2021年河北省中考数学真题试卷(学生版+解析版)
河北省2021年中考数学试卷含答案解析(Word版)

河北省2021年中考数学试卷含答案解析(Word版)2021年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:-(-1)=() A.±1B.-2C.-1D.1答案: D解析:利用“负负得正”的口诀,就可以解题。
知识点:有理数的运算 2.计算正确的是() A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a答案: D解析:除0以外的任何数的0次幂都等于1,故A项错误;x2+x3的结果不是指数相加,故B项错误;(ab2)3的结果是括号里的指数和外面的指数都相乘,结果是a3b6,故C项错误;2a2·a-1的结果是2不变,指数相加,正好是2a。
知识点:x0=0(x≠0);(ambn)p=ampbnp;aman=am+n3.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D答案: A解析:先根据轴对称图形,排除C、D两项,再根据中心对称,排除B项。
知识点:轴对称,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形。
第 1 页共 1 页4.下列运算结果为x-1的是()1A.1?xx2?1xx2?2x?1x?11??B. C. D.xx?1xx?1x?1x-1 x2-1 答案:B解析:挨个算就可以了,A项结果为—— , B项的结果为x-1,C项的结果为——x D项的结果为x+1。
x 知识点:(x+1)(x-1)=x2-1;(x+1)2=x2+2x+1,(x-1)2=x2-2x+1。
2021年河北省数学中考真题含答案解析

2021年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=( )A .5B .1C .﹣1D .6 2.(3分)(2015•河北)下列说法正确的是( )A .1的相反数是﹣1B .1的倒数是﹣1C .1的立方根是±1D .﹣1是无理数3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是( )A .B .C .D . 4.(3分)(2015•河北)下列运算正确的是( )A .()﹣1=﹣B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 55.(3分)(2015•河北)如图所示的三视图所对应的几何体是( )A .B .C .D .6.(3分)(2015•河北)如图,AC,BE 是⊙O 的直径,弦AD 与BE 交于点F,下列三角形中,外心不是点O 的是( ) A .△ABEB .△ACFC .△ABD D .△ADE7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在( )A .段①B .段②C .段③D .段④8.(3分)(2015•河北)如图,AB ∥EF,CD ⊥EF,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°9.(3分)(2015•河北)已知:岛P 位于岛Q 的正西方,由岛P,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )A .B .C .D . 10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y 与x 的函数图象大致是( )A .B .C .D.11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是( ) A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5) C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×212.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( ) A.a<1B.a>1C.a≤1D.a≥113.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.B.C.D.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在( ) A.1<a<2B.﹣2<a<0C.﹣3≤a≤﹣2D.﹣10<a<﹣415.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长。
2021年中考数学试题及解析:河北-解析版

2021年河北中考数学试题分析1、命题模式突破,强调实战能力今年的中考数学试卷改革力度较大,打破了多年的命题模式。
整套试卷“起点低,坡度缓,尾巴翘”。
试题覆盖面广,内容新颖,较好的落实了“狠抓基础,渗透思想,突出能力,着重创新”新课改的理念。
2、以夯实基础为出发点基本题以常规题型为主,采用了直接考查数与式的运算、有理数大小的比较、二次根式的意义、函数的图像与性质、正方体的展开与折叠、圆的有关知识,方差的特征量、统计与概率等的基本知识。
这类试题的特点,起点低,考查的知识相对单一,内容大都来源于课本,是对教材内容的深入考查,学生很容易上手并正确解答。
如1-8题、13-15题、19-21题,都能在课本上找到源头,这对中学数学教学有良好的导向作用。
3、专项试题突出能力今年试题设计精心,立意凸现了对中学数学的通性通法的重点考查。
如:第14、17题体现了转化的思想,第18题考查了特殊到一般的归纳思想,第19、22题考查了方程思想,第12、20题考查了数形结合的思想,第11、24题考查了函数思想,第25、26题用运动变化中特殊数量关系寻找的研究,这使得整套试卷突出能力立意,为初中数学教学指明了方向。
4、“多思少算”命题新倾向今年开放性、探究性试题的设置分布广泛,通过设置操作、观察、探究、应用等方面的问题,给学生提供了一定的思考研究空间。
如第17题留给学生的思考空间较大,虽然其中一个图形处于运动状态,但是通过转化,使阴影部分的周长形成规律,巧妙解题。
第25题以学生熟悉的平行线为原型,通过扇形的改变和运动,形成一个探究性题目,图形的设置减少了文字量,降低了对学生文字阅读能力的要求。
题目发掘并串联了点与直线的距离、直线与圆的位置关系、三角函数等重要内容,侧重考查了运动变化中的不变量问题、解直角三角形问题、垂径定理和圆心角问题,本题带有浓郁的探究成分,要求学生善于对新情景、新信息进行有效的加工和整合,完成本题要求学生有较好的现场学习、迁移和应用的能力,这类试题多有较好的区分度和可推广性。
河北省2021年中考数学试卷 (Word版,含答案与解析)

河北省2021年中考数学试卷一、单选题1.(2021·河北)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A. aB. bC. cD. d【答案】A【考点】直线的性质:两点确定一条直线【解析】【解答】解:设线段m与挡板的交点为A,a、b、c、d与挡板的交点分别为B,C,D,E,连结AB、AC、AD、AE,根据直线的特征经过两点有且只有一条直线,利用直尺可确定线段a与m在同一直线上,故答案为:A.【分析】将A点,与B,C,D,E点分别作直线。
线段m在其中直线就可以解题。
解题关键:理解两点确定一条直线。
2.(2021·河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A. A代表B. B代表C. C代表D. B代表【答案】A【考点】几何体的展开图【解析】【解答】解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故答案为:A.【分析】正方体的展开图共有11种,其中“一四一”型共有6种,“二三一”型共有3种,“二二二”,“三三”型各1种。
Figure 1同色的为相对两面三个正方形成一直线形成“目”字形,则两端的正方形必定为对面。
如果四正方形形成Z形,则两端的正方形必定为对面。
解题关键:如何找正方形展图中相对的两面。
3.(2021·河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()图2A. 甲、乙、丙都是B. 只有甲、乙才是C. 只有甲、丙才是D. 只有乙、丙才是【答案】A【考点】平行四边形的性质,三角形全等的判定(ASA)【解析】【解答】连接AC,BD交于点O甲方案:∵四边形ABCD是平行四边形∴AO=CO,BO=DO∵BN=NO,OM=MD∴ON=OM∴四边形ANCM为平行四边形.乙方案:∵四边形ABCD是平行四边形∴AB=CD,AB//CD,AO=CO,BO=DO∴∠ABN=∠CDM又∵AN⊥BD,CM⊥BD∴∠ANB=∠CMD∴△ABN≌△CDM(AAS)∴BN=DM∵BO=DO∴ON=OM∴四边形ANCM为平行四边形.丙方案:∵四边形ABCD是平行四边形∴AB=CD,AB//CD,AO=CO,BO=DO,∠BAD=∠BCD∴∠ABN=∠CDM又∵AN,CM分别平分∠BAD,∠BCD∴12∠BAD=12∠BCD,即∠BAN=∠DCN∴△ABN≌△CDM(ASA)∴BN=DM∵BO=DO∴ON=OM∴四边形ANCM为平行四边形.所以甲、乙、丙三种方案都可以.故答案为:A.【分析】平行四边形对边平行且相等,对角分别相等,对角形相互平分。
2021年河北省中考数学试题(Word版-含答案解析)

2021年河北省中考数学试卷(共26题,满分120分)一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d2.(3分)不一定相等的一组是()A.a+b与b+a B.3a与a+a+aC.a3与a•a•a D.3(a+b)与3a+b3.(3分)已知a>b,则一定有﹣4a□﹣4b,“□”中应填的符号是()A.>B.<C.≥D.=4.(3分)与结果相同的是()A.3﹣2+1B.3+2﹣1C.3+2+1D.3﹣2﹣15.(3分)能与﹣()相加得0的是()A.B.C.D.6.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表7.(3分)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=()A.1cm B.2cm C.3cm D.4cm9.(3分)若取1.442,计算398的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.0144210.(3分)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S的值是()正六边形ABCDEFA.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P 关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD=∠A+∠B(等量代换).下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红15.(2分)由()值的正负可以比较A与的大小,下列正确的是()A.当c=﹣2时,A B.当c=0时,AC.当c<﹣2时,A D.当c<0时,A16.(2分)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM =S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.18.(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应(填“增加”或“减少”)度.19.(4分)用绘图软件绘制双曲线m:y与动直线l:y=a,且交于一点,图1为a=8时的视窗情形.(1)当a=15时,l与m的交点坐标为;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,则整数k=.三、解答题(本大题有7个小题,共66分。
2021年河北省中考数学试卷含答案

2021年河北省中考数学试卷含答案2021年河北省中考数学试卷第一卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.以下运算结果为正数为()A.(?3)2n7.若?abc的每条边长增加各自的10%得?a'b'c',则?b'的度数与其对应角?b的度数相比()a.增加了10%b、减少10%c.增加了(1?10%)d.没有改变8.如图所示,它是由相同的小立方体木块粘合在一起的几何体,主视图为()b.?3?2c.0?(?2021)d.2?32.将0.0813写为?10(1?A?10,n是一个整数),那么A是()A.1b.?2c、 0.813d.8.139.验证:钻石的两条对角线相互垂直已知:如图,四边形abcd是菱形,对角线ac,bd交于点o.求证:ac?bd.以下是无序的证明过程:① 波呢?做m个22?2?…?2?()4.3.3?…? 3.n33.用量角器测量?mon的度数,操作正确的是()②∴ao?BD,即AC?屋宇署。
③ ∵ 四边形ABCD是菱形,④ ∵ AB?广告。
证明步骤正确的顺序是()2毫安32mb.3n2mc.3nm2d.3n5。
图1和图2中的所有小方块都是一致的。
将图1中的正方形放在图2中的某个位置① ② ③ ④, 所以它是一个中心对称的图形,由原来的七个小正方形组成。
这个职位是()a.③→②→①→④b。
③→④→①→②c。
①→②→④→③d。
①→④→③→②10.如图,码头a在码头b的正西方向,甲、乙两船分别从a、b同时出发,并以等速驶向某海域,甲的航向是北偏东35?,为避免行进中甲、乙相撞,则乙的航向不能是()答。
①b.②c。
③d.④a、北偏东55号?b.北偏西55?c、北偏东35号?d.北偏西35?11.如图所示,边长为10厘米的方形铁片在两个顶点上切割一个三角形。
在以下四种切割方法中,切割线长度(单位:cm)标记的数据不正确()6.如图为张小亮的答卷,他的得分应是()a、 100分b.80分c、 60分d.40分第1页,共1页12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()16.已知正方形mnok和正六边形ABCDEF的边长为1。
河北省中考数学试卷含答案解析(Word版)

河北省2021年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500用科学记数法表示为108.155510 ,则原数中“0”的个数为( )A .4B .6C .7D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:123-=- .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值;(2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系;(3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
2021年河北省中考数学试题(含答案解析)

2021年河北省中考数学试题(含答案解析)2021年河北省中考数学试卷(共26题,满分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图,在平面内作已知直线m的垂线,可作垂线的条数有() A.0条 B.1条 C.2条 D.无数条 2.墨迹覆盖了等式“_3_=_2(_≠0)”中的运算符号,则覆盖的是() A.+ B.﹣ C.× D.÷ 3.对于①_﹣3_y=_(1﹣3y),②(_+3)(_﹣1)=_2+2_﹣3,从左到右的变形,表述正确的是()A.都是因式分解 B.都是乘法运算 C.①是因式分解,②是乘法运算 D.①是乘法运算,②是因式分解 4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是() A.仅主视图不同 B.仅俯视图不同 C.仅左视图不同 D.主视图、左视图和俯视图都相同 5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=() A.9 B.8 C.7 D.6 6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是() A.a,b 均无限制 B.a>0,bDE的长 C.a有最小限制,b无限制 D.a≥0,bDE的长7.若a≠b,则下列分式化简正确的是() A. B. C. D. 8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是() A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 9.若8×10×12,则k=() A.12 B.10 C.8 D.6 10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是() A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且A B∥CD D.应补充:且OA=OC 11.(2分)若k为正整数,则() A.k2k B.k2k+1 C.2kk D.k2+k 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是() A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为() A.5 B.6 C.5或6 D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是() A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值 15.(2分)如图,现要在抛物线y=_(4﹣_)上找点P (a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是() A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对 16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是() A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:ab,则ab=. 18.正六边形的一个内角是正n边形一个外角的4倍,则n=. 19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y (_<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点Tm,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m 的值. 21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由. 22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△P OC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA =2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π). 23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度_(厘米)的平方成正比,当_=3时,W=3.(1)求W与_的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为_(厘米),Q=W厚﹣W薄.①求Q与_的函数关系式;②_为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写_的取值范围] 24.(10分)表格中的两组对应值满足一次函数y =k_+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'. _ ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值. 25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值. 26.(12分)如图1和图2,在△ABC中,AB=AC,BC =8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP 的长;(3)设点P移动的路程为_,当0≤_≤3及3≤_≤9时,分别求点P到直线AC的距离(用含_的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长. 2021年河北省中考数学试卷答案解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图,在平面内作已知直线m的垂线,可作垂线的条数有() A.0条 B.1条 C.2条 D.无数条【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D. 2.墨迹覆盖了等式“_3_=_2(_≠0)”中的运算符号,则覆盖的是()A.+ B.﹣ C.× D.÷ 【解答】解:∵_3_=_2(_≠0),∴覆盖的是:÷.故选:D. 3.对于①_﹣3_y=_(1﹣3y),②(_+3)(_﹣1)=_2+2_﹣3,从左到右的变形,表述正确的是()A.都是因式分解 B.都是乘法运算 C.①是因式分解,②是乘法运算 D.①是乘法运算,②是因式分解【解答】解:①_﹣3_y=_(1﹣3y),从左到右的变形是因式分解;②(_+3)(_﹣1)=_2+2_﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C. 4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是() A.仅主视图不同B.仅俯视图不同 C.仅左视图不同 D.主视图、左视图和俯视图都相同【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D. 5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9 B.8 C.7 D.6 【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B. 6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是() A.a,b 均无限制 B.a>0,bDE的长 C.a有最小限制,b无限制 D.a≥0,bDE的长【解答】解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b 为半径画弧时,b必须大于DE,否则没有交点,故选:B. 7.若a≠b,则下列分式化简正确的是() A. B. C. D.【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D. 8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是() A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 【解答】解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC,OM2,OD,OB,OA,OR,OQ=2,OP2,OH3,ON2,∵2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A. 9.若8×10×12,则k=()A.12 B.10 C.8 D.6 【解答】解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B. 10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是() A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC 【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B. 11.(2分)若k为正整数,则() A.k2k B.k2k+1 C.2kk D.k2+k 【解答】解:((k•k)k=(k2)k=k2k,故选:A. 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是() A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 【解答】解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A. 13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为() A.5 B.6 C.5或6 D.5或6或7 【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n =6.因为1≤t≤10,所以n可能为5或6,故选:C. 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是() A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A. 15.(2分)如图,现要在抛物线y=_(4﹣_)上找点P(a,b),针对b的不同取值,所找点P 的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是() A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对【解答】解:y=_(4﹣_)=﹣_2+4_=﹣(_﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C. 16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是() A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分) 17.已知:ab,则ab= 6 .【解答】解:原式=3ab,故a=3,b=2,则ab=6.故答案为:6. 18.正六边形的一个内角是正n边形一个外角的4倍,则n=12 .【解答】解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12. 19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y(_<0)的图象为曲线L.(1)若L过点T1,则k=﹣16 ;(2)若L过点T4,则它必定还过另一点Tm,则m= 5 ;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7 个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y,当_=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L 过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m 的值.【解答】解:(1)2;(2)根据题意得, m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1. 21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数. 22.(9分)如图,点O为AB 中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC 为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA =2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).【解答】解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴. 23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度_(厘米)的平方成正比,当_=3时,W=3.(1)求W 与_的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为_(厘米),Q=W厚﹣W薄.①求Q与_的函数关系式;②_为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写_的取值范围] 【解答】解:(1)设W=k_2(k≠0).∵当_=3时,W=3,∴3=9k,解得k,∴W与_的函数关系式为W_2;(2)①设薄板的厚度为_厘米,则厚板的厚度为(6﹣_)厘米,∴Q=W厚﹣W薄(6﹣_)2_2=﹣4_+12,即Q与_的函数关系式为Q=﹣4_+12;②∵Q是W薄的3倍,∴﹣4_+12=3_2,整理得,_2+4_﹣12=0,解得,_1=2,_2=﹣6(不合题意舍去),故_为2时,Q是W薄的3倍. 24.(10分)表格中的两组对应值满足一次函数y=k_+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'. _ ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l:y=k_+b中,当_=﹣1时,y=﹣2;当_=0时,y=1,∴,解得,∴直线l的解析式为y=3_+1;∴直线l′的解析式为y=_+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线l′:y=_+3与y 轴的交点为(0,3),∴直线l'被直线l和y轴所截线段的长为:;(3)把y=a代入y=3_+1得,a=3_+1,解得_;把y=a代入y=_+3得,a=_+3,解得_=a﹣3;当a﹣30时,a,当(a﹣3+0)时,a=7,当(0)=a﹣3时,a,∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为或7或. 25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n. n =4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5. 26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M 出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP 的长;(3)设点P移动的路程为_,当0≤_≤3及3≤_≤9时,分别求点P到直线AC的距离(用含_的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.【解答】解:(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C,∴AH=3,AB=AC5.∴当点P在BC上时,点P到A的最短距离为3.(2)如图1中,∵∠APQ =∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴()2,∴,∴AP,∴PM=AP=AM2.(3)当0≤_≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴,∠AQP=∠C,∴,∴PQ (_+2),∵sin∠AQP=sin∠C,∴PJ=PQ•sin∠AQP(_+2).当3≤_≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC•sin∠C(11﹣_).(4)由题意点P的运动速度单位长度/秒.当3<_≤9时,设CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴,∴,∴y(_﹣7)2,∵0,∴_=7时,y有最大值,最大值,∵AK,∴CK=5 当y时,(_﹣7)2,解得_=7±,∴点K被扫描到的总时长=(6﹣3)23秒.方法二:①点P在AB上的时候,有11/4个单位长度都能扫描到点K;②在BN阶段,当_在3~5.5(即7﹣1.5)的过程,是能扫到K点的,在5.5~8.5(即7+1.5)的过程是扫不到点K的,但在8.5~9(即点M到N全部的路程)能扫到点K.所以扫到的时间是[(9﹣8.5)+(5.5﹣3)]23(秒).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年河北省中考数学试卷一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( )A .aB .bC .cD .d2.(3分)不一定相等的一组是( )A .a +b 与b +aB .3a 与a +a +aC .a 3与a •a •aD .3(a +b )与3a +b3.(3分)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A .>B .<C .≥D .=4.(3分)与√32−22−12结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣15.(3分)能与﹣(34−65)相加得0的是( )A .−34−65B .65+34C .−65+34D .−34+656.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A .A 代B .B 代C .C 代D .B 代7.(3分)如图1,▱ABCD 中,AD >AB ,∠ABC 为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =( )A .1cmB .2cmC .3cmD .4cm 9.(3分)若√33取1.442,计算√33−3√33−98√33的结果是( )A .﹣100B .﹣144.2C .144.2D .﹣0.0144210.(3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,S △AFO =8,S △CDO =2,则S 正六边边ABCDEF 的值是( )A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A .蓝B .粉C .黄D .红 15.(2分)由(1+c 2+c −12)值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( ) A .当c =﹣2时,A =12B .当c =0时,A ≠12C .当c <﹣2时,A >12D .当c <0时,A <12 16.(2分)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作:①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.18.(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E 保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应(填“增加”或“减少”)度.19.(4分)用绘图软件绘制双曲线m:y=60x与动直线l:y=a,且交于一点,图1为a=8时的视窗情形.(1)当a=15时,l与m的交点坐标为;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x ≤15及﹣10≤y ≤10变成了﹣30≤x ≤30及﹣20≤y ≤20(如图2).当a =﹣1.2和a =﹣1.5时,l 与m 的交点分别是点A 和B ,为能看到m 在A 和B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k ,则整数k = .三、解答题(本大题有7个小题,共66分。
解答应写出文字说明、证明过程或演算步骤)20.(8分)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q 的值.21.(9分)已知训练场球筐中有A 、B 两种品牌的乒乓球共101个,设A 品牌乒乓球有x个.(1)淇淇说:“筐里B 品牌球是A 品牌球的两倍.”嘉嘉根据她的说法列出了方程:101﹣x =2x .请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B 品牌球比A 品牌球至少多28个,试通过列不等式的方法说明A 品牌球最多有几个.22.(9分)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.(1)求嘉淇走到十字道口A 向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.23.(9分)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]24.(9分)如图,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n 为1~12的整数),过点A7作⊙O的切线交A1A11延长线于点P.̂长度哪个更长;(1)通过计算比较直径和劣弧A7A11(2)连接A7A11,则A7A11和P A1有什么特殊位置关系?请简要说明理由;(3)求切线长P A7的值.25.(10分)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=﹣x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]26.(12分)在一平面内,线段AB=20,线段BC=CD=DA=10,将这四条线段顺次首尾相接.把AB固定,让AD绕点A从AB开始逆时针旋转角α(α>0°)到某一位置时,BC,CD将会跟随出现到相应的位置.论证:如图1,当AD∥BC时,设AB与CD交于点O,求证:AO=10;发现:当旋转角α=60°时,∠ADC的度数可能是多少?尝试:取线段CD的中点M,当点M与点B距离最大时,求点M到AB的距离;拓展:①如图2,设点D与B的距离为d,若∠BCD的平分线所在直线交AB于点P,直接写出BP的长(用含d的式子表示);②当点C在AB下方,且AD与CD垂直时,直接写出a的余弦值.2021年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d【解答】解:利用直尺画出图形如下:可以看出线段a与m在一条直线上.故答案为:a.故选:A.2.(3分)不一定相等的一组是()A.a+b与b+a B.3a与a+a+aC.a3与a•a•a D.3(a+b)与3a+b【解答】解:A:因为a+b=b+a,所以A选项一定相等;B:因为a+a+a=3a,所以B选项一定相等;C:因为a•a•a=a3,所以C选项一定相等;D:因为3(a+b)=3a+3b,所以3(a+b)与3a+b不一定相等.故选:D.3.(3分)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( ) A .>B .<C .≥D .=【解答】解:根据不等式的性质,不等式两边同时乘以负数,不等号的方向改变. ∵a >b , ∴﹣4a <﹣4b . 故选:B .4.(3分)与√32−22−12结果相同的是( ) A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣1【解答】解:√32−22−12=√9−4−1=√4=2, ∵3﹣2+1=2,故A 符合题意; ∵3+2﹣1=4,故B 不符合题意; ∵3+2+1=6,故C 不符合题意; ∵3﹣2﹣1=0,故D 不符合题意. 故选:A .5.(3分)能与﹣(34−65)相加得0的是( )A .−34−65B .65+34C .−65+34D .−34+65【解答】解:﹣(34−65)=−34+65,与其相加得0的是−34+65的相反数. −34+65的相反数为+34−65, 故选:C .6.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是( )A.A代B.B代C.C代D.B代【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是4.故选:A.7.(3分)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是【解答】解:方案甲中,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴OB=OD,OA=OC,∵BN=NO,OM=MD,∴NO=OM,∴四边形ANCM为平行四边形,方案甲正确;方案乙中:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABN =∠CDM , ∵AN ⊥B ,CM ⊥BD ,∴AN ∥CM ,∠ANB =∠CMD , 在△ABN 和△CDM 中, {∠ABN =∠CDM∠ANB =CMD AB =CD,∴△ABN ≌△CDM (AAS ), ∴AN =CM , 又∵AN ∥CM ,∴四边形ANCM 为平行四边形,方案乙正确; 方案丙中:∵四边形ABCD 是平行四边形, ∴∠BAD =∠BCD ,AB =CD ,AB ∥CD , ∴∠ABN =∠CDM ,∵AN 平分∠BAD ,CM 平分∠BCD , ∴∠BAN =∠DCM , 在△ABN 和△CDM 中, {∠ABN =∠CDMAB =CD ∠BAN =∠DCM, ∴△ABN ≌△CDM (ASA ), ∴AN =CM ,∠ANB =∠CMD , ∴∠ANM =∠CMN , ∴AN ∥CM ,∴四边形ANCM 为平行四边形,方案丙正确; 故选:A .8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =( )A .1cmB .2cmC .3cmD .4cm【解答】解:如图:过O 作OM ⊥CD ,垂足为M ,过O 作ON ⊥AB ,垂足为N ,∵CD ∥AB ,∴△CDO ∽ABO ,即相似比为CD AB,∴CD AB=OM ON,∵OM =15﹣7=8,ON =11﹣7=4, ∴CD AB=OM ON,6AB =84,∴AB =3, 故选:C .9.(3分)若√33取1.442,计算√33−3√33−98√33的结果是( ) A .﹣100B .﹣144.2C .144.2D .﹣0.01442【解答】解:∵√33取1.442, ∴原式=√33×(1﹣3﹣98) =1.442×(﹣100)=﹣144.2.故选:B.10.(3分)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边边ABCDEF的值是()A.20B.30C.40D.随点O位置而变化【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=12(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠F AC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=12FO×AF,S△CDO=12OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=12FO×AF+12OD×CD=12(FO+OD)×AF =12FD×AF=10,∴FD×AF=20,DM=cos30°DE=√32x,DF=2DM=√3x,EM=sin30°DE=x 2,∴S正六边形ABCDEF=S矩形AFDC+S△EFD+S△ABC =AF×FD+2S△EFD=x•√3x+2×12√3x•12x=√3x2+√32x2=20+10=30,故选:B.11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<0【解答】解:﹣6与6两点间的线段的长度=6﹣(﹣6)=12,六等分后每个等分的线段的长度=12÷6=2,∴a1,a2,a3,a4,a5表示的数为:﹣4,﹣2,0,2,4,A选项,a3=﹣6+2×3=0,故该选项错误;B选项,|﹣4|≠2,故该选项错误;C选项,﹣4+(﹣2)+0+2+4=0,故该选项正确;D选项,﹣2+4=2>0,故该选项错误;故选:C.12.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.7【解答】解:连接OP1,OP2,P1P2,∵点P关于直线l,m的对称点分别是点P1,P2,∴OP1=OP=2.8,OP=OP2=2.8,OP1+OP2>P1P2,P1P2<5.6,故选:B.13.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD=∠A+∠B(等量代换).下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【解答】解:∵证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,具有一般性,无需再证明其他形状的三角形,∴A的说法不正确,不符合题意;∵证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,∴B的说法正确,符合题意;∵定理的证明必须经过严谨的推理论证,不能用特殊情形来说明,∴C的说法不正确,不符合题意;∵定理的证明必须经过严谨的推理论证,与测量次解答数的多少无关,∴D的说法不正确,不符合题意;综上,B的说法正确.故选:B.14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红【解答】解:根据题意得: 5÷10%=50(人), 16÷50%=32%,则喜欢红色的人数是:50×28%=14(人), 50﹣16﹣5﹣14=15(人), ∵柱的高度从高到低排列,∴图2中“( )”应填的颜色是红色. 故选:D . 15.(2分)由(1+c 2+c−12)值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( ) A .当c =﹣2时,A =12 B .当c =0时,A ≠12C .当c <﹣2时,A >12D .当c <0时,A <12【解答】解:A 选项,当c =﹣2时,A =1−22+2=−14,故该选项不符合题意; B 选项,当c =0时,A =12,故该选项不符合题意; C 选项,1+c 2+c−12=2+2c 2(2+c)−2+c2(2+c)=c2(2+c), ∵c <﹣2, ∴2+c <0,c <0, ∴2(2+c )<0, ∴c 2(2+c)>0,∴A >12,故该选项符合题意;D 选项,当c <0时,∵2(2+c )的正负无法确定, ∴A 与12的大小就无法确定,故该选项不符合题意;故选:C .16.(2分)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作: ①以O 为圆心,OA 为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【解答】解:如图,连接EM,EN,MF.NF.∵OM=ON,OE=OF,∴四边形MENF是平行四边形,∵EF=MN,∴四边形MENF是矩形,故(Ⅰ)正确,观察图象可知当∠MOF=∠AOB,∴S扇形FOM=S扇形AOB,观察图象可知,这样的点P不唯一,故(Ⅱ)错误,故选:D.二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为a2+b2;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片4块.【解答】解:(1)由图可知:一块甲种纸片面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,∴取甲、乙纸片各1块,其面积和为a2+b2,故答案为:a2+b2;(2)设取丙种纸片x块才能用它们拼成一个新的正方形,∴a2+4b2+xab是一个完全平方式,∴x为4,故答案为:4.18.(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E 保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应减小(填“增加”或“减少”)10度.【解答】解:延长EF,交CD于点G,如图:∵∠ACB=180°﹣50°﹣60°=70°,∴∠ECD =∠ACB =70°. ∵∠DGF =∠DCE +∠E , ∴∠DGF =70°+30°=100°.∵∠EFD =110°,∠EFD =∠DGF +∠D , ∴∠D =10°. 而图中∠D =20°, ∴∠D 应减小10°. 故答案为:减小,10.19.(4分)用绘图软件绘制双曲线m :y =60x 与动直线l :y =a ,且交于一点,图1为a =8时的视窗情形.(1)当a =15时,l 与m 的交点坐标为 (4,15) ;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心. 例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x ≤15及﹣10≤y ≤10变成了﹣30≤x ≤30及﹣20≤y ≤20(如图2).当a =﹣1.2和a =﹣1.5时,l 与m 的交点分别是点A 和B ,为能看到m 在A 和B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k ,则整数k = 4 .【解答】解:(1)a =15时,y =15, 由{y =60x y =15得:{x =4y =15,故答案为:(4,15);(2)由{y =60xy =−1.2得{x =−50y =−1.2,∴A (﹣50,﹣1.2),由{y =60xy =−1.5得{x =−40y =−1.5,∴B (﹣40,﹣1.5),为能看到m 在A (﹣50,﹣1.2)和B (﹣40,﹣1.5)之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的14,∴整数k =4. 故答案为:4.三、解答题(本大题有7个小题,共66分。