已知一次函数y= x+b的图象与反比例函数(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当时,请直接写出x的取值范围.23. (2分)(2019·岐山模拟) 某中学为了帮助贫困学生读书,由校团委向全校2400名学生发起了“脱贫攻坚我在行”爱心捐款活动,为了解捐款情况,校团委随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为________,图①中m的值是________;(2)请补全条形统计图;(3)求本次调查获取的样本数据的众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24. (10分) (2017九上·召陵期末) 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多能出租一次,且每辆车的日租金x(元)是5的倍数,发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆,已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)设每日净收入为w元,请写出w与x之间的函数关系式;(3)若某日的净收入为4420元,且使游客得到实惠,则当天的观光车的日租金是多少元?25. (5分) (2019九上·上海月考) 如图,已知的边BC=16,高AD=8,矩形EFGH的边FG在的边BC上,顶点E、H分别在边AB、AC上,且FG=6,求边EF长26. (10分)(2019·枣庄模拟) 如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积。
2020年山西省中考数学模拟试卷 (含答案解析)

2020年山西省中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1. 计算(−47)÷(−314)÷(−23)的结果是( ) A. −169 B. −4 C. 4 D. −449 2. 下列四个图案中,不是轴对称图案的是( )A. B.C. D.3. 下列计算正确的是( )A. (a 4b)3=a 7b 3B. −2b(4a −b 2)=−8ab −2b 3C. aa 3+a 2a 2=2a 4D. (a −5)2=a 2−254. 四个大小相同的正方体搭成的几何体如图所示,其左视图是( )A. B. C. D.5. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为90m ,则这栋楼的高度为( )A. 54mB. 135mC. 150mD. 162m6. 不等式组{3x −1≥x +1x +4<4x −2的解集是( ) A. x >2 B. x ≥1 C. 1≤x <2 D. x ≥−17. 若点A(x 1,−6),B(x 2,−2),C(x 3,3)在反比例函数的图象上,则x 1,x 2,x 3的大小关系是( )A. x 1<x 2<x 3B. x 3<x 1<x 2C. x 2<x 1<x 3D. x 3<x 2<x 18. 9.如图所示,有一个半径为2的扇形,∠AOB =90°,其中OC 平分∠AOB ,BE ⊥OC ,CD ⊥AO ,则图中阴影面积为( )A. π−1B. π−2C. 3π4−2D. 2π3−19.从地面竖直向上抛出一小球,小球的高度y(米)与小球运动的时间x(秒)之间的关系式为y=ax2+bx+c(a≠0).若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是()A. 第8秒B. 第10秒C. 第12秒D. 第15秒10.如图,四边形ABCD是菱形,E、F、G、H分别是各边的中点,随机向菱形ABCD内部掷一粒米,则米粒落到阴影区域内的概率是()A. 14B. 12C. 18D. 23二、填空题(本大题共5小题,共15.0分)11.计算:√32−√3(√6−√3)=______.12.观察下列图形:它们是按一定规律排列的,依照此规律,第5个图形中的五角星的个数为______,第n个图形中的五角星(n为正整数)个数为______(用含n的代数式表示).13.为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S甲2=0.8,S乙2=1.3,从稳定性的角度来看______ 的成绩更稳定.(填“甲”或“乙”)14.将长为5,宽为4的矩形,沿四个边剪去宽为x的4个小正方形,剩余部分的面积为12,则剪去小正方形的边长x为_________.15.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,AD⊥BC于点D,则△ACD与△ABC的面积比为______.三、计算题(本大题共1小题,共10.0分)16.(1)计算:(12−3+56−712)÷(−136)(2)化简:(3a−2−12a2−4)÷1a+2四、解答题(本大题共7小题,共65.0分)17.“双十一”期间,合肥市各大商场起购物狂潮,现有甲、乙、两三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动倍息,解决以下问题(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王回满想买这一套衣服,应该选择家商场⋅(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元⋅(3)丙商场又推出“打折活动”(打折与满减只能参加一种),张先生买了一件标价为630元的上衣参加“打折活动”,张先生发现竟然比“满减活动”多付了48元钱,问丙商场先打了多少折后再参加活动⋅18.如图,PA、PB分别与⊙O相切于A,B两点,点C在⊙O上,∠P=60°,(1)求∠C的度数;(2)若⊙O半径为1,求PA的长.19.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是______亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)20.如图,在△ABC中,AB=5,AC=12,BC=13,BC的垂直平分线分别交AC、BC于点D、E,求CD的长.21.图1中是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,从侧面看图2,立柱DE高1.7m,AD长0.3m,踏板静止时从侧面看与AE上点B 重合,BE长0.2m,当踏板旋转到C处时,测得∠CAB=42°,求此时点C距离地面EF的高度.(结果精确到0.1m)(参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90)22.如图,四边形ABCD是正方形,E,F分别在线段BC和CD上,∠EAF=45°.连接EF.将△ADF绕着点A顺时针旋转90°,得到△ABF′.(1)证明:△AEF≌△AEF′;(2)证明:EF=BE+DF.(3)已知正方形ABCD边长是6,EF=5,求线段BE的长.23.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=−2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.-------- 答案与解析 --------1.答案:B解析:【分析】此题主要考查了有理数的除法,关键是正确判断出结果的符号.根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数可得答案.【解答】解:原式=−(47×143×32)=−4,故选:B.2.答案:B解析:【分析】本题考查了轴对称图形的概念.轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,解答此题根据轴对称的定义解答即可.【解答】解:A.是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.是轴对称图形.故选B.3.答案:C解析:解:A、(a4b)3=a12b3,故此选项不合题意;B、−2b(4a−b2)=−8ab+2b3,故此选项不合题意;C、aa3+a2a2=2a4,故此选项符合题意;D、(a−5)2=a2−10a+25,故此选项不合题意;故选:C.直接利用积的乘方运算法则以及合并同类项法则和完全平方公式分别判断得出答案.此题主要考查了积的乘方运算以及合并同类项和完全平方公式,正确掌握相关运算法则是解题关键.4.答案:D解析:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.答案:A解析:解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为90m,∴1.83=ℎ90,解得ℎ=54(m).故选:A.根据同一时刻物高与影长成正比即可得出结论.本题考查平行投影及相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.6.答案:A解析:解:解不等式3x−1≥x+1,得:x≥1,解不等式x+4<4x−2,得:x>2,则不等式组的解集为x>2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.答案:B解析:【分析】本题考查了反比例函数图象上点的坐标特征及反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.先根据反比例函数y=−1x的系数−1<0判断出函数图象在二、四象限,在每个象限内,y随x的增大而增大,再根据−6<−2<0<3,判断出x1,x2,x3的大小.【解答】解:∵k=−1<0,∴函数图象在第二、四象限,在每个象限内,y随x的增大而增大,又∵−6<−2<0<3,∴点A(x1,−6),B(x2,−2)在第四象限,点C(x3,3)在第二象限,∴x3<x1<x2.故选B.8.答案:B解析:分析:首先证明△COD,△BOE是等腰直角三角形,由OB=OC=2,推出OD=CD=OE=BE=√2,根据S阴=S扇形AOB−S△CDO−S△BOE计算即可.详解:∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠BOC=45°,∵BE⊥OC,CD⊥AO,∴△COD,△BOE是等腰直角三角形,∵OB=OC=2,∴OD=CD=OE=BE=√2,∴S阴=S扇形AOB−S△CDO−S△BOE=90π⋅22360−12×√2×√2−12×√2×√2=π−2,故选:B.点睛:本题考查扇形的面积,角平分线的性质,等腰直角三角形的判定和性质等知识.解题的关键是学会利用分割法求阴影部分的面积,是中考常考的题型.9.答案:B解析:【分析】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.根据题意可以求得该函数的对称轴,然后根据二次函数具有对称性,离对称轴越近,对应的y值越大,即可解答本题.【解答】解:由题意可得,当x=7+142=10.5时,y取得最大值,∵二次函数具有对称性,∴当t=8,10,12,15时,t取10时,y取得最大值,故选:B.10.答案:B解析:【分析】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.先求出阴影部分的面积与菱形的面积之比,再根据概率公式即可得出答案.【解答】解:∵四边形ABCD是菱形,E、F、G、H分别是各边的中点,∴四边形HGFE的面积是菱形ABCD面积的12,∴米粒落到阴影区域内的概率是12.故选B.11.答案:3+√2解析:解:原式=4√2−3√2+3=3+√2.故答案为3+√2.先进行二次根式的乘法运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可. 12.答案:22 1+n +2n−1(n 为正整数)解析:【分析】本题考查了图形变化规律的问题,把五角星分成三部分进行考虑,并找出第n 个图形五角星的个数的表达式是解题的关键.解:∵第1个图形中五角星的个数3=1+1+1,根据每个图形观察发现,每个图形上、左、右的五角星个数个图形序号一致,下方只有一个,根据规律即可求出答案.【解答】第2个图形中五角星的个数5=1+2+2,第3个图形中五角星的个数8=1+3+22,第4个图形中五角星的个数13=1+4+23,∴第5个图形中五角星的个数为1+5+24=22,则第n 个图形中的五角星(n 为正整数)个数为1+n +2n−1(n 为正整数).故答案为22;1+n +2n−1(n 为正整数).13.答案:甲解析:解:∵S 甲2=0.8,S 乙2=1.3,∴S 甲2<S 乙2,∴成绩最稳定的运动员是甲,故答案是:甲.根据方差的意义即可得.本题主要考查方差,熟练掌握方差的意义:方差越小,数据的密集度越高,波动幅度越小是解题的关键.14.答案:√2解析:【分析】本题考查了一元二次方程的应用,读懂题意,找到等量关系准确的列出式子是解题的关键,注意:剩余部分面积用原矩形面积减去4个小正方形面积,用长方形的面积减去四个小正方形的面积即为剩余部分面积,根据已知可列出方程求解.【解答】解:如图,矩形ABCD 的长为5,宽为4,沿四个边剪去宽为x 的4个小正方形后,剩余部分如图,依题意得5×4−4x 2=12,解之得x=√2,x=−√2(不合题意,舍去).所以剪去小正方形的宽x为√2故答案为√2.15.答案:9:25解析:解:在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC=√32+42=5,∵∠C=∠C,∠ADC=∠CAB=90°,∴△ACD∽△BCA,∴AC2=CD⋅CB,∴CD=95,∴S△ACD:S△ABC=(12⋅CD⋅AD):(12⋅BC⋅AD)=CD:BC=9:25,故答案为9:25.本题考查相似三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.根据S△ACD:S△ABC=(12⋅CD⋅AD):(12⋅BC⋅AD)=CD:BC,只要求出CD、BC即可解决问题.16.答案:解:(1)原式=(12−3+56−712)×(−36)=−12+108−30+21=87;(2)原式=[3a+6(a+2)(a−2)−12(a+2)(a−2)]⋅(a+2)=3(a−2)(a+2)(a−2)⋅(a+2)=3.解析:(1)将除法转化为乘法,再利用乘法分配律计算可得.(2)先计算括号内分式的减法、将除法转化为乘法,再约分即可得.本题主要考查分式和实数的混合运算,解题的关键是熟练掌握分式和实数的混合运算顺序和运算法则.17.答案:解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270−200)=360(元);选丙商城需付费用为290+270−5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x−100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了y折后再参加活动,根据题意得:630×y10−(630−6×50)=48,解得y=6,答:丙商场先打了6折后再参加活动.解析:本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程进行求解.(1)按照不同的优惠方案算出实际花的钱数,再比较得出答案即可;(2)设这条裤子的标价为x元,按照优惠方案算出实际付款数,根据付款额一样,列方程求解即可;(3)先设丙商场先打了y折后再参加活动,根据题意列方程求解即可.18.答案:解:(1)连接OA、OB,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°−∠P=180°−60°=120°,∴∠C=12∠AOB=12×120°=60°.(2)连OP,∴∠APO=∠BPO=30°,∴OP=2OA=2,∴PA=√OP2−OA2=√3.解析:(1)先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠C的度数.(2)利用含30°的直角三角形的性质解答即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.19.答案:(1)①2038;②“知识技能”的增长率为:610−200200×100%=205%,“资金”的增长率为:20863−1000010000≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率=212=16.解析:解:(1)①由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;②见答案.(3)见答案.【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;(2)将(2016年的资金−2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.20.答案:解:连接DB,在△ACB中,∵AB2+AC2=52+122=169,又∵BC2 =132 =169,∴AB2+AC2=BC2.∴△ACB是直角三角形,∠A=90°,∵DE垂直平分BC,∴DC=DB,设DC=DB=x,则AD=12−x.在Rt△ABD中,∠A=90°,AB2+AD2=BD2,即52+(12−x)2=x2,解得x=16924,即CD=16924.解析:本题考查了勾股定理的逆定理,线段的垂直平分线的性质,正确的作出辅助线是解题的关键,连接DB,根据勾股定理的逆定理得到∠A=90°,根据线段垂直平分线的性质可知DC=DB,设DC= DB=x,则AD=12−x,根据勾股定理即可得到结论.21.答案:解:由题意,得AE=DE−AD=1.7−0.3=1.4m,AB=AE−BE=1.4−0.2=1.2m,由旋转,得AC=AB=1.2m,过点C作CG⊥AB于G,过点C作CH⊥EF于点H,在Rt△ACG中,∠AGC=90°,∠CAG=42°,cos∠CAG=AG,AC∴AG=AC⋅cos∠CAG=1.2×cos42°=1.2×0.74≈0.9m,∴EG=AE−AG≈1.4−0.9=0.5m,∴CH=EG=0.5m.解析:过点C作CG⊥AB于G,通过解余弦函数求得AG,然后根据EG=AE−AG求得即可.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.22.答案:解:(1)由旋转的性质可得AF=AF′,DF=BF′,∠DAF=BAF′,B、C、F′三点共线,∵∠EAF=45°,∠BAD=90°,∴∠DAF+∠BAE=∠BAD−∠EAF=45°,∴∠EAF′=∠BAF′+∠BAE=∠DAF+∠BAE=45°=∠EAF,∵AF=AF′,∠EAF′=∠EAF,AE=AE,∴△AEF≌△AEF′(SAS);(2)∵△AEF≌△AEF′,∴EF=EF′=BE+BF′,又∵DF=BF′,∴EF=BE+DF;(3)设BE=x,∵EF=BE+DF,EF=5∴DF=5−x.又∵正方形ABCD边长是6,即BC=CD=6∴CE=BC−BE=6−x,CF=CD−DF=6−(5−x)=x+1,在Rt△CEF中,有CE2+CF2=EF2即(6−x)2+(x+1)2=52,解得x1=2,x2=3,∴线段BE的长为2或3.解析:本题考查了四边形的综合问题,主要考查旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理,证明△AEF≌△AEF′是解题的关键.(1)由旋转的性质可得AF=AF′,DF=BF′,∠DAF=BAF′,由“SAS”可证△AEF≌△AEF′;(2)由全等三角形的性质可得EF=EF′=BE+BF′,即可得结论;(3)设BE=x,可得DF=5−x,由勾股定理可求BE的长.23.答案:解:(1)由题意得:x=−b2a =−b2=−2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=−2,BC=6,∴B横坐标为−5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(−5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=−1,即y=−x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴QHBM =AQAB,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:AB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=−2代入直线AB解析式得:y=4,此时Q(−2,4),直线CQ解析式为y=x+6,令y=0,得到x=−6,即P(−6,0);当QH=3时,把x=−3代入直线AB解析式得:y=5,此时Q(−3,5),直线CQ解析式为y=12x+132,令y=0,得到x=−13,此时P(−13,0),综上,P的坐标为(−6,0)或(−13,0).解析:(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.。
山西省太原市2019-2020学年中考数学模拟试题(2)含解析

山西省太原市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.估计19273⨯-的运算结果应在哪个两个连续自然数之间( ) A .﹣2和﹣1 B .﹣3和﹣2 C .﹣4和﹣3 D .﹣5和﹣42.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些3.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-的值为()A .7-B .3-C .7D .34.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A .183π-B .1839π-C .9932π-D .1833π-5.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -6.如图,在矩形ABCD 中,连接BD ,点O 是BD 的中点,若点M 在AD 边上,连接MO 并延长交BC 边于点M’,连接MB,DM’则图中的全等三角形共有( )A .3对B .4对C .5对D .6对7.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是( )A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山8.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.. D.9.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=32b B.a=2b C.a=52b D.a=3b10.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=()A.15°B.30°C.45°D.60°11.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD =1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.14.化简:a ba b b a+--22=__________.15.如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l1分别通过A、B、C三点,且l1∥l2∥l1.若l1与l2的距离为5,l2与l1的距离为7,则Rt△ABC的面积为___________16.2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_____.17.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)18.计算:1-22的结果是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P 与点A 重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x 分米.(1)求x 的取值范围;(2)若∠CPN=60°,求x 的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y ,求y 关于x 的关系式(结果保留π).20.(6分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF ,求证:AF=DC ;若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.21.(6分)如图,点B 在线段AD 上,BC DE P ,AB ED =,BC DB =.求证:A E ∠=∠.22.(8分)如图,在Rt △ABC 中,∠C=90°,AC=3,BC=1.若以C 为圆心,R 为半径所作的圆与斜边AB 只有一个公共点,则R 的取值范围是多少?23.(8分)如图,已知点C 是以AB 为直径的⊙O 上一点,CH ⊥AB 于点H ,过点B 作⊙O 的切线交直线AC 于点D ,点E 为CH 的中点,连接AE 并延长交BD 于点F ,直线CF 交AB 的延长线于G .(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.24.(10分)如图所示,直线y=﹣2x+b与反比例函数y=kx交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>kx的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.25.(10分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=35时,求AF的长.26.(12分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)27.(12分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA5B,判断四边形OABC的形状并证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】192733﹣3,然后根据二次根式的估算,由33<34可知﹣34和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.2.B【解析】试题解析:方差越小,波动越小.22,A B s s >Q数据B 的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.D【解析】【分析】由根与系数的关系得出x 1+x 2=5,x 1•x 2=2,将其代入x 1+x 2−x 1•x 2中即可得出结论.【详解】解:∵方程x 2−5x +2=0的两个解分别为x 1,x 2,∴x 1+x 2=5,x 1•x 2=2,∴x 1+x 2−x 1•x 2=5−2=1.故选D .【点睛】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x 1+x 2=5,x 1•x 2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.4.B【解析】【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=6×2120? 360π⨯9π.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.5.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.6.D【解析】【分析】根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.【详解】图中图中的全等三角形有△ABM ≌△CDM’,△ABD ≌△CDB, △OBM ≌△ODM’,△OBM’≌△ODM, △M’BM ≌△MDM’, △DBM ≌△BDM’,故选D.【点睛】此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.7.A【解析】【分析】根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.8.B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.考点:轴对称图形和中心对称图形9.B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.【解析】【分析】根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【详解】解:∵OA=AB,OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,故选B.【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.11.A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.12.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.CD的中点【解析】【分析】根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.【详解】∵△ADE旋转后能与△BEC重合,∴△ADE≌△BEC,∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC是等腰直角三角形,∴D与E,E与C是对应顶点,∵CD的中点到D,E,C三点的距离相等,∴旋转中心是CD的中点,故答案为:CD的中点.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.14.a+b【解析】【分析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
〖精选4套试卷〗山西省太原市2020年第四次中考模拟考试数学试卷

2019-2020学年数学中考模拟试卷一、选择题1.一个不透明的袋子中装有红球3个,白球1个,除颜色外无其他差别随机摸出一个球后不放回,再摸出一个球,则两次都摸到红球的概率是()A.9 16B.34C.38D.122.如图,在△ABC中,∠C=90°,AC>BC,若以AC为底面圆半径、BC为高的圆锥的侧面积为S1,以BC为底面圆半径、AC为高的圆锥的侧面积为S2,则()A.S1=S2B.S1>S2C.S1<S2D.S1、S2的大小关系不确定3.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.4.某超市设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额超过30元的概率为()A.12B.13C.23D.145.岳池医药招商保持良好态势,先后签约成都百裕制药、济南爱思、重庆泰濠、四川源洪福科技、四川恒康科技、成都天瑞炳德、南充金方堂、药融园8个亿元以上医药项目和科伦药业、人福药业CS0两个医贸项目,协议投资额约51.5亿元。
将51.5亿元用科学计数法表示为()元A.95.1510⨯B.851.510⨯C.105.1510⨯D.751510⨯6.若整数a使关于x的不等式组()222233a xxxx+⎧≥-⎪⎪⎨⎪-->⎪⎩的解为2x<,且使关于x的分手方程15444x ax x-++=---的解为正整数,则满足条件a的的值之和为()A.12B.11C.10D.97.文艺复兴时期,意大利艺术大师达芬奇曾研究过圆弧所围成的许多图形的面积问题. 如图所示称为达芬奇的“猫眼”,可看成圆与正方形的各边均相切,切点分别为,,,A B C D,»BD所在圆的圆心为点A (或C). 若正方形的边长为2,则图中阴影部分的面积为()A .2B .2C .1π-D .42π-8.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=55°,则∠2的度数是( )A .35°B .25°C .65°D .50°9.如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于点E 、F 、G ,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A .92B .133C .413D .2510.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A .16B .13C .12D .2311.下列运算中正确的是( ) A.5510a a a +=B.76a a a ÷=C.326a a a ⋅=D.()236a a -=-12.已知一个无盖长方体的底面是边长为1的正方形,侧面是长为2的长方形,现展开铺平.如图,依次连结点A ,B ,C ,D 得到一个正方形,将周围的四个长方形沿虚线剪去一个直角三角形,则所剪得的直角三角形较短直角边与较长直角边的比是( )A .12B .13C .23D .45二、填空题13.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S 乙2=1.5,S 丙2=3.1,那么该月份白菜价格最稳定的是_____市场.14.因式分解2x 3﹣8x =_____.15.4是_____的算术平方根.16.如图,已知Rt △ABC 中,∠ACB=90°,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC .若点F 是DE 的中点,连接AF ,则AF= .17.已知点A (a ,b )为直线23421y x m m =+-+与直线2225y x m m =---- 的交点, 且1b a -=,则m 的值为_______.18.在背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:21,2,,21y y x y x y x x==-+==+,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图像不过第四象限的卡片的概率是__________. 三、解答题19.为了让学生了解环保知识,增强环保意识,红星中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题: 频率分布表 分组 频数 频率 50.5-60.5 4 0.08 60.5-70.5 8 0.16 70.5-80.5 10 0.20 80.5-90.5 16 0.32 90.5-100.5 ______ ______ 合计□□(2)补全频率分布直方图; (3)在该问题中的样本容量是多少? 答:______.(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)” 答:______.(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人? 答:______.20.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:△BOQ≌△EOP;(2)求证:四边形BPEQ是菱形;(3)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.21.如图,已知AB为⊙O的直径,C为⊙O上一点,CE与⊙O切于点C,交AB的延长线于点E,过点A 作AD⊥EC交EC的延长线于点D,交⊙O于点F,连接BC,CF.(1)求证:AC平分∠BAD;(2)若AD=6,∠BAF=60°,求四边形ABCF的面积.22.抛物线y=ax2﹣2x+b的顶点为A(m,n),过点A的直线y=kx﹣1与抛物线的另一交点为B(p,q).(1)当a=b=1时,求k的值;(2)若b=m,当﹣3≤a<1时,求p的取值范围.23.某报社为了解温州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A.非常了解:B.比较了解:C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.请结合统计图表,回答下列问题:对雾霾的了解程度百分比A 非常了解5%B 比较了解m%C 基本了解45%D 不了解n%(1)本次参与调查的市民共有________人,m=________,n=________. (2)统计图中扇形D 的圆心角是________度.(3)某校准备开展关于雾霾的知识竞赛,九(3)班郑老师欲从2名男生和1名女生中任选2人参加比赛,求恰好选中“1男1女”的概率(要求列表或画树状图).24.某文化商店计划同时购进A 、B 两种仪器,若购进A 种仪器2台和B 种仪器3台,共需要资金1700元;若购进A 种仪器3台,B 种仪器1台,共需要资金1500元. (1)求A 、B 两种型号的仪器每台进价各是多少元?(2)已知A 种仪器的售价为760元/台,B 种仪器的售价为540元/台.该经销商决定在成本不超过30000元的前提下购进A 、B 两种仪器,若B 种仪器是A 种仪器的3倍还多10台,那么要使总利润不少于21600元,该经销商有哪几种进货方案? 25.先化简,再求代数式21211a aa a a -÷-+-的值,其中a =2cos30°.【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B D B A A B A B B BC13.乙.14.2x (x+2)(x ﹣2) 15. 16.5 17.-1或318.34三、解答题19.(1)12、0.24;(2)答案见解析;(3)50;(4)80.5-90.5;(5)216. 【解析】 【分析】 (1)根据百分比=所占人数总人数,频数之和等于总人数,即可解决问题;(2)根据频数分布表中信息,画出直方图即可;(3)根据一个样本包括的个体数量叫做样本容量,计算即可; (4)观察直方图即可解决问题;(5)用样本估计总体的思想解决问题; 【详解】解:(1)总人数=4÷0.08=50,在90.5-100.5之间的人数为50-4-8-10-16=12,1250=0.24, 故答案为:12、0.24(2)补全的频率分布直方图如图所示:(3)由(1)可知样本容量为50, 故答案为50.(4)竞赛成绩落在的80.5-90.5人数最多80.5-90.5. 故答案为80.5-90.5. (5)90×0.24=216人, 故答案为216. 【点睛】本题考查频数分布直方图、频数分布表、样本估计总体的思想等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(1)见解析;(2)见解析;(3)PQ =152. 【解析】 【分析】(1)先根据线段垂直平分线的性质证明PB=PE ,由ASA 证明△BOQ ≌△EOP ;(2)由(1)得出PE=QB ,证出四边形ABGE 是平行四边形,再根据菱形的判定即可得出结论; (3)根据三角形中位线的性质可得AE+BE=2OF+2OB=18,设AE=x ,则BE=18-x ,在Rt △ABE 中,根据勾股定理可得62+x 2=(18-x )2,BE=10,得到OB=12BE=5,设PE=y ,则AP=8-y ,BP=PE=y ,在Rt △ABP 中,根据勾股定理可得62+(8-y )2=y 2,解得y=254,在Rt △BOP 中,根据勾股定理可得222515544⎛⎫-= ⎪⎝⎭,由PQ=2PO 即可求解. 【详解】(1)证明:∵PQ 垂直平分BE , ∴PB =PE ,OB =OE , ∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PEO =∠QBO ,在△BOQ 与△EOP 中,PEO B0OB 0EPOE QOB Q ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BOQ ≌△EOP (ASA ), (2)∵△BOQ ≌△EOP ∴PE =QB , 又∵AD ∥BC ,∴四边形BPEQ 是平行四边形, 又∵QB =QE ,∴四边形BPEQ 是菱形;(3)解:∵O ,F 分别为PQ ,AB 的中点, ∴AE+BE =2OF+2OB =18, 设AE =x ,则BE =18﹣x ,在Rt △ABE 中,62+x 2=(18﹣x )2, 解得x =8, BE =18﹣x =10, ∴OB =12BE =5, 设PE =y ,则AP =8﹣y ,BP =PE =y , 在Rt △ABP 中,62+(8﹣y )2=y 2,解得y =254, 在Rt △BOP 中,PO154=, ∴PQ =2PO =15.2. 【点睛】本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、勾股定理等知识;本题综合性强,有一定难度. 21.(1)详见解析;(2)【解析】 【分析】(1)连接OC ,如图,根据切线的性质得OC ⊥CD ,则可判断∴OC ∥AD 得到∠1=∠2,加上∠2=∠3,从而得到∠1=∠3;(2)连接OF ,如图,先证明△AOF 、△OBC 和△COF 都为等边三角形,再利用含30度的直角三角形三边的关系得到,CD=2,所以CF=2DF=4,然后根据三角形面积公式计算S 四边形ABCF . 【详解】(1)证明:连接OC ,如图,∵CE与⊙O切于点C,∴OC⊥CD,而AD⊥CD,∴OC∥AD,∴∠1=∠2,∵OA=OC,∴∠2=∠3,∴∠1=∠3,∴AC平分∠BAD;(2)解:连接OF,如图,∵∠BAF=60°,∴△AOF为等边三角形,∠1=∠3=60°,∴∠BOC=∠COF=60°,∴△OBC和△COF都为等边三角形,在Rt△ACD中,CD=33AD=333在Rt△CDF中,∠FCD=90°-∠OCF=30°,∴DF=33CD=2,∴CF=2DF=4,∴S四边形ABCF=3S△OAF=3×1233【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和等边三角形的判定与性质.22.(1)1;(2)p≤23或p>2.【解析】【分析】(1)将a=b=1代入抛物线的解析式确定直线经过的点A的坐标,从而确定k的值;(2)表示出直线的解析式:y=ax﹣1,然后根据当﹣3≤a<0和当0<a<1时利用反比例函数的性质确定P的取值范围即可.【详解】(1)当a=b=1时,抛物线y=x2﹣2x+1的顶点为A(1,0),直线y=kx﹣1过点A(1,0),k=1(2)∵y=ax2﹣2x+b的顶点为A(m,n),∴m =1.a∵b =m ,∴抛物线y =ax 2﹣2x+1.a∴顶点为(1a,0), ∵直线y =kx ﹣1过顶点为(1a,0), ∴ka﹣1=0,k =a . 从而直线的解析式为:y =ax ﹣1 ax 2﹣2x+1a=a x ﹣1 21(2)0aax a x a+-++= x 1=1a ,x 2=1+1a. ∵B 与A 是不同的两点 ∴p =1+1a. 对于﹣3≤a<1,①当﹣3≤a<0时,利用反比例函数性质得:112,33p a -剟 ②当0<a <1时,利用反比例函数性质得:1a>1,p >2 综上所述,p≤23或p >2. 【点睛】本题考查了二次函数的性质及函数图象上的点的坐标特征的知识,解题的关键是得到p 与a 的关系,难度不大.23.(1)400;15;35;(2)126;(3)23【解析】 【分析】(1)利用本次参与调查的市民人数=A 等级的人数÷对应的百分比;用比较了解的人数除以总人数,求出m 的值,再用整体1减去其它对雾霾的了解程度的百分比,从而求出n 的值. (2)利用扇形统计图中D 部分扇形所对应的圆心角=360°×D 类的百分比.(3)画树状图展示所有6种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解. 【详解】(1)本次参与调查的市民共有:20÷5%=400(人), m%=60400×100%=15%,则m=15, n%=1-5%-45%-15%=35%,则n=35; 故答案为:400,15,35;(2)扇形统计图中D部分扇形所对应的圆心角是360°×35%=126°.故答案为:126;(3)根据题意画图如下:共有6种等可能的结果数,其中恰好选中1男1女的结果数为4种,所以恰好选中1男1女的概率是42 63 =.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(1)A、B两种型号的仪器每台进价各是400元、300元;(2)有三种具体方案:①购进A种仪器18台,购进B种仪器64台;②购进A种仪器19台,购进B种仪器67台;③购进A种仪器20台,购进B种仪器70台.【解析】【分析】(1)设A、B两种型号的仪器每台进价各是x元和y元.此问中的等量关系:①购进A种仪器2台和B 种仪器3台,共需要资金1700元;②购进A种仪器3台几,B种仪器1台,共需要资金1500元;依此列出方程组求解即可.(2)结合(1)中求得的结果,根据题目中的不等关系:①成本不超过30000元;②总利润不少于21 600元.列不等式组进行分析.【详解】解:(1)设A、B两种型号的仪器每台进价各是x元和y元.由题意得:231700 31500x yx y+=⎧⎨+=⎩,解得:400300 xy=⎧⎨=⎩.答:A、B两种型号的仪器每台进价各是400元、300元;(2)设购进A种仪器a台,则购进A种仪器(3a+10)台.则有:400300(310)30000(760400)(540300)(310)21600a aa a++⎧⎨-+-+⎩……,解得710 1720913a≤≤.由于a为整数,∴a可取18或19或20.所以有三种具体方案:①购进A种仪器18台,购进B种仪器64台;②购进A种仪器19台,购进B种仪器67台;③购进A种仪器20台,购进B种仪器70台.【点睛】考查了二元一次方程组的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.注意:利润=售价﹣进价.25.3 【解析】 【分析】 根据分式的运算法则即可求出答案. 【详解】解:原式=2111(1)1a a a a --+÷-- , =211(1)a a a a --⨯- , =1a. ∵a =233⨯= , ∴原式=33= . 【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2019-2020学年数学中考模拟试卷一、选择题1.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x(x+1)=1035B .x(x-1)=1035C .12x(x+1)=1035D .12x(x-1)=1035 2.某市6月份中连续8天的最高气温如下(单位:℃):32,30,34,36,36,33,37,38.这组数据的中位数、众数分别为( )A .34,36B .34,34C .36,36D .35,36 3.如图,AB ,AC 均为⊙O 的切线,切点分别为B ,C ,点D 是优弧BC 上一点,则下列关系式中,一定成立的是( )A .∠A+∠D =180°B .∠A+2∠D =180°C .∠B+∠C =270°D .∠B+2∠C =270°4.在平面直角坐标系中,点A(﹣1,5),将点A 向右平移2个单位,再向下平移3个单位得到点A 1;点A 1关于y 轴与A 2对称,则A 2的坐标为( )A .(2,﹣1)B .(1,2)C .(﹣1,2)D .(﹣2,1)5.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别为(1,1)A ,(4,3)B ,(4,1)C ,如果将Rt ABC ∆绕点C 按顺时针方向旋转90︒得到''Rt A B C ∆,那么点A 的对应点'A 的坐标是( )A .(3,3)B .(3,4)C .(4,3)D .(4,4)6.下列调查中,适宜采用全面调查(普查)方式的是( )A .对全国中学生心理健康现状的调查B .对市场上的冰淇淋质量的调查C .对我市市民实施低碳生活情况的调查D .对“嫦娥四号”各零部件的检查7.六个大小相同的正方体搭成的几何体如图,下列选项中不是其三视图的是( )A. B. C. D.8.已知一个圆锥的底面半径为5cm,高为11cm,则这个圆锥的侧面积为( )A.511πcm2B.30πcm2C.65πcm2D.85πcm29.已知a,b,c满足a+c=b,4a+c=-2b,抛物线y=ax²+bx+c(a>0)过点A(-12,y1),B(3,y2,)C(3,y3),则y1,y2,y3的大小关系为()A.y2<y1<y3B.y3<y1<y2C.y2<y3<y1D.y1<y2<y310.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.1 B.﹣1 C.﹣3 D.311.已知命题A:“若a为实数,则2a a=”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.a=1 B.a=0 C.a=﹣1﹣k(k为实数)D.a=﹣1﹣k2(k为实数)12.如图,AB A B''=,A A'∠=∠,若ABC A B C'''∆≅∆,则还需添加的一个条件有( )A.1种B.2种C.3种D.4种二、填空题13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D、E分别在AC、AB上,且△ADE是直角三角形,△BDE是等腰三角形,则BE=_________.14.如图,菱形ABCD的边长为12cm,∠A=60°,点P从点A出发沿线路AB→BD做匀速运动,点Q从点D同时出发沿线路DC→CB→BA做匀速运动.已知点P,Q运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P、Q分别到达M、N两点时,点P、Q再分别从M、N同时沿原路返回,点P的速度不变,点Q 的速度改为vcm/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与△AMN相似,则v的值为____.15.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出8.42万元利息。
太原市名校联考2020届数学中考模拟试卷

太原市名校联考2020届数学中考模拟试卷一、选择题1.下列计算中,不正确的是( ) A .222a 2ab b (a b)-+=- B .2510a a a ⋅=C .()a b b a--=-D .32223a b a b 3a ÷=2.如图所示的几何体的主视图是( )A .B .C .D .3.如图,不等式组的解集在数轴上表示正确的是( )A. B.C.D.4.给出下列4个命题:①对顶角相等;②同位角相等;③在同一个圆中,同一条弦所对的圆周角都相等;④圆的内接四边形对角互补.其中,真命题为 ( ) A .①②④B .①③④C .①④D .①②③④5.二次函数y =ax 2+bx+c(a 、b 、c 为常数,且a≠0)的x 与y 的部分对应值如下表:有下列结论:①a >0;②4a ﹣2b+1>0;③x =﹣3是关于x 的一元二次方程ax 2+(b ﹣1)x+c =0的一个根;④当﹣3≤x≤n 时,ax 2+(b ﹣1)x+c≥0.其中正确结论的个数为( ) A .4B .3C .2D .16.北京城市副中心生态文明建设在2016年取得突出成果,通过大力推进能源结构调整,热电替代供热面积为17960000平方米.将17960000用科学记数法表示应为( ) A .1.796×106B .17.96×106C .1.796×107D .0.1796×1077.如图,已知A(3,6)、B(0,n)(0<n≤6),作AC ⊥AB ,交x 轴于点C ,M 为BC 的中点,若P(32,0),则PM 的最小值为( )A .3BCD 8.甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( )C .甲班的成绩比乙班的成绩稳定D .甲班成绩优异的人数比乙班多9.如图菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 顺时针方向旋转90°,则图中阴影部分的面积是( )A.23π B.23π-C.1112π-D.23π﹣1 10.不等式组5243x x +>⎧⎨-≥⎩的最小整数解是( )A .﹣3B .﹣2C .0D .111.如图,反比例函数my x=的图象与一次函数y =kx ﹣b 的图象交于点P ,Q ,已点P 的坐标为(4,1),点Q 的纵坐标为﹣2,根据图象信息可得关于x 的方程mx=kx ﹣b 的解为( )A .﹣2,﹣2B .﹣2,4C .﹣2,1D .4,1 12.若一个多边形的内角和为1440°,则这个多边形的边数是( )A .8B .10C .12D .14二、填空题13.如图,正方形OABC 的边长为2,以O 为圆心,EF 为直径的半圆经过点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,交点P 运动的路径长是_____.14.若一次函数3y kx =+(k 为常数,0k ≠),y 随x 的增大而减小,则k 的值可以是_______(写出一个即可).15.关于x 的方程(m ﹣2)x 2+2x+1=0有实数根,则偶数m 的最大值为_____. 16.若关于x 的分式方程33x a x x+--=2a 无解,则a 的值为_____. 17.如图,扇形OAB 中,∠AOB =120°,OA =12,C 是OB 的中点,CD ⊥OB 交弧AB 于点D ,以OC 为半径的弧CE 交OA 于点E ,则图中阴影部分的面积是_____.18.如图,A ,B 是反比例函数y=在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是_____.三、解答题19.如图是一张锐角三角形纸片,AD 是BC 边上的高,BC=40cm ,AD=30cm ,现从硬纸片上剪下一个长是宽2倍的周长最大的矩形,则所剪得的矩形周长为_____________cm .20.如图,抛物线y =x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C (0,﹣3),点E 是抛物线上的一个动点,过点E 作EF ⊥x 轴于点F ,已知点A 的坐标为(﹣1,0) (1)求点B 的坐标;(2)当点F 在OB 段时,△BCE 的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.21.如图,一辆轿车在经过某路口的感应线B 和C 处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC 为6m ,在感应线B 、C 两处测得电子警察A 的仰角分别为∠ABD =18°,∠ACD =14°.求电子警察安装在悬臂灯杆上的高度AD 的长.(参考数据:sin14°≈0.242,cos14°≈0.97,tan14°≈0.25,sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)22.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④…… (1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.23.先化简,再求值:(2﹣11x x -+)22691x x x ++÷-,其中x =tan45°+(12)﹣1 24.某市将开展演讲比赛活动,某校对参加选拔的学生的成绩按A 、B 、C 、D 四个等级进行统计,绘制了如下不完整的统计表和扇形统计图,(2)求“C 等级”所对应的扇形圆心角的度数;(3)已知成绩等级为A 的4名学生中有1名男生和3名女生,现从中随机挑选2名学生代表学校参加全市比赛,求出恰好选中一男生和一女生的概率25.解不等式组:()23423x x x x ⎧-≤-⎪⎨-<⎪⎩,并求非负整数解.【参考答案】*** 一、选择题1314.-1(答案不唯一) 15.2 16.1或1217π. 18.3 三、解答题 19.72cm 【解析】 【分析】设所剪得的矩形的长为2xcm ,宽为xcm ,根据相似三角形的对应高的比等于相似比即可列方程求解. 【详解】解:设所剪得的矩形的长为2xcm ,宽为xcm ,由题意得2304030x x -=或3024030x x -= 解得x=12或12011x =则周长为()2412272cm +⨯=或2401207202cm 111111⎛⎫+⨯= ⎪⎝⎭因为7207211>所以所剪得的矩形周长为72cm. 故答案为:72cm 【点睛】相似三角形的应用相似三角形的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握. 20.(1)(3,0),(2)278【解析】 【分析】(1)将点C (0,﹣3),A (﹣1,0)代入y =x 2+bx+c 中求出二次函数解析式,从而求出点B 的坐标; (2)设点F (x ,0)(0<x <3),则点E (x ,x 2﹣2x ﹣3),根据三角形面积公式可用含x 的代数式表示出△BCE 的面积,再利用配方法即可求出最值. 【详解】解:(1)将点C (0,﹣3),A (﹣1,0)代入y =x 2+bx+c 中得:310,c b c =-⎧⎨-+=⎩解得: 23.b c =-⎧⎨=-⎩∴y =x 2﹣2x ﹣3, 令y =0,得x =﹣1或3, ∴点B 的坐标为(3,0);(2)设点F (x ,0)(0<x <3),则点E (x ,x 2﹣2x ﹣3),∵B (3,0),C (0,﹣3), ∴直线BC :y =x ﹣3, ∴H (x ,x ﹣3),∴△BCE 的面积=△CEH 的面积+△BEH 的面积()()()22113233323,22x x x x x x x x =⨯---+---⨯--- ()213323,2x x x ⎡⎤=-⨯⨯---⎣⎦ 23327,228x ⎛⎫=--+ ⎪⎝⎭∴△BCE 的面积()23327,03228x x ⎛⎫=--+<< ⎪⎝⎭,∴当32x =时,△BCE 的面积取最大值,最大值为278. 【点睛】本题考查了二次函数的应用,正确使用割补法表示出三角形的面积是解题的关键. 21.AD 的长为6.5 m . 【解析】 【分析】设电子警察安装在悬臂灯杆上的高度AD 的长为xm .通过解Rt △ADB 和Rt △ACD 求得BD 、CD 的长度,然后结合BC =CD ﹣BD 列出方程,并解答. 【详解】设电子警察安装在悬臂灯杆上的高度AD 的长为x m . 在Rt △ADB 中,tan ∠ABD =AD BD, ∴BD =tan tan18AD xABD =∠,在Rt △ACD 中,tan ∠ACD = AD CD, ∴CD =tan tan14AD xACD =∠,∵BC =CD ﹣BD , ∴0tan14x ﹣0tan18x=6,∴4x ﹣4013x =6. 解这个方程,得x =6.5.答:电子警察安装在悬臂灯杆上的高度AD 的长为6.5 m . 【点睛】本题考查的是解直角三角形的应﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22.(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析. 【解析】 【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证. 【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102; 故答案为:4×6+1=52,9×11+1=102; (2)第n 个式子为(n ﹣1)(n+1)+1=n 2, 证明:左边=n 2﹣1+1=n 2, 右边=n 2, ∴左边=右边, 即(n ﹣1)(n+1)+1=n 2. 【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用. 23.13. 【解析】 【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 【详解】解:(2﹣11x x -+)22691x x x ++÷-=22(1)(1)(1)(1)1(3)x x x x x x +--+-=÷++=2221(1)(1)1(3)x x x x x x +-++-=⋅++=23(1)(1)1(3)x x x x x ++-⋅++ =13x x -+ , 当x =tan45°+(12)﹣1=1+2=3时,原式=311333-=+ . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1)m =51(名),n =0.04;(2)108°;(3)12【解析】 【分析】(1)先求出样本容量,再根据频率=频数÷总人数可得答案;(2)先求出C 等级人数,再用360°乘以C 等级人数所占比例即可得;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率. 【详解】解:(1)∵样本容量为15÷15%=100(名), ∴m =100×0.51=51(名),n =4÷100=0.04; (2)C 等级人数为100﹣4﹣51﹣15=30(名), ∴“C 等级”所对应的扇形圆心角的度数为360°×30100=108°; (3)列表如下:∴P (选中1名男生和1名女生)=61122=. 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 25.不等式组的解集为﹣1<x≤2,非负整数解是0,1,2. 【解析】 【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案. 【详解】()23423x x x x ①②⎧-≤-⎪⎨-<⎪⎩, 解不等式①得:x≤2, 解不等式②得:x >﹣1, ∴不等式组的解集为﹣1<x≤2, ∴不等式组的非负整数解是0,1,2. 【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.。
2020届山西省太原市中考数学二模试卷(有解析)

2020届山西省太原市中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1. 在学习“有理数加法“时,我们利用“(+5)+(+3)=+8,(−5)+(−3)=−8,……”抽象归纳推出了“同号两数相加,取相同的符号,并把绝对值相加”的加法法则.这种推导方法叫( )A. 排除法B. 归纳法C. 类比法D. 数形结合法 2. 下列图形中,属于中心对称图形的是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 平行四边形 3. 下列计算正确的是( ) A. x 2y 2=x y (y ≠0)B. xy 2+12y =2xy(y ≠0) C. √x 3+√y 3=√xy 5(x >0y >0) D. (xy 3)2=x 2y 6 4. 2018年11月11日是第10个“双十一”购物狂欢节,天猫“双十一”总成交额为2135亿,再创历史新高;其中,2135亿可用科学记数法表示为( )A. 2.135×1011B. 0.2135×1012C. 2.135×1010D. 21.35×109 5. 在算式4−|−3△5|中的“△”所在的位置中,要使计算出来的值最小,则应填入的运算符号为( )A. +B. −C. ×D. ÷ 6. 不等式x +5≤3的解集在数轴上表示为( )A.B. C.D. 7. 10.某校七年级一班同学到开心农场体验农耕生活,一部分同学挑土,另一部分同学抬土,已知全班共用小土筐59个,扁担36根。
若设挑土与抬土的同学分别为x 人与y 人,依题意得方程组( )A. B.C. D.8.如图,⊙O中,弦AB,CD相交与点P,∠A=40°,∠APD=76°,则∠B的大小是()A. 38°B. 40°C. 36°D. 42°9.关于二次函数y=(x+2)2的图象,下列说法正确的是()A. 开口向下B. 最低点是A(2,0)C. 对称轴是直线x=2D. 对称轴的右侧部分y随x的增大而增大10.如图是以六边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分面积的和为()A.B.C.D.二、填空题(本大题共5小题,共15.0分)11.计算:20082−2009×2007=.12.一次知识竞赛中,36名参赛选手的得分情况为:5人得75分,8人得80分,6人得85分,8人得90分,7人得95分,2人得100分,要计算他们的平均得分,可列算式:______ .13.用规律计算:12+16+112+120=______ .14.如图,已知点P是反比例函数y=k1x(k1<0,<0)图象上一点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数y=k2x(0<k2<|k1|)图象于E、F两点.用含k1、k2的式子表示四边形PEOF的面积为.15.如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=6,BD⊥CD于点D,则线段AC长度的最大值为______.三、计算题(本大题共1小题,共10.0分)16.已知x−1x =√2,求x2−1x2的值.四、解答题(本大题共7小题,共65.0分)17.如图,一块矩形场地ABCD,现测得边长AB与AD之比为√2:1,DE⊥AC于点E,BF⊥AC于点F,连接BE,DF.现计划在四边形DEBF区域内种植花草.(1)求证:AE=EF=CF.(2)求四边形DEBF与矩形ABCD的面积之比.18.小乐放学回家看到桌上有一盘包子,其中有豆沙包、肉包各1个,萝卜包2个,这些包子除馅外无其他差别.(1)小乐随机地从盘子中取出一个包子,取出的是肉包的概率是多少?(2)请用树状图或表格表示小乐随机地从盘中取出两个包子的所有可能结果,并求取出的两个包子都是萝卜包的概率.19.如图,两艘海监船刚好在某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍船只停在C处海域,AB=60(√3+1)海里,在B处测得C在北偏东45°反向上,A处测得C在北偏西30°方向上,在海岸线AB上有一灯塔D,测得AD=100海里.(1)分别求出AC,BC(结果保留根号).(2)已知在灯塔D周围80海里范围内有暗礁群,在A处海监穿沿AC前往C处盘查,途中有无触礁的危险?请说明理由.20.甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是______;(2)乙出发______s时到达终点,a=______,b=______;(3)甲乙出发______s相距150米.21.在直角坐标系中,已知点A(3,0),点B(3,2),点C与点A关于y轴对称,点D与点B关于原点O对称,依次连接AB,BC,CD,DA.(1)请画出示意图,并写出点C与点D的坐标;(2)四边形ABCD是否为平行四边形?请说明理由;(3)在x轴上是否存在一点P,使得△BDP的面积等于四边形ABCD的一半?若存在,请求出点P的坐标;若不存在,请说明理由.=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个22.在矩形ABCD中,ABAC动点,连接HE,把△AHE沿直线HE翻折得到△FHE.如图1,当DH=DA时,(1)填空:∠HGA=______ 度;(2)若EF//HG,求∠AHE的度数,并求此时a的最小值;23.按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,四边形ABCD是平行四边形,E为BC上任意一点,请只用直尺(不带刻度)在边AD上找点F,使DF=BE.(2)如图2,点E是菱形ABCD的对角线BD上一点,请只用直尺(不带刻度)作菱形AECF.【答案与解析】1.答案:B解析:解:在学习“有理数加法“时,我们利用“(+5)+(+3)=+8,(−5)+(−3)=−8,……”抽象归纳推出了“同号两数相加,取相同的符号,并把绝对值相加”的加法法则.这种推导方法叫归纳法.故选:B .(1)排除法:是指在综合考虑文章(段落)内容、所设题干和所给选项的各种信息的基础上,运用一定的逻辑推理,排除不符合题干要求或与文章信息内容不符的干扰项,从而选出正确答案的一种解题方法.(2)归纳法:指的是从许多个别事例中获得一个较具概括性的规则.这种方法主要是从收集到的既有资料,加以抽丝剥茧地分析,最后得以做出一个概括性的结论,据此判断即可.(3)类比法:是一种最古老的认知思维与推测的方法,是对未知或不确定的对象与已知的对象进行归类比较,进而对未知或不确定对象提出猜测.(4)数学结合法:数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化.中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合.此题主要考查了有理数加法的运算方法,以及归纳法的含义和应用,要熟练掌握.2.答案:D解析:解:A 、等腰三角形不是中心对称图形,不符合题意;B 、等边三角形不是中心对称图形,不符合题意;C 、直角三角形不是中心对称图形,不符合题意;D 、平行四边形是中心对称图形,符合题意.故选:D .根据中心对称图形的概念求解.此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合. 3.答案:D解析:解:(A)原式=x 2y 2,故选项A 错误;(B)原式=2xy 32y +12y =2xy 3+12y ,故选项B 错误;(C)原式=√x 3+√y 3,故选项C 错误;故选:D.根据运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.4.答案:A解析:解:2135亿=213500000000=2.135×1011.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.答案:C解析:解:在算式4−|−3△5|中的“△”所在的位置中,要使计算出来的值最小,则应填入的运算符号为×,故选:C.利用运算法则计算即可确定出相应的运算符号.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.答案:A解析:解:由x+5≤3得x≤−2,故选A.先求出不等式的解集,再把不等式的解集表示在数轴上即可.本题考查了在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.答案:A解析:本题主要考查了由实际问题抽象出二元一次方程组。
山西省太原市2020年中考数学试卷(II)卷(模拟)
山西省太原市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果a<0,﹣1<b<0,则a,ab,ab2按由小到大的顺序排列为()A . a<ab<ab2B . a<ab2<abC . ab<ab2<aD . ab2<a<ab2. (2分) (2019七下·鼓楼月考) 如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()A . 50°B . 40°C . 30°D . 20°3. (2分)(2017·台州) 如图所示的工件是由两个长方体构成的组合体,则它的主视图是()A .B .C .D .4. (2分)计算2x6÷x4的结果是()A . x2B . 2x2C . 2x4D . 2x105. (2分)(2019·石首模拟) 为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A . 众数是60B . 平均数是21C . 抽查了10个同学D . 中位数是506. (2分)(2019·上虞模拟) 为了说明各种三角形之间的关系,小敏画了如下的结构图(如图1).小聪为了说明“A.正方形;B.矩形;C.四边形;D.菱形;E.平行四边形”这五个概念之间的关系,类比小敏的思路,画了如下结构图(如图2),则在用“①、②、③、④”所标注的各区域中,正确的填法依次是()(用名称前的字母代号表示)A . C,E,B,DB . E,C,B,DC . E,C,D,BD . E,D,C,B7. (2分) (2016七下·岱岳期末) 某学校组织286人分别到徂徕山和泰西抗日英雄纪念碑进行革命传统教育,到徂徕山的人数是到泰西的人数的2倍多1人,求到两地的人数各是多少?设到徂徕山的人数为x人,到泰西的人数为y人,下列所列的方程组正确的是()A .B .C .D .8. (2分)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A . 13 = 3+10B . 25 = 9+16C . 49=21+28D . 49 = 18+319. (2分)如图,一张半径为1的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A .B . 4-πC . πD .10. (2分)如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A . y=-x+2B . y=-x-2C . y=x+2D . y=x-2二、填空题 (共6题;共10分)11. (1分)(2017·江北模拟) 据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用.届时,预计每年客流量可达42000000人次,将数42000000用科学记数法表示为________.12. (1分)(2018·龙岩模拟) 使代数式有意义的的取值范围是________.13. (1分) (2019八下·香洲期末) 定理“对角线互相平分的四边形是平行四边形”的逆定理是________.14. (5分)(2019·靖远模拟) 规定:,如:,若,则=__.15. (1分)在平面直角坐标系中,将直线y=kx+1绕(0,1)逆时针旋转90°后,刚好经过点(﹣1,2),则不等式0<kx+1<﹣2x的解集为________16. (1分) (2017七下·承德期末) 如图,计划把河水引到水池A中,可以先引AB⊥CD,垂足为B,然后沿AB开渠,则能使所开的渠最短,这样设计的依据是________.三、解答题 (共9题;共95分)17. (5分) (2017九上·亳州期末) 计算:|﹣2|+2sin30°﹣(﹣)2+(tan45°)﹣1 .18. (5分)化简:(﹣)• .19. (5分)(2018·临河模拟) 如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向。
山西省太原市2019-2020学年第三次中考模拟考试数学试卷含解析
山西省太原市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.二次函数2y ax bx c =++(a 、b 、c 是常数,且a≠0)的图象如图所示,下列结论错误的是( )A .4ac <b 2B .abc <0C .b+c >3aD .a <b2.已知一元二次方程1–(x –3)(x+2)=0,有两个实数根x 1和x 2(x 1<x 2),则下列判断正确的是( ) A .–2<x 1<x 2<3B .x 1<–2<3<x 2C .–2<x 1<3<x 2D .x 1<–2<x 2<33.下面的几何体中,主视图为圆的是( )A .B .C .D .4.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是( ) A .16B .13C .12D .235.不等式组310x x <⎧⎨-≤⎩ 中两个不等式的解集,在数轴上表示正确的是A .B .C .D .6.两个有理数的和为零,则这两个数一定是( ) A .都是零B .至少有一个是零C .一个是正数,一个是负数D .互为相反数7.如图所示的几何体的主视图是( )A .B .C .D .8.计算(﹣5)﹣(﹣3)的结果等于( ) A .﹣8 B .8 C .﹣2 D .2 9.下列计算,结果等于a 4的是( )A .a+3aB .a 5﹣aC .(a 2)2D .a 8÷a 2 10.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( ) A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)211.下列函数是二次函数的是( ) A .y x =B .1y x=C .22y x x =-+D .21y x=12.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F.已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .8二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分式方程32x x 2--+22x-=1的解为________. 14.抛物线y =x 2﹣2x+m 与x 轴只有一个交点,则m 的值为_____.15.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______. 16.如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠B =150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD =_________.17.如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB18.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.20.(6分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.21.(6分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?22.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.23.(8分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数2kyx图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.24.(10分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.25.(10分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(3,1)在反比例函数y=kx的图象上.(1)求反比例函数y=kx的表达式;(2)在x轴上是否存在一点P,使得S△AOP=12S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.26.(12分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.态度非常喜欢喜欢一般不知道频数90 b 30 10频率 a 0.35 0.20请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;BD ,连接AD 、BM 、AP . (1)求证:PM ∥AD ;(2)若∠BAP=2∠M ,求证:PA 是⊙O 的切线; (3)若AD=6,tan ∠M=12,求⊙O 的直径.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据二次函数的图象与性质逐一判断即可求出答案. 【详解】由图象可知:△>0, ∴b 2﹣4ac >0, ∴b 2>4ac , 故A 正确; ∵抛物线开口向上, ∴a <0,∵抛物线与y 轴的负半轴, ∴c <0,∵抛物线对称轴为x=2ba<0, ∴b <0, ∴abc <0,∵当x=1时,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正确;∵当x=﹣1时,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D错误;故选D.考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.2.B【解析】【分析】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0时,x=-2或x=3,∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,∵-1<0,∴两个抛物线的开口向下,∴x1<﹣2<3<x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.3.C试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.4.B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/ 6 ="1/" 3 .故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .5.B【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B.6.D【解析】解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.7.C【解析】【分析】主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C.【点睛】考核知识点:组合体的三视图.8.C【解析】分析:减去一个数,等于加上这个数的相反数.依此计算即可求解.详解:(-5)-(-3)=-1.故选:C.点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).9.C【解析】【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A.a+3a=4a,错误;B.a5和a不是同类项,不能合并,故此选项错误;C.(a2)2=a4,正确;D.a8÷a2=a6,错误.故选C.【点睛】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.10.A【解析】【分析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.故选A.本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键. 11.C 【解析】 【分析】根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解. 【详解】A. y=x 是一次函数,故本选项错误;B. y=1x是反比例函数,故本选项错误; C.y=x-2+x 2是二次函数,故本选项正确; D.y=21x右边不是整式,不是二次函数,故本选项错误. 故答案选C. 【点睛】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义. 12.C 【解析】 【详解】解:∵AD ∥BE ∥CF ,根据平行线分线段成比例定理可得AB DEBC EF =, 即123EF=, 解得EF=6, 故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.x 1= 【解析】 【分析】根据解分式方程的步骤,即可解答. 【详解】方程两边都乘以x 2-,得:32x 2x 2--=-, 解得:x 1=,检验:当x 1=时,x 21210-=-=-≠, 所以分式方程的解为x 1=,.2解分考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解()式方程一定注意要验根.14.1【解析】【分析】由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.【详解】解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案为1.【点睛】本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.15.37【解析】【分析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,∴这个两位数为:37【点睛】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.16.2【解析】【分析】根据裁开折叠之后平行四边形的面积可得CD的长度为+4或如图①,当四边形ABCE为平行四边形时,作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T. ∵AB=BC,∴四边形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.设BT=x,则CN=x,BC=EC=2x.∵四边形ABCE面积为2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=22-=,213∴AN=AE+EN=2+3,∴CD=AD=2AN=4+23.如图②,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.设AB=y,则DE=BE=2y,AE3∵四边形BEDF的面积为2,∴AB·DE=2,即2y2=2,解得y=1,∴AE3DE=2,∴AD =AE +DE =2综上所述,CD 的值为4+2.【点睛】考核知识点:平行四边形的性质,菱形判定和性质.17.1;【解析】分析:根据辅助线做法得出CF ⊥AB ,然后根据含有30°角的直角三角形得出AB 和BF 的长度,从而得出AF 的长度.详解:∵根据作图法则可得:CF ⊥AB , ∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8, ∵∠CFB=90°,∠B=10°, ∴BF=12BC=2, ∴AF=AB -BF=8-2=1.点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.18.87【解析】分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论. 详解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84−4×12=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,()()()()()()()222222221[1112121210121312131213121212],7S =-+-+-+-+-+-+- 8.7= 故答案为8.7点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析【解析】试题分析:通过全等三角形△ADE ≌△CBF 的对应角相等证得∠AED=∠CFB ,则由平行线的判定证得结论.证明:∵平行四边形ABCD 中,AD=BC ,AD ∥BC ,∴∠ADE=∠CBF .∵在△ADE 与△CBF 中,AD=BC ,∠ADE=∠CBF , DE=BF ,∴△ADE ≌△CBF (SAS ).∴∠AED=∠CFB .∴AE ∥CF .20.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:(210+,32-)或(210-,32-) 【解析】【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标; (2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C 和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩, 解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =,∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1,∴直线AC 的解析式为y=x ﹣1,∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b .∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC=OA=1,OD ⊥AC ,∴D 是AC 的中点.又∵DF ∥OC ,∴DF=12OC=32, ∴点P 的纵坐标是32-, ∴23232x x --=-,解得:x=2102±,∴当EF最短时,点P的坐标是:(2102+,32-)或(210-,32-).21.20千米【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.22.(1).(2)①判断:.理由见解析;②或.【解析】【分析】(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【点睛】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.23.(1)22y x =-(2)255. 【解析】【分析】 (1)根据一次函数解析式求出M 点的坐标,再把M 点的坐标代入反比例函数解析式即可;(2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C ,根据一次函数解析式表示出B 点坐标,利用△OMB 的面积=12×BO×MC 算出面积,利用勾股定理算出MO 的长,再次利用三角形的面积公式可得12OM•h ,根据前面算的三角形面积可算出h 的值. 【详解】解:(1)∵一次函数y 1=﹣x ﹣1过M (﹣2,m ),∴m=1.∴M (﹣2,1).把M (﹣2,1)代入2k y x =得:k=﹣2. ∴反比列函数为22y x=-. (2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C .∵一次函数y 1=﹣x ﹣1与y 轴交于点B ,∴点B 的坐标是(0,﹣1).∴OMB 1S 1212∆=⨯⨯=. 在Rt △OMC 中,2222OM=OC +CM 1+25==∵OMB 15S OM h 2∆=⋅⋅=,∴2555=. ∴点B 到直线OM 的距离为255 24.详见解析.【解析】【分析】先证明△ADF ≌△CDE ,由此可得∠DAF =∠DCE ,∠AFD =∠CED ,再根据∠EAG =∠FCG ,AE =CF ,∠AEG =∠CFG 可得△AEG ≌△CFG ,所以AG =CG .【详解】证明:∵四边形ABCD 是正方形,∴AD =DC ,∵E 、F 分别是AB 、BC 边的中点,∴AE =ED =CF =DF .又∠D =∠D ,∴△ADF ≌△CDE (SAS ).∴∠DAF =∠DCE ,∠AFD =∠CED .∴∠AEG =∠CFG .在△AEG 和△CFG 中EAG FCG AE CFAEG CFG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEG ≌△CFG (ASA ).∴AG =CG .【点睛】本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法. 25.(1)y;(1)(﹣,0)或(,0) 【解析】【分析】(1)把A 的坐标代入反比例函数的表达式,即可求出答案;(1)求出∠A =60°,∠B =30°,求出线段OA 和OB ,求出△AOB 的面积,根据已知S △AOP 12=S △AOB ,求出OP 长,即可求出答案.【详解】(1)把A1)代入反比例函数y k x =得:k =1=y = (1)∵A1),OA ⊥AB ,AB ⊥x 轴于C ,∴OC =AC =1,OA =1. ∵tanA OC AC==A =60°. ∵OA ⊥OB ,∴∠AOB =90°,∴∠B =30°,∴OB =1OC =∴S △AOB 12=OA•O B 12=⨯1×= ∵S △AOP 12=S △AOB ,∴12⨯OP×AC 12=⨯∵AC=1,∴OP=13,∴点P的坐标为(﹣13,0)或(13,0).【点睛】本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出△AOB的面积是解答此题的关键.26.(1)200,;(2)a=0.45,b=70;(3)900名.【解析】【分析】(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.【详解】解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=30102000.20+=(名);(2)“非常喜欢”频数90,a=900.45200=b2000.3570=⨯=;(3)20000.45900⨯=.故答案为(1)200,;(2)a=0.45,b=70;(3)900名.【点睛】此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.27.(1)证明见解析;(2)证明见解析;(3)1;【解析】【分析】(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=12x,求出MN=2x+12x=2.1x,OM=12MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=12AD=3,求出x即可.【详解】(1)∵BD是直径,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)连接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半径,∴PA是⊙O的切线;(3)连接BN,则∠MBN=90°.∵tan∠M=12,∴BCCM=12,设BC=x,CM=2x,∵MN是⊙O直径,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴BC MC NC BC,∴BC2=NC×MC,∴NC=12x,∴MN=2x+12x=2.1x,∴OM=12MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中点,C是AB的中点,AD=6,∴OC=0.71x=12AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半径为1.【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.。
2020年山西省中考数学模拟试卷及答案解析
2020年山西省中考数学模拟试卷及答案解析一.选择题(共10小题,满分30分,每小题3分)1.如图是我市三月份某一天的天气预报,该天的温差是( )A .2℃B .5℃C .7℃D .3℃解:该天的温差为5﹣(﹣2)=5+2=7(℃),故选:C .2.已知直线l 1∥l 2,将一块含30°角的直角三角板ABC 按如图所示方式放置,若∠1=85°,则∠2等于( )A .35°B .45°C .55°D .65°解:∵∠A +∠3+∠4=180°,∠A =30°,∠3=∠1=85°,∴∠4=65°.∵直线l 1∥l 2,∴∠2=∠4=65°.故选:D .3.不等式组{x +1>23x −5≤4的解集是( ) A .1<x ≤3 B .x >1 C .x ≤3D .x ≥3解:{x +1>2①3x −5≤4②, 解①得:x >1,解②得:x ≤3,∴不等式组的解集为:1<x ≤3,故选:A .4.下面是某同学在一次测验中的计算摘录,其中正确的个数有( )①3a +2a =5a 2;②3x 3•(﹣2x 2)=﹣6x 5;③(a 3)2=a 5;④(﹣a )3÷(﹣a )=﹣a 2A .1B .2C .3D .4解:①3a +2a =5a ,故计算错误;②3x 3•(﹣2x 2)=﹣6x 5,故计算正确;③(a 3)2=a 6,故计算错误;④(﹣a )3÷(﹣a )=a 2,故计算错误;综上所述,正确的个数是1.故选:A .5.2019年12月25日是中国伟大领神毛泽东同志诞辰126周年纪念日,某校举行以“高楼万丈平地起,幸福不忘毛主席”为主题的演讲比赛,最终有15名同学进入決赛(他们決赛的成绩各不相同)、比赛将评出一等奖1名,二等奖2名,三等奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他需要知道这15名学生成绩的( )A .平均数B .方差C .众数D .中位数解:∵进入决赛的15名学生所得分数互不相同,共有1+2+4=7个奖项,∴这15名同学所得分数的中位数低于获奖的学生中的最低分,∴某参赛选手知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数, 如果这名参赛选手的分数大于中位数,则他能获奖,如果这名参赛选手的分数小于或等于中位数,则他不能获奖.故选:D .6.随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,。
山西省太原市名校2020届数学中考模拟试卷
山西省太原市名校2020届数学中考模拟试卷一、选择题1.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A .10B .14C .10或14D .8或102.如图所示,在菱形ABCD 中,∠BAD =70°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 等于( )A .75°B .70°C .60°D .55°3.如图,AB 是⊙O 的直径,BC 是⊙O 的弦AD CD =.若BD =2,CD =6,则BC 的长为( )4.如图,点A 、B 、C 在圆O 的圆周上,连OA 、OC ,OD ⊥AB 于点D ,若AO 平分∠CAB ,∠CAB =50°,则∠OCB =( )A.40°B.35°C.30°D.25°5.如图,将ABC △绕点C 顺时针旋转,点B 的对应点为点E ,点A 的对应点为点D ,当点E 恰好落在边AC 上时,连接AD ,36ACB ∠=︒,AB BC =,2AC =,则AB 的长度是( )A 1B .1C .12D .326.计算(3x ﹣1)(3x+1)的结果是( )A .3x 2﹣1 B .3x 2+1C .9x 2+1D .9x 2﹣17.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cm B .13cmC .12cm D .1cm8.某市冬季里某一天的气温为﹣8℃~2℃,则这一天的温差是( ) A .6℃B .﹣6℃C .10℃D .﹣10℃9.如图,反比例函数y 1=1x与二次函数y 1=ax 2+bx+c 图象相交于A 、B 、C 三个点,则函数y =ax 2+bx ﹣1x+c 的图象与x 轴交点的个数是( )A .0B .1C .2D .310.如图,菱形ABCD 中,EF ⊥AC 于点H ,分别交AD 及CB 的延长线交于点E 、F ,且AE :FB=1:2,则AH :HC 的值为( )A .13B .15C .25D .1411.已知点(3,24)A x x +-在第四象限,则x 的取值范围是( ) A .32x -<<B .3x >-C .2x <D .2x >12.某校拟招聘一名应届毕业数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为( )二、填空题13.如图,一次函数y=kx+4的图象与反比例函数y=mx(x>0,m>0)的图象交于A,B两点,与x轴,y轴分别交于C,D两点,点E为线段AB的中点,点P(2,0)是x轴上一点,连接EP.若△COD的面积是△AOB倍,且AB=2PE,则m的值为_____.14.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛.设共有x 个队参加比赛,则依题意可列方程为__________.15.如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为_____cm.16.如图,菱形OABC的一边OA在x轴上,边长为2,点C在第一象限,∠AOC=60°,若将菱形OABC 绕点O顺时针旋转75°,得到四边形OA'B'C',则点B的对应点B'的坐标为_____.17.计算:的结果是_____.18.计算__________三、解答题19.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)请补全空气质量天数条形统计图:(2)根据已完成的条形统计图,制作相应的扇形统计图;(3)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?20.计算:()1013cos3012π-︒⎛⎫-+- ⎪⎝⎭.21.先化简,再求值:2211(1)4422x xx x x x -÷+--+--,其中2x =. 22.222322()6939a a a a a a a --+÷-+-- 23.如图,两建筑物的水平距离BC 为18m,从A 点测得D 点的俯角α为 30,测得C 点的俯角β为 60° ,求建筑物CD 的高度(结果保留根号).24.如图,在△ABC 中,E 为BC 边上一点,以BE 为直径的AR 半圆D 与AC 相切于点F ,且EF ∥AD ,AD 交半圆D 于点G .(1)求证:AB 是半圆D 的切线; (2)若EF =2,AD =5,求切线长AB .25.如图,某学校甲楼的高度AB 是18.6m ,在甲楼楼底A 处测得乙楼楼顶D 处的仰角为40,在甲楼楼顶B 处测得乙楼楼顶D 的仰角为19,求乙楼的高度DC 及甲乙两楼之间的距离AC (结果取整数).参考数据:cos190.95≈,tan190.34≈,cos400.77≈,tan 400.84≈.【参考答案】*** 一、选择题13.m=2或614.(1)15 2x x-=15.21617.118.三、解答题19.(1)见解析;(2)见解析;(3)219天.【解析】【分析】(1)由题意,可得轻度污染的天数,即可补全条形统计图.(2)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°.(3)由18÷30得出每天适合做户外运动的概率,再由得出的概率乘以365即可得到答案.【详解】解:(1)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(2)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(3)该市居民一年(以365天计)适合做户外运动天数为:18÷30×365=219天.【点睛】本题考查条形统计图和扇形统计图,解题的关键是读懂条形统计图和扇形统计图中包含的信息.20.【解析】【分析】先计算零指数幂、负指数幂、特殊角的三角函数、绝对值,再进行二次根式化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=2﹣1﹣2+1﹣2【点睛】考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、特殊角的三角函数值、绝对值等考点的运算.21.2【解析】 【分析】先根据分式混合运算顺序和运算法则化简原式,再将x 、y 的值代入计算可得. 【详解】原式=2(1)(1)21(2)22x x x xx x x +--+÷----=2(1)(1)2(2)12x x x xx x x +--⨯----=122x x x x +--- =12x -当2x =+【点睛】本题考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则. 22.3a + 【解析】 【分析】括号里先通分,再根据分式除法的法则进行计算即可. 【详解】 原式2(3)2(3)(3)2(3)(3)33232(3)a a a a a a a a a a a a a ⎡⎤-+--+-=-⋅=⋅=+⎢⎥-----⎣⎦ 【点睛】本题考查分式的混合运算,能正确的进行通分,约分及掌握分式的运算法则是关键.23.建筑物CD 的高度为 【解析】 【分析】过点D 作DE ⊥AB 于点E ,依题可得:∠ACB=β=60°,∠ADE=α=30°,BC=18m ,根据矩形性质得DE=BC=18m ,CD=BE ,在Rt △ABC 中,根据正切函数的定义求得AB 长 ;在Rt △ADE 中,根据正切函数的定义求得AE 长 ;由CD=BE=AB −AE 即可求得答案. 【详解】解:过点D 作DE ⊥AB 于点E,则四边形BCDE 是矩形,由题意得,∠ACB=β=60∘,∠ADE=α=30∘,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC⋅tan∠ACB=18×tan60∘=(m)在Rt△ADE中,AE=DE⋅tan∠ADE=18×tan30∘= (m)∴CD=BE=AB−AE==答:建筑物CD的高度为【点睛】本题考查了解直角三角形的应用,要求学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.24.(1)详见解析;(2)【解析】【分析】(1)连接DF,根据切线的性质得到DF⊥AC,根据平行线的性质得到∠EFD=∠ADF,∠FED=∠ADB,由等腰三角形的性质得到∠EFD=∠FED,求得∠ADF=∠ADB,根据全等三角形的性质得到∠ABD=∠AFD=90°,于是得到结论;(2)根据相似三角形的判定和性质定理得到25CE CF EFCD CA AD===,设CE=2x,于是得到CD=5x,DF=DE=3x,根据勾股定理得到CF=4x,于是得到AF=6x,在Rt△ADF中根据勾股定理即可得到结论.【详解】(1)证明:连接DF,∵AC与半圆D相切于点F,∴DF⊥AC,∴∠AFD=90°,∵EF∥AD,∴∠EFD=∠ADF,∠FED=∠ADB,又∵DF=DE,∴∠EFD=∠FED,∴∠ADF=∠ADB,在△ABD与△AFD中DB DFADB ADF AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△AFD (SAS),∴∠ABD=∠AFD=90°,∴AB是半圆D的切线;(2)解:∵EF∥AD,∴△CFE∽△CAD,∴25CE CF EF CD CA AD ===, 设CE =2x ,∴CD =5x ,DF =DE =3x ,∴在Rt △DFC 中,由勾股定理得CF =4x , ∴AF =6x ,在Rt △ADF 中,(6x )2+(3x )2=52,解得x∴AB =AF =6x =【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,平行线的性质,熟练正确切线的判定定理是解题的关键.25.乙楼的高度DC 约为31m ,甲乙两楼之间的距离AC 约为37m. 【解析】 【分析】过点B 作BE CD ⊥,垂足为点E ,从而判定四边形ABEC 是矩形,得到AB CE =,AC BE = 设甲乙两楼之间的距离为x m,在直角三角形BDE 与直角三角形DAC 中,利用三角函数即可用x 表示出DE 与DC ,根据DC DE CE -=,列出方程解之即可. 【详解】解:过点B 作BE CD ⊥,垂足为点E ,可知BAC ACE BEC 90∠∠∠===︒. ∴四边形ACEB 是矩形. ∴AB CE =,AC BE =. 设甲乙两楼之间的距离为x m. 则BE AC x ==,在Rt DBE 中,DBE 19∠=︒,DEtan DBE BE ∠=. ∴DE BE tan DBE x tan19∠=⋅=⋅︒. 在Rt DAC 中,DAC 40∠=︒,DCtan DAC AC∠=. ∴DC AC tan DAC x tan DAC x tan40∠∠=⋅=⋅=⋅︒.-=,∵DC DE CE⋅︒-⋅︒=.∴x tan40x tan1918.6-≈.∴0.84x0.34x18.6≈.解得x37.2≈.∴AC37=⋅︒≈⨯≈.DE x tan4037.2.8431答:乙楼的高度DC约为31m,甲乙两楼之间的距离AC约为37m.【点睛】本题考查了解直角三角形的应用,解题的关键是从复杂的实际问题中整理出直角三角形并选择合适的边角关系列出方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.5的相反数是( )A .55B .﹣5C .﹣55D .5 2.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( ) A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×10103.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分. A .85B .86C .87D .884. 若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5. 图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )A. 主视图B. 俯视图C. 左视图D. 主视图、俯视图和左视图都改变 6.如图,已知∠ABC =∠DCB ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠A =∠DB .∠ACB =∠DBC C .AC =DBD .AB =DC7. 若反比例函数y =(k ≠0)的图象经过点P (2,﹣3),则该函数的图象不经过的点是( ) A .(3,﹣2)B .(1,﹣6)C .(﹣1,6)D .(﹣1,﹣6)8.若圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( ) A .30πcm2 B .60πcm2 C .48πcm2 D .80πcm29.将1.2.3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等,那么从中任意取一点,这个点在函数y=x 图象上的概率是( )A.0.3B.0.5C.31 D.3210.如图1,点P 从矩形ABCD 的顶点A 出发沿A →B →C 以2cm /s 的速度匀速运动到点C ,图2是点P 运动时,△APD 的面积y (cm 2)随运动时间x (s )变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .48C .32D .2411.如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( ) A .2 B .2C .23 D .2512. 函数y=4x-1和y=x-1在第一象限内的图象如图,点P 是y=4x-1的图象上一动点,PC ⊥x 轴于点C ,交y=x-1的图象于点A ,PD ⊥y 轴于D ,交y=x-1的图象于点B ,给出如下4个结论:①△ ODB 与△OCA 的面积相等; ②线段PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化; ④3CA=AP .其中正确的结论是( )A.①②③B.①②④C.②③④D.①③④二、填空题(本题共6小题,满分18分。
只要求填写最后结果,每小题填对得3分。
) 13.在△ABC 中,∠B =45°,cosA =12,则∠C 的度数是________.14. 不等式2+9≥3(+2)的正整数解是_______.15.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为_______. 16.如图,在边长为6cm 的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm /s 的速度向点B 、C 、D 、A 匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小,其最小值是 cm 2.17.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边AC 上两点,且∠DAE =45°,若BE =4,CD =3,则AB 的长为 .18.如图,点A 在双曲线y =上,点B 在双曲线y =(k ≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC =2CD ,则k 的值为 .三、解答题(本题共7小题,共66分。
解答应写出文字说明、证明过程或推演步骤。
) 19.(6分)先化简,再求值:(1﹣x +)÷,其中x =tan45°+()﹣1.20.(8分)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣1)、B (﹣3,3)、C(﹣4,1)(1)画出△ABC关于y轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)画出△ABC绕点A按顺时针旋转90°后的△AB2C2,并写出点C的对应点C2的坐标.21.(10分)进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息解决下列问题:(1)这次学校抽查的学生人数是;(2)将条形统计图补充完整;(3)如果该校共有1000名学生,请你估计该校报D的学生约有多少人?22.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,E在同一直线上).(cos80°≈0.018,sin80°≈0.98,≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?23.(10分)某市一种出租车起步价是5元(路程在3km以内均付5元),达到或超过3km,每增加0.5km加价0.7元(不足0.5km按0.5km计).某乘客坐这种出租车从甲地到乙地,下车时付车费14.8元,那么甲地到乙地的路程是多少?24. (10分)如图,正方形ABCD边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.(1)判断线段OA,OP的数量关系,并说明理由.(2)当OD=时,求CP的长.(3)设线段DO,OP,PC,CD围成的图形面积为S1,△AOD的面积为S2,求S1﹣S2的最值.25.(12分)如图1,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣2),顶点为D,对称轴交x轴于点E.(1)求该二次函数的解析式;(2)设M为该抛物线对称轴左侧上的一点,过点M作直线MN∥x轴,交该抛物线于另一点N.是否存在点M,使四边形DMEN是菱形?若存在,请求出点M的坐标;若不存在,请说明理由;(3)连接CE(如图2),设点P是位于对称轴右侧该抛物线上一点,过点P作PQ⊥x轴,垂足为Q.连接PE,请求出当△PQE与△COE相似时点P的坐标.参考答案一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.B2.D3.D4.C5.A6.C7.D8.B9.C 10.C 11.A 12.D二、填空题(本题共6小题,满分18分。
只要求填写最后结果,每小题填对得3分。
)13. 12.75° 14. 1,2,3 15. “如果两条直线平行于同一条直线,那么这两条直线平行”.16. 3;18 17. 62 18. 12 18.三、解答题(本题共7小题,共66分。
解答应写出文字说明、证明过程或推演步骤。
)19. (6分)解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.20. (8分)解:(1)如图(1)所示,△A1B1C1即为所求,其中B1的坐标为(3,3).(2)如图(2)所示,△AB2C2即为所求,C2的坐标为(1,2).21.(10分)解:(1)这次学校抽查的学生人数是12÷30%=40(人),故答案为:40人;(2)C项目的人数为40﹣12﹣14﹣4=10(人)条形统计图补充为:(3)估计全校报名军事竞技的学生有1000×=100(人).22. (10分)解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.23. (10分)解:设从甲地到乙地的路程是xkm,根据题意,得:14.8﹣0.7<5+1.4(x﹣3)≤14.8,解得:9.5<x≤10,答:甲地到乙地的路程大于9.5km且不超过10km.24. (10分)解:(1)OA=OP,理由是:如图1,过O作OG⊥AB于G,过O作OH⊥BC于H,∵四边形ABCD是正方形,∴∠ABO=∠CBO,AB=BC,∴OG=OH,∵∠OGB=∠GBH=∠BHO=90°,∴四边形OGBH是正方形,∴BG=BH,∠GOH=90°,∵∠AOP=∠GOH=90°,∴∠AOG=∠POH,∴△AGO≌△PHO(ASA),∴OA=OP;(2)如图2,过O作OQ⊥CD于Q,过O作OH⊥BC于H,连接OC,∴∠OQD=90°,∵∠ODQ=45°,∴△ODQ是等腰直角三角形,∵OD=,∴OQ=DQ=1,∵AD=CD,∠ADO=∠CDO,OD=OD,∴△ADO≌△CDO(SSS),∴AO=OC=OP,∵OH⊥PC,∴PH=CH=OQ=1,∴PC=2;(3)如图3,连接OC,过O作OG⊥BC于G,OH⊥CD于H,设OH=x,则DH=x,CH=OG=4﹣x,PC=2x,由(2)知:△AOD≌△COD,∴S△AOD=S△COD,∴S1﹣S2=S1﹣S△COD=S△POC===﹣x2+4x=﹣(x﹣2)2+4,当x=2时,S1﹣S2有最大值是4.25.(12分)解:(1)设抛物线解析式为y=a(x+1)(x﹣3),将点C(0,﹣2)代入,得:﹣3a=﹣2,解得a=,则抛物线解析式为y=(x+1)(x﹣3)=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣1)2﹣,∴顶点D(1,﹣),即DE=,∵四边形DMEN是菱形,∴点M的纵坐标为﹣,则x2﹣x﹣2=﹣,解得x=1±,∵M为该抛物线对称轴左侧上的一点,∴x<1,则x=1﹣,∴点M坐标为(1﹣,﹣);(3)∵C(0,﹣2),E(1,0),∴OC=2,OE=1,如图,设P(m, m2﹣m﹣2)(m>1),则PQ=|m2﹣m﹣2|,EQ=m﹣1,①若△COE∽△PQE,则=,即=,解得m=0(舍)或m=5或m=2或m=﹣3(舍),此时点P坐标为(5,8)或(2,﹣2);②若△COE∽△EQP,则=,即=,解得m=(负值舍去)或m=,此时点P的坐标为(,)或(,);综上,点P的坐标为(5,8)或(2,﹣2)或(,)或(,).。