河北省2021年中考数学试题真题(Word版+答案+解析)

合集下载

河北省2021年中考数学试卷含答案解析(Word版)

河北省2021年中考数学试卷含答案解析(Word版)

河北省2021年中考数学试卷含答案解析(Word版)2021年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:-(-1)=() A.±1B.-2C.-1D.1答案: D解析:利用“负负得正”的口诀,就可以解题。

知识点:有理数的运算 2.计算正确的是() A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a答案: D解析:除0以外的任何数的0次幂都等于1,故A项错误;x2+x3的结果不是指数相加,故B项错误;(ab2)3的结果是括号里的指数和外面的指数都相乘,结果是a3b6,故C项错误;2a2·a-1的结果是2不变,指数相加,正好是2a。

知识点:x0=0(x≠0);(ambn)p=ampbnp;aman=am+n3.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D答案: A解析:先根据轴对称图形,排除C、D两项,再根据中心对称,排除B项。

知识点:轴对称,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形。

第 1 页共 1 页4.下列运算结果为x-1的是()1A.1?xx2?1xx2?2x?1x?11??B. C. D.xx?1xx?1x?1x-1 x2-1 答案:B解析:挨个算就可以了,A项结果为—— , B项的结果为x-1,C项的结果为——x D项的结果为x+1。

x 知识点:(x+1)(x-1)=x2-1;(x+1)2=x2+2x+1,(x-1)2=x2-2x+1。

2021年河北省数学中考真题含答案解析

2021年河北省数学中考真题含答案解析

2021年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=( )A .5B .1C .﹣1D .6 2.(3分)(2015•河北)下列说法正确的是( )A .1的相反数是﹣1B .1的倒数是﹣1C .1的立方根是±1D .﹣1是无理数3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是( )A .B .C .D . 4.(3分)(2015•河北)下列运算正确的是( )A .()﹣1=﹣B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 55.(3分)(2015•河北)如图所示的三视图所对应的几何体是( )A .B .C .D .6.(3分)(2015•河北)如图,AC,BE 是⊙O 的直径,弦AD 与BE 交于点F,下列三角形中,外心不是点O 的是( ) A .△ABEB .△ACFC .△ABD D .△ADE7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在( )A .段①B .段②C .段③D .段④8.(3分)(2015•河北)如图,AB ∥EF,CD ⊥EF,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°9.(3分)(2015•河北)已知:岛P 位于岛Q 的正西方,由岛P,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )A .B .C .D . 10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y 与x 的函数图象大致是( )A .B .C .D.11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是( ) A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5) C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×212.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( ) A.a<1B.a>1C.a≤1D.a≥113.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.B.C.D.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在( ) A.1<a<2B.﹣2<a<0C.﹣3≤a≤﹣2D.﹣10<a<﹣415.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长。

2024年河北省中考数学试题(解析版)

2024年河北省中考数学试题(解析版)

2024年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A. B.C. D.【答案】A【解析】【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.下列运算正确的是()A.734a a a -= B.222326a a a ⋅= C.33(2)8a a -=- D.44a a a÷=【答案】C【解析】【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是()A.AD BC⊥ B.AC PQ ⊥ C.ABO CDO △≌△ D.AC BD∥【答案】A【解析】【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .4.下列数中,能使不等式516x -<成立的x 的值为()A.1B.2C.3D.4【答案】A【解析】【分析】本题考查了解不等式,不等式的解,熟练掌握解不等式是解题的关键.解不等式,得到75x <,以此判断即可.【详解】解:∵516x -<,∴75x <.∴符合题意的是A故选A .5.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的()A.角平分线B.高线C.中位线D.中线【答案】B【解析】【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC ⊥,从而可得答案.【详解】解:由作图可得:BD AC ⊥,∴线段BD 一定是ABC 的高线;故选B6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A. B. C. D.【答案】D【解析】【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是()A.若5x =,则100y =B.若125y =,则4x =C.若x 减小,则y 也减小D.若x 减小一半,则y 增大一倍【答案】C【解析】【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x 度,能使用y 天.∴500xy =,∴500y x =,当5x =时,100y =,故A 不符合题意;当125y =时,5004125x ==,故B 不符合题意;∵0x >,0y >,∴当x 减小,则y 增大,故C 符合题意;若x 减小一半,则y 增大一倍,表述正确,故D 不符合题意;故选:C .8.若a ,b 是正整数,且满足8282222222a b a a a b b b++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A.38a b +=B.38a b =C.83a b +=D.38a b=+【答案】A【解析】【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ()A.1B.1-C.1D.11+【答案】C【解析】【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,解得:1x =+1x =故选:C .10.下面是嘉嘉作业本上的一道习题及解答过程:若以上解答过程正确,①,②应分别为()A.13∠=∠,AASB.13∠=∠,ASAC.23∠∠=,AASD.23∠∠=,ASA【答案】D【解析】【分析】本题考查平行四边形的判定,全等三角形的判定与性质,根据等边对等角得3ABC ∠=∠,根据三角形外角的性质及角平分线的定义可得23∠∠=,证明MAD MCB △≌△,得到MD MB =,再结合中点的定义得出MA MC =,即可得证.解题的关键是掌握:对角线互相平分的四边形是平行四边形.【详解】证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①23∠=∠.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②ASA ).∴MD MB =.∴四边形ABCD 是平行四边形.故选:D .11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=()A.115︒B.120︒C.135︒D.144︒【答案】B【解析】【分析】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.先求出正六边形的每个内角为120︒,再根据六边形MBCDEN 的内角和为720︒即可求解ENM NMB ∠+∠的度数,最后根据邻补角的意义即可求解.【详解】解:正六边形每个内角为:()621801206-⨯︒=︒,而六边形MBCDEN 的内角和也为()62180720-⨯︒=︒,∴720B C D E ENM NMB ∠+∠+∠+∠+∠+∠=︒,∴7204120240ENM NMB ∠+∠=︒-⨯︒=︒,∵1802360ENM NMB βα+∠++∠=︒⨯=︒,∴360240120αβ+=︒-︒=︒,故选:B .12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点AB.点BC.点CD.点D【答案】B【解析】【分析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设(),A a b ,AB m =,AD n =,可得(),D a b n +,(),B a m b +,(),C a m b n ++,再结合新定义与分式的值的大小比较即可得到答案.【详解】解:设(),A a b ,AB m =,AD n =,∵矩形ABCD ,∴AD BC n ==,AB CD m ==,∴(),D a b n +,(),B a m b +,(),C a m b n ++,∵b b b n a m a a +<<+,而b b n a m a m+<++,∴该矩形四个顶点中“特征值”最小的是点B ;故选:B .13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy-,则A =()A.xB.yC.x y +D.x y-【答案】A【解析】【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键.由题意得22y x y A x xy xy xy y -+=++,对2y x y x xy xy-++进行通分化简即可.【详解】解:∵22A y xy y x xy -++的结果为x y xy-,∴22y x y A x xy xy xy y -+=++,∴()()()()()2222x y x y y x x A xy x y xy x y xy x y xy y xy y -++===+++++,∴A x =,故选:A .14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m S S =,则m 与n 关系的图象大致是()A.B.C.D.【答案】C【解析】【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为R ,根据扇形的面积公式表示出23R S π=,进一步得出2360120n S n n R S π==,再代入n m S S =即可得出结论.掌握扇形的面积公式是解题的关键.【详解】解:设该扇面所在圆的半径为R ,221203603R R S ππ==,∴23R S π=,∵该折扇张开的角度为n ︒时,扇面面积为n S ,∴223360360360120n R S R n n n nS S π=⨯⨯===π,∴1120120120n S m n S nS n S ====,∴m 是n 的正比例函数,∵0n ≥,∴它的图像是过原点的一条射线.故选:C .15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“□”表示5C.运算结果小于6000D.运算结果可以表示为41001025a +【答案】D【解析】设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.【详解】解:设一个三位数与一个两位数分别为10010x y z ++和10m n+如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz =,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为()A.()6,1或()7,1 B.()15,7-或()8,0 C.()6,0或()8,0 D.()5,1或()7,1【答案】D【解析】【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.【答案】89【解析】【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89, 89出现的次数最多,∴以上数据的众数为89.故答案为:89.18.已知a ,b ,n 均为正整数.(1)若1n n <<+,则n =______;(2)若1,1n n n n -<<<+,则满足条件的a 的个数总比b 的个数少______个.【答案】①.3②.2【解析】【分析】本题考查的是无理数的估算以及规律探究问题,掌握探究的方法是解本题的关键;(1)由34<<即可得到答案;(2)由n 1-,n ,1n +为连续的三个自然数,1,1n n n n -<<<+,可得<<,<<,再利用完全平方数之间的数据个数的特点探究规律即可得到答案.【详解】解:(1)∵34<<,而1n n <<+,∴3n =;故答案为:3;(2)∵a ,b ,n 均为正整数.∴n 1-,n ,1n +为连续的三个自然数,而1,1n n n n -<<<+,<<<<,观察0,1,2,3,4,5,6,7,8,9, ,而200=,211=,224=,239=,2416=,∴()21n -与2n 之间的整数有()22n -个,2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个),故答案为:2.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为______;(2)143B C D △的面积为______.【答案】①.1②.7【解析】【分析】(1)根据三角形中线的性质得112ABD ACD ABC S S S △△△===,证明()11SAS AC D ACD ≌,根据全等三角形的性质可得结论;(2)证明()11SAS AB D ABD ≌,得111AB D ABD S S ==△△,推出1C 、1D 、1B 三点共线,得1111112AB C AB D AC D S S S △△△=+=,继而得出141148AB C AB C S S △△==,131133AB D AB D S S ==△△,证明33C AD CAD △∽△,得3399C AD CAD S S ==△△,推出43334123AC D C AD S S ==△△,最后代入431314143AC D D AB D AB C B C S S S S =+-△△△△即可.【详解】解:(1)连接11B D 、12B D 、12B C 、13B C 、33C D ,∵ABC 的面积为2,AD 为BC 边上的中线,∴112122ABD ACD ABC S S S △△△====,∵点A ,1C ,2C ,3C 是线段4CC 的五等分点,∴1122334415AC AC C C C C C C CC =====,∵点A ,1D ,2D 是线段3DD 的四等分点,∴11223314AD AD D D D D DD ====,∵点A 是线段1BB 的中点,∴1112AB AB BB ==,在11AC D △和ACD 中,1111AC ACC AD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴()11SAS AC D ACD ≌,∴111AC D ACD S S ==△△,11C D A CDA ∠=∠,∴11AC D △的面积为1,故答案为:1;(2)在11AB D 和ABD △中,1111AB AB B AD BAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()11SAS AB D ABD ≌,∴111AB D ABD S S ==△△,11B D A BDA ∠=∠,∵180BDA CDA ∠+∠=︒,∴1111180B D A C D A ∠+∠=︒,∴1C 、1D 、1B 三点共线,∴111111112AB C AB D AC D S S S △△△=+=+=,∵1122334AC C C C C C C ===,∴14114428AB C AB C S S △△==´=,∵11223AD D D D D ==,111AB D S =△,∴13113313AB D AB D S S ==⨯=△△,在33AC D △和ACD 中,∵333AC AD AC AD==,33C AD ∠=∠,∴33C AD CAD △∽△,∴3322339C AD CAD S AC S AC ⎛⎫=== ⎪⎝⎭ ,∴339919C AD CAD S S ==⨯=△△,∵1122334AC C C C C C C ===,∴43334491233AC D C AD S S ==⨯=△△,∴41433131412387AC D AB C B C D D AB S S S S =+-=+-=△△△△,∴143B C D △的面积为7,故答案为:7.【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A ,B ,C 所对应的数依次为4-,2,32,乙数轴上的三点D ,E ,F 所对应的数依次为0,x ,12.(1)计算A ,B ,C 三点所对应的数的和,并求AB AC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.【答案】(1)30,16(2)2x =【解析】【分析】本题考查的是数轴上两点之间的距离的含义,一元一次方程的应用,理解题意是解本题的关键;(1)直接列式求解三个数的和即可,再分别计算,AB AC ,从而可得答案;(2)由题意可得,对应线段是成比例的,再建立方程求解即可.【小问1详解】解:∵甲数轴上的三点A ,B ,C 所对应的数依次为4-,2,32,∴423230-++=,()24246AB =--=+=,()32432436AC =--=+=,∴61366AB AC ==;【小问2详解】解:∵点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,∴DE DF AB AC =,∴12636x =,解得:2x =;21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b +2a2a b+a b -2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.【答案】(1)13(2)填表见解析,49【解析】【分析】(1)先分别求解三个代数式当1,2a b ==-时的值,再利用概率公式计算即可;(2)先把表格补充完整,结合所有可能的结果数与符合条件的结果数,利用概率公式计算即可.【小问1详解】解:当1,2a b ==-时,1a b +=-,20a b +=,()123a b -=--=,∴取出的卡片上代数式的值为负数的概率为:13;【小问2详解】解:补全表格如下:a b+2a b +a b -a b+22a b +32a b +2a 2a b+32a b +42a b +3a a b -2a 3a 22a b -∴所有等可能的结果数有9种,和为单项式的结果数有4种,∴和为单项式的概率为49.【点睛】本题考查的是代数式的值,正负数的含义,多项式与单项式的概念,利用列表法求解简单随机事件的概率,掌握基础知识是解本题的关键.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.【答案】(1)45︒,14(2m ,33434【解析】【分析】本题考查的是解直角三角形的应用,理解仰角与俯角的含义以及三角函数的定义是解本题的关键;(1)根据题意先求解1CE PE ==m ,再结合等腰三角形的性质与正切的定义可得答案;(2)利用勾股定理先求解CP =m ,如图,过C 作CH AP ⊥于H ,结合1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ,再建立方程求解x ,即可得到答案.【小问1详解】解:由题意可得:PQ AE ⊥, 2.6PQ =m , 1.6AB CD EQ ===m ,4AE BQ ==()m ,3AC BD ==()m ,∴431CE =-=()m , 2.6 1.61PE =-=()m ,90CEP ∠=︒,∴CE PE =,∴45PCE β=∠=︒,1tan tan 4PE PAE AE α=∠==;【小问2详解】解:∵1CE PE ==m ,90CEP ∠=︒,∴CP ==m ,如图,过C 作CH AP ⊥于H ,∵1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ,∴()22249x x AC +==,解得:17x =,∴31717CH =m ,∴31733417sin 34CH APC CP ∠===.23.情境图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF 的长;(2)直接写出图3中所有与线段BE 相等的线段,并计算BE 的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC 边上找一点P (可以借助刻度尺或圆规),画出裁剪线(线段PQ )的位置,并直接写出BP 的长.【答案】(1)1EF =;(2)BE GE AH GH ===,2BE =;BP 或2【解析】【分析】本题考查的是正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度.(1)如图,过G '作G K FH ''⊥于K ,结合题意可得:四边形FOG K '为矩形,可得FO KG '=,由拼接可得:HF FO KG '==,可得AHG ,H G D '' ,AFE △为等腰直角三角形,G KH '' 为等腰直角三角形,设H K KG x ''==,则H G H D '''==,再进一步解答即可;(2)由AFE △为等腰直角三角形,1EFAF ==;求解2BE =,,GE AH GH ;可得答案,如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线,或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线,再进一步求解BP 的长即可.【详解】解:如图,过G '作G K FH ''⊥于K ,结合题意可得:四边形FOG K '为矩形,∴FO KG '=,由拼接可得:HF FO KG '==,由正方形的性质可得:45A ∠=︒,∴AHG ,H G D '' ,AFE △为等腰直角三角形,∴G KH '' 为等腰直角三角形,设H K KG x ''==,∴H G H D '''==,∴AH HG ==,HF FO x ==,∵正方形的边长为2,=,∴OA =∴x x ++=解得:1x =,∴))1111EF AF x ====;(2)∵AFE △为等腰直角三角形,1EF AF ==;∴AE ==,∴2BE =,∵)12GE H G =='='=-,2AH GH ===-,∴BE GE AH GH ===;如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线,此时BP '=,2P Q ''==,符合要求,或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线,此时CP CQ ==2PQ ==,∴2BP =,综上:BP 或224.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80xy p=;当150p x ≤≤时,()2080150x p y p-=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)95100105110115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.【答案】(1)甲、乙的报告成绩分别为76,92分(2)125(3)①130;②95%【解析】【分析】(1)当100p =时,甲的报告成绩为:809576100y ⨯==分,乙的报告成绩为:()201301008092150100y ⨯-=+=-分;(2)设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分,①10x p ≤<时和②140150p x ≤-≤时均不符合题意,③11040,150x p p x ≤-<≤≤时,()1209280150x p y p-==+- 丙⑤,()1804064x y p-== 丁⑥,解得1125,140p x ==;(3)①共计100名员工,且成绩已经排列好,则中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,故中位数为130;②当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍;当130p ≤时,则()201309080150p p-=+-,解得110p =,符合题意,而由表格得到原始成绩为110及110以上的人数为100595-=,故合格率为:95100%95%100⨯=.【小问1详解】解:当100p =时,甲的报告成绩为:809576100y ⨯==分,乙的报告成绩为:()201301008092150100y ⨯-=+=-分;【小问2详解】解:设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分,①10x p ≤<时,18092x y p ==丙①,()1804064x y p-== 丁②,由①-②得320028p=,∴8007p =,∴1800929207131807x p ⨯==≈>,故不成立,舍;②140150p x ≤-≤时,()1209280150x p y p-==+- 丙③,()120406480150x p y p--==+- 丁④,由③-④得:80028150p=-,∴8507p =,∴185020792808501507x ⎛⎫- ⎪⎝⎭=+-,∴19707x =,∴16908504077x p -=<=,故不成立,舍;③11040,150x p p x ≤-<≤≤时,()1209280150x p y p-==+- 丙⑤,()1804064x y p-==丁⑥,联立⑤⑥解得:1125,140p x ==,且符合题意,综上所述125p =;【小问3详解】解:①共计100名员工,且成绩已经排列好,∴中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,∴中位数为130;②当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍;当130p ≤时,则()201309080150p p-=+-,解得110p =,符合题意,∴由表格得到原始成绩为110及110以上的人数为()10012295-++=,∴合格率为:95100%95%100⨯=.【点睛】本题考查了函数关系式,自变量与函数值,中位数的定义,合格率,解分式方程,熟练知识点,正确理解题意是解决本题的关键.25.已知O 的半径为3,弦MN =,ABC 中,90,3,ABC AB BC ∠=︒==.在平面上,先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B 与点N 重合时,求劣弧 AN 的长;(2)当OA MN ∥时,如图2,求点B 到OA 的距离,并求此时x 的值;(3)设点O 到BC 的距离为d .①当点A 在劣弧 MN上,且过点A 的切线与AC 垂直时,求d 的值;②直接写出d 的最小值.【答案】(1)π(2)点B 到OA 的距离为2;3(3)①3d =-23【解析】【分析】(1)如图,连接OA ,OB ,先证明AOB 为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;(2)过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO ,证明四边形BIOH 是矩形,可得BH OI =,BI OH =,再结合勾股定理可得答案;(3)①如图,由过点A 的切线与AC 垂直,可得AC 过圆心,过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒,可得四边形KOJB 为矩形,可得OJ KB =,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当B 为MN 中点时,过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,OL OJ >,此时OJ 最短,如图,过A 作AQ OB ⊥于Q ,而3AB AO ==,证明1BQ OQ ==,求解AQ ==,再结合等角的三角函数可得答案.【小问1详解】解:如图,连接OA ,OB ,∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴ AN 的长为60π3π180´=;【小问2详解】解:过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO ,∵OA MN ∥,∴90IBH BHO HOI BIO ∠=∠=∠=∠=︒,∴四边形BIOH 是矩形,∴BH OI =,BI OH =,∵MN =,OH MN ⊥,∴MH NH ==,而3OM =,∴2OH BI ===,∴点B 到OA 的距离为2;∵3AB =,BI OA ⊥,∴AI ==,∴3OI OA AI BH =-=-=,∴33x BN BH NH ==+=-;【小问3详解】解:①如图,∵过点A 的切线与AC 垂直,∴AC 过圆心,过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒,∴四边形KOJB 为矩形,∴OJ KB =,∵3AB =,BC =,∴AC ==∴cosAB AKBAC AC AO∠==,∴AK =∴3OJ BK ==-3d =②如图,当B 为MN 中点时,过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,∴90OJL ∠>︒,∴OL OJ >,此时OJ 最短,如图,过A 作AQ OB ⊥于Q ,而3AB AO ==,∵B 为MN 中点,则OB MN ⊥,∴由(2)可得2OB =,∴1BQ OQ ==,∴AQ ==,∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO BAQ ∠+∠=︒=∠+∠,∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠,∴OJ BQ BJ AQ ==,设OJ m =,则BJ =,∴()2222m +=,解得:23m =(不符合题意的根舍去),∴d 的最小值为23.【点睛】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用,锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .【答案】(1)12a =,()2,2Q -(2)两人说法都正确,理由见解析(3)①410=-y x ;②112-112+(4)2n t m =+-【解析】【分析】(1)直接利用待定系数法求解抛物线的解析式,再化为顶点式即可得到顶点坐标;(2)把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-,再检验即可,再根据函数化为2122y x xt =-+-,可得函数过定点;(3)①先求解P 的坐标,再利用待定系数法求解一次函数的解析式即可;②如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意),可得4x =±,可得交点()46J --,交点()4K +,再进一步求解即可;(4)如图,由题意可得2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同,如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP ,可得四边形APBQ 是平行四边形,当点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,此时M 与B 重合,N 与A 重合,再进一步利用中点坐标公式解答即可.【小问1详解】解:∵抛物线21:2C y ax x =-过点(4,0),顶点为Q .∴1680a -=,解得:12a =,∴抛物线为:()221122222y x x x =-=--,∴()2,2Q -;【小问2详解】解:把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-,当0x =时,∴222221111:()2222222C y x t t t t =--+-=-+-=-,∴()0,2-在2C 上,∴嘉嘉说法正确;∵22211:()222C y x t t =--+-2122x xt =-+-,当0x =时,=2y -,∴22211:()222C y x t t =--+-过定点()0,2-;∴淇淇说法正确;【小问3详解】解:①当4t =时,()2222111:()246222C y x t t x =--+-=--+,∴顶点()4,6P ,而()2,2Q -,设PQ 为y ex f =+,∴4622e f e f +=⎧⎨+=-⎩,解得:410e f =⎧⎨=-⎩,∴PQ 为410=-y x ;②如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意),∴4x =±,∴交点()46J --,交点()4K +,由直线l PQ ∥,设直线l 为4y x b =+,∴(446b -+=-,解得:22b =,∴直线l 为:422y x =+-,当4220y x =+-=时,112x =-此时直线l 与x 轴交点的横坐标为112-,同理当直线l 过点()4K +,直线l 为:422y x =--,当4220y x =--=时,112x =+此时直线l 与x 轴交点的横坐标为112+,【小问4详解】解:如图,∵()21222y x =--,22211:()222C y x t t =--+-,∴2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同,如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP ,∴四边形APBQ 是平行四边形,当点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,此时M 与B 重合,N 与A 重合,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭,∴L 的横坐标为2t 2+,∵21,22M m m m ⎛⎫- ⎪⎝⎭,()2211,222N n n t t ⎡⎤--+-⎢⎥⎣⎦,∴L 的横坐标为2m n +,∴222m n t ++=,解得:2n t m =+-;【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,一次函数的综合应用,二次函数的平移与旋转,以及特殊四边形的性质,理解题意,利用数形结合的方法解题是关键.。

2021年中考数学试题及解析:河北-解析版

2021年中考数学试题及解析:河北-解析版

2021年河北中考数学试题分析1、命题模式突破,强调实战能力今年的中考数学试卷改革力度较大,打破了多年的命题模式。

整套试卷“起点低,坡度缓,尾巴翘”。

试题覆盖面广,内容新颖,较好的落实了“狠抓基础,渗透思想,突出能力,着重创新”新课改的理念。

2、以夯实基础为出发点基本题以常规题型为主,采用了直接考查数与式的运算、有理数大小的比较、二次根式的意义、函数的图像与性质、正方体的展开与折叠、圆的有关知识,方差的特征量、统计与概率等的基本知识。

这类试题的特点,起点低,考查的知识相对单一,内容大都来源于课本,是对教材内容的深入考查,学生很容易上手并正确解答。

如1-8题、13-15题、19-21题,都能在课本上找到源头,这对中学数学教学有良好的导向作用。

3、专项试题突出能力今年试题设计精心,立意凸现了对中学数学的通性通法的重点考查。

如:第14、17题体现了转化的思想,第18题考查了特殊到一般的归纳思想,第19、22题考查了方程思想,第12、20题考查了数形结合的思想,第11、24题考查了函数思想,第25、26题用运动变化中特殊数量关系寻找的研究,这使得整套试卷突出能力立意,为初中数学教学指明了方向。

4、“多思少算”命题新倾向今年开放性、探究性试题的设置分布广泛,通过设置操作、观察、探究、应用等方面的问题,给学生提供了一定的思考研究空间。

如第17题留给学生的思考空间较大,虽然其中一个图形处于运动状态,但是通过转化,使阴影部分的周长形成规律,巧妙解题。

第25题以学生熟悉的平行线为原型,通过扇形的改变和运动,形成一个探究性题目,图形的设置减少了文字量,降低了对学生文字阅读能力的要求。

题目发掘并串联了点与直线的距离、直线与圆的位置关系、三角函数等重要内容,侧重考查了运动变化中的不变量问题、解直角三角形问题、垂径定理和圆心角问题,本题带有浓郁的探究成分,要求学生善于对新情景、新信息进行有效的加工和整合,完成本题要求学生有较好的现场学习、迁移和应用的能力,这类试题多有较好的区分度和可推广性。

2021年河北省石家庄外国语学校中考数学段考试卷(3月份)(解析版)

2021年河北省石家庄外国语学校中考数学段考试卷(3月份)(解析版)

2021年河北省石家庄外国语学校中考数学段考试卷(3月份)一、选择题(共16小题,共42分。

)1.下列各数中,是无理数的是()A.3.1415B.C.D.2.函数y=自变量x的取值范围是()A.x≤﹣B.x≥﹣C.x≥D.x≤3.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为()A.7B.8C.9D.104.一元二次方程2x2﹣3x+1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.如图,点A、P在函数y=(x<0)的图象上,AB⊥x轴,则△ABO的面积为()A.1B.2C.3D.46.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°7.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个8.若是关于x、y的方程组的解,则a+b的值为()A.3B.﹣3C.2D.﹣29.实数a,b在数轴上的位置如图所示,给出如下结论:①a+b>0;②b﹣a>0;③﹣a>b;④a>﹣b;⑤|a|>b>0.其中正确的结论是()A.①②③B.②③④C.②③⑤D.②④⑤10.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.11.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.下图给出了“河图”的部分点图,请你推算出P处所对应的点图是()A.B.C.D.12.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣213.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)14.△ABC的边长AB=2,面积为1,直线PQ∥BC,分别交AB、AC于P、Q,设AP=t,△APQ面积为S,则S关于t的函数图象大致是()A.B.C.D.15.如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),C,D分别是AB,BP的中点.若AB=4,∠APB=45°,则CD长的最大值为()A.2B.2C.4D.416.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM 上,2BE=DB,作EF⊥DE并截取EF=DE,连接AF并延长交射线BM于点C.设BE =x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣二、填空题(本大题有3个小题,每题3分,共9分)17.计算:|﹣|+()﹣1=.18.已知△ABC中,⊙I为△ABC的内切圆,切点为H,若BC=6,AC=8,AB=10,则点A到圆上的最近距离等于.19.对于实数x,我们[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值范围.三、解答题(本大题有7个小题,20题7分,21-24题每题8分,25题9分,26题12分共69分。

河北省保定市竞秀区2021年中考数学一模试试题(含答案与解析)

河北省保定市竞秀区2021年中考数学一模试试题(含答案与解析)
A.3B.2C.1D.0
8.嘉淇用一些完全相同的△ABC纸片拼接图案,已知用六个△ABC纸片按照如图1所示的方法拼接,可得外轮廓是正六边形图案,若用n个△ABC纸片按如图2所示的方法拼接,那么可以得到外轮廓的图案是( )
A.正七边形B.正八边形C.正九边形D.正十边形
9.下面是某同学“化简 ” 过程,共四步.
A.+B.﹣C.×D.÷
2.如图,在一张透明 纸上画一条直线 ,在 外任取一点Q并折出过点Q且与 垂直的直线.这样的直线能折出( )
A. 0条B. 1条C. 2条D. 3条
3.华为 手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).
19.如图,扇形AOB中,半径OA在直线l上,∠AOB=120°,OA=1,矩形EFGH的边EF也在l上,且EH=2,OE= 将扇形AOB在直线l上向右滚动.
(1)滚动一周时得到扇形A′O′B′,这时OO′=______.
(2)当扇形与矩形EFGH有公共点时停止滚动,设公共点为D,则DE=_______.
(2)如果学生一进学校就开始测量体温,测温点有2个,每个测温点每分钟检测20人,学生按要求排队测温.求第多少分钟时排队等待检测体温的人数最多?
(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设1个人工体温检测点,已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).
6.如图,正方形OEFG和正方形ABCD是位似图形,且点F与点C是一对对应点,点F的坐标是(1,1),点C的坐标是(4,2),则它们的位似中心的坐标是()
A.(0,0)B.(-1,0)C.(-2,0)D.(-3,0)

河北省2021年中考数学试题真题(Word版,含答案与解析)

河北省2021年中考数学试题真题(Word版,含答案与解析)
A.当 时,
B.当 时,
C.当 时,
D.当 时,
【答案】C
【考点】分式的值,分式的加减法
【解析】【解答】解: ,
当 时, , 无意义,故A不符合题意;
当 时, , ,故B不符合题意;
当 时, , ,故C符合题意;
当 时, , ;当 时, , ,故D不符合题意的值判断 的正负,从而判断A与 的大小.
【答案】D
【考点】同底数幂的乘法,去括号法则及应用,有理数的加法,合并同类项法则及应用
【解析】【解答】解:A. = ,A不符合题意;
B. ,B不符合题意;
C. ,C不符合题意;
D. ,D符合题意,
故答案为:D.
【分析】A、根据加法的交换律进行判断即可;
B、利用合并同类项计算a+a+a=3a,然后判断即可;
【解析】【解答】解:∵∠A+∠B=50°+60°=110°,
∴∠ACB=180°-110°=70°,
故答案为:B.
【分析】解题关键:依据定理证明的一般步骤进行分析解答。
14.(2021·河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()
A.蓝 B.粉 C.黄 D.红
【答案】D
【考点】扇形统计图,条形统计图

∵ 是P关于直线m的对称点,
∴直线m是 的垂直平分线,

当 不在同一条直线上时,

当 在同一条直线上时,
故答案为:B
【分析】由对称得OP1=OP=OP2=2.8。再根据三角形三边的关系可得结果。三角形两边之和大于第三边,两边之差小于第三边。解题关键:熟练掌握对称性和三角形三边的关系。

2021年河北省中考数学试题及参考答案(word解析版)

2021年河北省中考数学试题及参考答案(word解析版)

2021年河北省中考数学试题及参考答案(word解析版)2021年河北省中考数学试题及参考答案一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.下列图形具有稳定性的是()A. B. C. D.2.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为() A.4B.6C.7D.103.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.将9.52变形正确的是()A.9.52=92+0.52 B.9.52=(10+0.5)(10��0.5)C.9.52=102��2×10×0.5+0.52D.9.52=92+9×0.5+0.525.图中三视图对应的几何体是()A. B. C. D.6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:1则正确的配对是()A.①��Ⅳ,②��Ⅱ,③��Ⅰ,④��Ⅲ C.①��Ⅱ,②��Ⅳ,③��Ⅲ,④��Ⅰ 7.有三种不同质量的物体“”“”“B.①��Ⅳ,②��Ⅲ,③��Ⅱ,④��Ⅰ D.①��Ⅳ,②��Ⅰ,③��Ⅱ,④��Ⅲ”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A. B.C. D.8.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BC C.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲?x丙?13,x乙?x丁?15;s又高又整齐的是() A.甲B.乙 C.丙D.丁10.图中的手机截屏内容是某同学完成的作业,他做对的题数是()2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗2A.2个 B.3个 C.4个 D.5个11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 13.若2n+2n+2n+2n=2,则n=() A.��1 B.��2C.0D.1 414.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是() A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3D.216.对于题目“一段抛物线L:y=��x(x��3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为3整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则() A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确 D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分) 17.计算:?12? . ?318.若a,b互为相反数,则a2��b2= .19.如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90?1(多边形外角和)的,?45是360°28这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分) 20.(8分)嘉淇准备完成题目:(1)他把“发现系数“”印刷不清楚.”猜成3,请你化简:(3x2+6x+8)��(6x+5x2+2);”是几?(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.422.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着��5,��2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.24.(10分)如图,直角坐标系xOy中,一次函数y??x?5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC��S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.12AB,使点B25.(10分)如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧?在O右下方,且tan∠AOB=4AB上任取一点P,且能过P作直线l∥OB交数轴于点Q,,在优弧?3设Q在数轴上对应的数为x,连接OP.5感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省2021年中考数学试卷一、单选题1.(2021·河北)如图,已知四条线段 a , b , c , d 中的一条与挡板另一侧的线段 m 在同一直线上,请借助直尺判断该线段是( )A. aB. bC. cD. d2.(2021·河北)不.一定相等的一组是( )A. a +b 与 b +aB. 3a 与 a +a +aC. a 3 与 a ⋅a ⋅aD. 3(a +b) 与 3a +b3.(2021·河北)已知 a >b ,则一定有 −4a □−4b ,“ □ ”中应填的符号是( )A. >B. <C. ≥D. =4.(2021·河北)与 √32−22−12 结果相同的是( ).A. 3−2+1B. 3+2−1C. 3+2+1D. 3−2−15.(2021·河北)能与 −(34−65) 相加得0的是( )A. −34−65B. 65+34C. −65+34D. −34+656.(2021·河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是( )A. A 代表B. B 代表C. C 代表D. B 代表7.(2021·河北)如图1, ▱ABCD 中, AD >AB , ∠ABC 为锐角.要在对角线 BD 上找点 N ,M ,使四边形 ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )图2A. 甲、乙、丙都是B. 只有甲、乙才是C. 只有甲、丙才是D. 只有乙、丙才是8.(2021·河北)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面 AB = ( )A. 1cmB. 2cmC. 3cmD. 4cm9.(2021·河北)若 √33 取1.442,计算 √33−3√33−98√33 的结果是( )A. -100B. -144.2C. 144.2D. -0.0144210.(2021·河北)如图,点 O 为正六边形 ABCDEF 对角线 FD 上一点, S △AFO =8 , S △CDO =2 ,则 S 正六边形ABCDEF 的值是( )A. 20B. 30C. 40D. 随点 O 位置而变化11.(2021·河北)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为 a 1 , a 2 , a 3 , a 4 , a 5 ,则下列正确的是( )A. a 3>0B. |a 1|=|a 4|C. a 1+a 2+a 3+a 4+a 5=0D. a 2+a 5<012.(2021·河北)如图,直线 l , m 相交于点 O . P 为这两直线外一点,且 OP =2.8 .若点 P 关于直线 l , m 的对称点分别是点 P 1 , P 2 ,则 P 1 , P 2 之间的距离可能..是( )A. 0B. 5C. 6D. 713.(2021·河北)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图, ∠ACD 是 △ABC 的外角.求证: ∠ACD =∠A +∠B .下列说法正确的是()A. 证法1还需证明其他形状的三角形,该定理的证明才完整B. 证法1用严谨的推理证明了该定理C. 证法2用特殊到一般法证明了该定理D. 证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2021·河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A. 蓝B. 粉C. 黄D. 红15.(2021·河北)由(1+c2+c −12)值的正负可以比较A=1+c2+c与12的大小,下列正确的是()A. 当c=−2时,A=12B. 当c=0时,A≠12C. 当c<−2时,A>12D. 当c<0时,A<1216.(2021·河北)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形OFM=S扇形OAB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A. Ⅰ和Ⅱ都对B. Ⅰ和Ⅱ都不对C. Ⅰ不对Ⅱ对D. Ⅰ对Ⅱ不对二、填空题17.(2021·河北)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为________;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片________块.18.(2021·河北)下图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E 保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应________(填“增加”或“减少”)________度.三、解答题19.(2021·河北)用绘图软件绘制双曲线m:y=60与动直线l:y=a,且交于一点,图1为a=8x时的视窗情形.(1)当a=15时,l与m的交点坐标为________;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点 O 始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的 12 ,其可视范围就由 −15≤x ≤15 及 −10≤y ≤10 变成了 −30≤x ≤30 及 −20≤y ≤20 (如图2).当 a =−1.2 和 a =−1.5 时, l 与 m 的交点分别是点A 和 B ,为能看到 m 在A 和 B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的 1k ,则整数 k = ________.20.(2021·河北)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进 m 本甲种书和 n 本乙种书,共付款 Q 元.(1)用含m ,n 的代数式表示 Q ;(2)若共购进 5×104 本甲种书及 3×103 本乙种书,用科学记数法表示 Q 的值.21.(2021·河北)已知训练场球筐中有 A 、 B 两种品牌的乒乓球共101个,设 A 品牌乒乓球有 x 个. (1)淇淇说:“筐里 B 品牌球是 A 品牌球的两倍.”嘉嘉根据她的说法列出了方程: 101−x =2x .请用嘉嘉所列方程分析淇淇的说法是否符合题意;(2)据工作人员透露: B 品牌球比 A 品牌球至少多28个,试通过列不等式的方法说明 A 品牌球最多有几个.22.(2021·河北)某博物馆展厅的俯视示意图如图1所示,嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.(1)求嘉淇走到十字道口 A 向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.23.(2021·河北)下图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点 P )始终以 3km/min 的速度在离地面 5km 高的上空匀速向右飞行,2号试飞机(看成点 Q )一直..保持在1号机 P 的正下..方., 2号机从原点 O 处沿 45° 仰角爬升,到 4km 高的 A 处便立刻转为水平飞行,再过 1min 到达 B 处开始沿直线 BC 降落,要求 1min 后到达 C(10,3) 处.(1)求 OA 的 ℎ 关于 s 的函数解析式,并直接..写出2号机的爬升速度;(2)求 BC 的 ℎ 关于 s 的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离 PQ 不超过 3km 的时长是多少.(注:(1)及(2)中不必写 s 的取值范围)24.(2021·河北)如图, ⊙O 的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为 A n ( n 为1~12的整数),过点 A 7 作 ⊙O 的切线交 A 1A 11 延长线于点 P .(1)通过计算比较直径和劣弧 A 7A 11⌢ 长度哪个更长; (2)连接 A 7A 11 ,则 A 7A 11 和 PA 1 有什么特殊位置关系?请简要说明理由;(3)求切线长 PA 7 的值.25.(2021·河北)下图是某同学正在设计的一动画示意图, x 轴上依次有 A , O , N 三个点,且 AO =2 ,在 ON 上方有五个台阶 T 1~T 5 (各拐角均为 90° ),每个台阶的高、宽分别是1和1.5,台阶 T 1 到 x 轴距离 OK =10 .从点 A 处向右上方沿抛物线 L : y =−x 2+4x +12 发出一个带光的点 P .(1)求点 A 的横坐标,且在图中补画出 y 轴,并直接..指出点 P 会落在哪个台阶上;(2)当点 P 落到台阶上后立即弹起,又形成了另一条与 L 形状相同的抛物线 C ,且最大高度为11,求 C 的解析式,并说明其对称轴是否与台阶 T 5 有交点;(3)在 x 轴上从左到右有两点 D , E ,且 DE =1 ,从点 E 向上作 EB ⊥x 轴,且 BE =2 .在 △BDE 沿 x 轴左右平移时,必须保证(2)中沿抛物线 C 下落的点 P 能落在边 BD (包括端点)上,则点 B 横坐标的最大值比最小值大多少?(注:(2)中不必写 x 的取值范围)26.(2021·河北)在一平面内,线段 AB =20 ,线段 BC =CD =DA =10 ,将这四条线段顺次首尾相接.把 AB 固定,让 AD 绕点 A 从 AB 开始逆时针旋转角 α(α>0°) 到某一位置时, BC , CD 将会跟随出现到相应的位置.(1)论证 如图1,当 AD//BC 时,设 AB 与 CD 交于点 O ,求证: AO =10 ;(2)发现当旋转角 α=60° 时, ∠ADC 的度数可能是多少?(3)尝试 取线段 CD 的中点 M ,当点 M 与点 B 距离最大时,求点 M 到 AB 的距离;(4)拓展 ①如图2,设点 D 与 B 的距离为 d ,若 ∠BCD 的平分线所在直线交 AB 于点 P ,直接..写出 BP 的长(用含 d 的式子表示); ②当点 C 在 AB 下方,且 AD 与 CD 垂直时,直接..写出 α 的余弦值.答案解析部分一、单选题1.【答案】A【考点】直线的性质:两点确定一条直线【解析】【解答】解:设线段m与挡板的交点为A,a、b、c、d与挡板的交点分别为B,C,D,E,连结AB、AC、AD、AE,根据直线的特征经过两点有且只有一条直线,利用直尺可确定线段a与m在同一直线上,故答案为:A.【分析】将A点,与B,C,D,E点分别作直线。

相关文档
最新文档