ic的峰值电流
IGBT术语与符号说明

IGBT术语与符号说明Cies-输入电容Coes-输出电容Cres-反向传输电容di/dt-通态电流临界上升率dv/dt-断态电压临界上升率Eoff-关断能量损耗Eon-开通能量损耗IC-集电极直流(连续)电流ICES-集电极-发射极截止电流ICM-集电极峰值电流IDRM-断态重复峰值电流IF(A V)-正向平均电流IF(RMS)-正向方均根电流IFM-二极管正向峰值电流IFSM-正向浪涌电流IGES-栅极-发射极漏电流IGT-门极触发电流IH-维持电流IL-擎住电流IRRM-反向重复峰值电流Irr-二极管反向恢复峰值电流IT(A V)-通态平均电流ITM-通态峰值电流ITSM-通态浪涌电流M-紧固力矩PD-最大损耗功率PGA V-门极平均功率Qg-栅极总电荷Qge-栅极-发射极电荷Qgc-栅极-集电极电荷Qrr-二极管反向恢复电荷Rthcs-壳(铜底板)散热器热阻(接触热阻)Rthjc-结壳(铜底板)热阻RTO-通态斜率电阻TC-壳温(模块为铜底板温度)tdoff-关断贮存时间tdon-开通延迟时间tf-下降时间Tj-工作结温trr-二极管反向恢复时间TSTG-贮存温度VCE(on)-集电极-发射极通态电压VCES-集电极-发射极电压VDRM-断态重复峰值电压VFM-正向峰值电压VGE-栅极-发射极电压VGE(th)-栅极阈值电压VGT-门极触发电压VISO-模块任一接线端子对铜底板的绝缘耐压VRRM-反向重复峰值电压VTM-通态峰值电压VTO-门槛电压。
短路电流计算的基本概念三相短路冲击电流有效值峰值

短路电流计算的一些基本概念发送到手机 | 收藏全屏阅读模式字体:小 | 大1.主要参数S d:三相短路容量 (MVA)简称短路容量校核开关分断容量。
I d:三相短路电流周期分量有效值(kA)简称短路电流校核开关分断电流和热稳定。
I c:三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定。
i c:三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x:电抗(Ω)其中系统短路容量S d和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(S jz)和基准电压(U jz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值。
(1)基准基准容量S jz =100 MVA基准电压 U jz规定为8级:230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 kV有了以上两项,各级电压的基准电流即可计算出。
例: U jz=37、10.5、6.3、0.4(KV)因为S=1.73*U*I所以 I jz=1.56、5.5、9.16、144(KA)(2)标么值计算容量标么值S* =S/S jz.例如:当10kV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.电压标么值U*= U/U jz; 电流标么值I* =I/I jz3.无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: I d= I jz I*d=I jz/ x*(KA)冲击电流有效值: I c = I *d√〔1+2 (K c-1)2〕(KA)其中K c冲击系数,取1.8所以 I c =1.52I d冲击电流峰值: i c=1.414×I*d K c=2.55 I d (KA)当1000kVA及以下变压器二次侧短路时,冲击系数K c ,取1.3这时:冲击电流有效值I c =1.09*I d(KA)冲击电流峰值: i c =1.84 I d(KA)1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多.具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗.2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流.基准容量100MVA。
常见的MOSFET驱动方式驱动电路的参数计算

常见的MOSFET驱动方式,驱动电路的参数计算在简单的了解MOS管的基本原理以及相关参数后,如何在实际的电路中运用是我们努力的方向。
比如在实际的MOS驱动电路设计中,如何去根据需求搭建电路,计算参数,根据特性完善电路,根据实际需求留余量等等,在这些约束条件下搭建一个相对完善的电路。
参考了一些资料后,就我目前的需求和自身的理解力分享相关的一些笔记和理解。
1.常见的MOSFET驱动方式直接驱动:最简单的驱动方式,比如用单片机输出PWM信号来驱动较小的MOS。
使用这种驱动方式,应注意几点;一是实际PWM和MOS的走线距离必定导致寄生电感引起震荡噪声,二是芯片的驱动峰值电流,因为不同芯片对外驱动能力不一样。
三是MOS的寄生电容Cgs、Cgd如果比较大,导通就需要大的能量,没有足够的峰值电流,导通的速度就会比较慢。
图腾柱/推拉式驱动电路由两个三极管构成,上管是NPN型,下管是PNP型三极管,两对管共射联接处为输出端,结构类似于乙类推挽功率放大器。
利用这种拓扑放大驱动信号,增强电流能力。
(驱动IC内部也是集成了类似的结构)隔离式驱动电路为了满足安全隔离也会用变压器驱动。
如图其中R1抑制振荡,C1隔直流通交流同时防止磁芯饱和。
隔离式的驱动电路不太常见,就不做过多的了解。
小结:当然除以上驱动电路之外,还有很多其它形式的驱动电路。
对于各种各样的驱动电路并没有一种是最好的,只能结合具体应用,选择最合适的拓扑。
2.驱动电路的参数计算我的实际工作中碰到最多的驱动电路是以下这种能够控制开关速度的驱动电路,我就以它举例做进一步的分析。
如图,在驱动电阻Rg2上并联一个二极管。
其中D1常用快恢复二极管,使关断时间减小同时减小关断损耗,Rg1可以限制关断电流,R1为mos管栅源极的下拉电阻,给mos管栅极积累的电荷提供泄放回路。
(根据MOSFET栅极高输入阻抗的特性,一点点静电或者干扰都可能导致MOS管误导通,所以R1也起降低输入阻抗作用,一般取值在10k~几十k)Lp为驱动走线的杂散寄生电感,包括驱动IC引脚、MOS引脚、PCB走线的感抗,精确的数值很难确定,通常取几十nH。
TB6600FG__步进电机驱动IC(中文)

6-1. 电流波形与混合衰减模式的设置
PWM 运行的周期等于五个 OSCM 周期。 快速衰减模式的比值 40%始终固定不变。
译文
TB6600FG
本资料是为了参考的目的由原始文档翻译而来。 使用本资料时,请务必确认原始文档关联的最新 信息,并遵守其相关指示。
原本:”TB6600FG” 2014-03-03 翻译日:2014-04-10
译文
TOSHIBA BiCD 单晶硅集成电路
TB6600FG
PWM 斩波型双极 步进电机驱动 IC
10,11 OUT2A
13,14 NFA
预 -驱动
H-桥 驱动器 B
OUT1B 6,7
1,64 OUT2B
NFB 3,4
47
45
20
8
TQ
SGND
PGNDA PGNDB
Vref 的设置
输入 TQ L H
电压比
30% 100%
4
2014-03-03
译文
TB6600FG
功能描述 1. 励磁设置
利用 M1,M2 与 M3 输入,可以下八种模式中选择励磁模式。在马达运行期间,在 M1, M2, 或 M3 输入改变时, 新励磁模式可从初始模式启动。在这种情况下,输出电流波形不能再继续。
衰减模式的效应?增大电流正弦波?减小电流假若因电流衰减速度较快电流在短时间内即被减小至预定值?减小电流假若因电流衰减速度缓慢需花费较长时间才能降低电流在混合衰减与快速衰减模式期间如果预定电流电平小于rnf电流监控点时的输出电流则充电模式在下一个斩波循环中将消失虽然在实际操作中电流控制模式被暂时切换到充电模式已进行电流传感且电流被控制在慢速与快速衰减模式在mdt点将模式从慢速衰减模式切换到快速衰减模式
线路电抗的计算

短路电流速算供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件.二.计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多.具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗.2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流.三.简化计算法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.在介绍简化计算法之前必须先了解一些基本概念.1.、主要参数Sd三相短路容量(MVA)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(Ω)其中系统短路容量Sd和计算点电抗x 是关键.2、.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量Sjz =100 MVA基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144(2)标么值计算容量标么值S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.电压标么值U*= U/UJZ ; 电流标么值I* =I/IJZ3、无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1+2 (KC-1)2 (KA)其中KC冲击系数,取1.8所以IC =1.52Id冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取1.3这时:冲击电流有效值IC =1.09*Id(KA)冲击电流峰值: ic =1.84 Id(KA)掌握了以上知识,就能进行短路电流计算了.公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等.一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求得总电抗后,再用以上公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流.下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 4.简化算法【1】系统电抗的计算系统电抗,百兆为一。
常用芯片参数

MAX3081 参数符号MIN TYPE MAX单位 Input High Voltage VIH1 DE, DI, RE, H/ F, TXP, RXP2.0 V Input Low Voltage VIL1 DE, DI, RE, H/ F, TXP, RXP 0.8 V SRL Input CurrentIin1 DE, DI, RE±2uAIin2H/F, TXP, RXP, internal pulldown 10 40Driver Input Voltage (DI).............................-0.3V to (VCC + 0.3V)Driver Output V oltage (A, B, Y , Z)........................................±13V Receiver Input V oltage (A, B) ..............................................±13V Receiver Output V oltage (RO)....................-0.3V to (VCC + 0.3V) Continuous Power Dissipation:8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW 8-Pin SO (derate 5.88mW/°C above +70°C)................471mW参数 符号 MIN MAX TYPE 单位 工作温度 TA -40 85 °C 输入正向电流 IF 20 mA 输入反向电压 VR 5 V 输入电流, 低电平 I fl0 250 uA 输入电流, 高电平 I fh7.5 15 mA 低电平选通电压 Vel0 0.8 V 高电平选通电压 V EH2.0 VCC V 高电平输出延迟时间 T plh 100 50 ns 低电平输出延迟时间 T phl 100 60 ns 输入门槛电流 5 3 mA 高电平选通电流 -1.6 -0.7 mA 低电平选通电流-1.6-0.9mA符号参数范围单位Vcc Supply voltage ±16 or 32 VVi Input V oltage -0.3 to +32 V Ptot Power Dissipation N SuffixD Suffix 500400mWVid Differential Input V oltage +32 V Iin Input current 50 mA Toper Operating Free-air Temperature Range 0 to +70 ℃Tstg Storage Temperature Range -65 to +150 ℃LM358参数符号数值单位输入电压Vin -0.3—32 V功耗Pd 570 mWMOC3023参数符号数值(max)type 单位反向电压Vr 3 V 正向电流If 60 mA热损耗(室温25℃)Pd 1001.33 mW mW / ℃关断状态终端电压Vdrw 400 V 重复冲击电流峰值Itsm 1 A 通态输出峰值电压Vtm 3 1.8 V 通态输出峰值电流Itm 100 mA LED触发电流Ift 5mAP521—1 P521-2 P521-4参数数值电流传输比50%min输入正向电流70 mA(I F) 50 mA(LED)反向电压5V集电极电流50 mA ( Ic )集电极热损耗150mw 100mwrecommend type max 单位电源电压 5 24 V正向电流16 25 mA集电极电流 1 10 mAPC817参数符号数值单位正向电流If 50 mA峰值正向电流Ifm 1 A集电极电流Ic 50 mAUce饱和电压Uce响应时间tr 4-18 us高隔离电压:5000V有效值电磁阀利用Vce-Ic 与If的关系控制三极管的饱和开通或直接控制固态继电器的开关脉冲宽度<=100ms,占空比:0.001Z0409参数符号数值单位峰值门限电流Igm 1.2 A温升Rth 15 ℃/W型号最大电流最大反向电压最大浪涌电压最大反向电流DB102S 1.0 A 20 40 0.55 1DB103S 1.0 A 30 40 0.55 1DB104S 1.0 A 40 40 0.55 1DB105S 1.0 A 50 40 0.7 1 1DB106S 1.0 A 60 40 0.7 1 178M15参数符号数值type max输出电压Vo 15V 15.75V 静态电流Iq 5.2mA 8mA 输出电压温漂 1 Mv/℃输入输出电压差 2 V短路电流Isc 250mA峰值电流Ipk 2.2A7805参数符号数值type max输出电压Vo 5V 5.25V 静态电流Iq 5.0mA 8mA 输出电压温漂0.8 Mv/℃输入输出电压差 2 V短路电流Isc 230mA峰值电流Ipk 2.2AHCPL0601参数符号数值(max)min 热损耗P1 45mw每个通道输出电流Io 50mA每个通道输出电压Vo 7V输入低电平Vel 0.8V 0输入高电平Veh Vcc 2.0V 输入电流If 50mA高电平输出延迟时间Telh 20ns低电平输出延迟时间Tehl 20ns输出电压端上拉电阻Rl 4K 330 低电平输入电流Ifl 0—250uA高电平输入电流Ifh 6.3—15mACBS2—10(LV 25—P)参数符号数值(max)min 总精度Ipn ±12V—15V 0.9%估算阻值±12V ±10mA 30Ω190Ω±12 ±14 30Ω100Ω±15 ±10 100Ω350Ω±15 ±14 100Ω190Ω补偿电流Ip 0.15mA电流大小0—14mA原边电流Ip 10mA副边电流Isn 25mAη 2.5电流转换比例电源电压U0 ±12—15V电压传感器的量程:0—±0.2V、0—±2V、0—±20VTLC5615引脚I/O口描述DIN 1 数据输入SCLK 1 时钟输入CS 1 芯片选择,低电平有效DOUT O 链接传出数据AGND 模拟接地REFIN 1 基准输入OUT O 交直流模拟电压输出Vdd 电源电压参数符号数值(max)min 提供电源电压Vdd 5V输入高电平Vih 2.4V输入低电平Vil 0.8V推荐输出负载Rl Rl 2KRl=10K,输出电压Uout Vcc—0.4 0短路电流Iosc 20mA输出低电平Vol 0.25V输出高电平Voh 4.75VTLP250 maxLED 正向电流 If 20mA LED 短路尖峰电流 Ifpt 1A LED 反向电压 Vr 5V 输入门线电流max If 5mA 输入电流 Icc 11mA输出电流 Io ±2.0AHCNR200电流转换比 K321pd pd IIHCNR200:±15% HCNR201:±5% 平均输入电流 If 25mA 尖峰输入电流 If ’40mAK3 Type 都为1 0.85—1.15 0.93—1.07min type max K1 HCNR200 0.25 0.5 0.75 K1 HCNR201 0.36 0.48 0.72 LED 正向电压1.31.61.85THB7128 参数 符号 数值 type 低导通电阻 Ron 0.53Ω 最高耐压 40V DC 峰值电流 3.3A管脚说明VREF 电流设定端 OSC1 斩波频率设定电容连接端M1、M2、M3 细分设置端CW/CCW 正/反转信号输入端 低电平正转 高电平反转 ENBLE 脱机信号控制端 低电平,强制关断,高阻状态 高电平,恢复输出 VM电源VM 连接端 最大工作电压 Vm max 36V 最大输出电流 Io max 3.3A 最大逻辑输入电压6V逻辑输入电压2—6V 5V 数字信号电源 3.3—6V 5V VCC 电源连接端输入低电平时解除待机状态逻辑输入低电平0.8V逻辑输入高电平2V。
短路阻抗

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。
二.计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。
具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗。
2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。
3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。
三.简化计算法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.在介绍简化计算法之前必须先了解一些基本概念.1.主要参数Sd三相短路容量(MVA)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(Ω)其中系统短路容量Sd和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量Sjz =100 MVA基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144(2)标么值计算容量标么值S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.电压标么值U*= U/UJZ ; 电流标么值I* =I/IJZ3无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1+2 (KC-1)2 (KA)其中KC冲击系数,取1.8所以IC =1.52Id冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取1.3这时:冲击电流有效值IC =1.09*Id(KA)冲击电流峰值: ic =1.84 Id(KA)掌握了以上知识,就能进行短路电流计算了.公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等. 一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求得总电抗后,再用以上公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流. 下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.4.简化算法【1】系统电抗的计算系统电抗,百兆为一.容量增减,电抗反比.100除系统容量例:基准容量100MVA.当系统容量为100MVA时,系统的电抗为XS*=100/100=1当系统容量为200MVA时,系统的电抗为XS*=100/200=0.5当系统容量为无穷大时,系统的电抗为XS*=100/∞=0系统容量单位:MVA系统容量应由当地供电部门提供.当不能得到时,可将供电电源出线开关的开断容量作为系统容量.如已知供电部门出线开关为W-VAC 12KV 2000A 额定分断电流为40KA.则可认为系统容量S=1.73*40*10000V=692MVA, 系统的电抗为XS*=100/692=0.144.【2】变压器电抗的计算110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量.例:一台35KV 3200KVA变压器的电抗X*=7/3.2=2.1875一台10KV 1600KVA变压器的电抗X*=4.5/1.6=2.813变压器容量单位:MVA这里的系数10.5,7,4.5 实际上就是变压器短路电抗的%数.不同电压等级有不同的值.【3】电抗器电抗的计算电抗器的额定电抗除额定容量再打九折.例:有一电抗器U=6KV I=0.3KA 额定电抗X=4% .额定容量S=1.73*6*0.3=3.12 MVA. 电抗器电抗X*={4/3.12}*0.9=1.15电抗器容量单位:MVA【4】架空线路及电缆电抗的计算架空线:6KV,等于公里数;10KV,取1/3;35KV,取3%0电缆:按架空线再乘0.2.例:10KV 6KM架空线.架空线路电抗X*=6/3=210KV 0.2KM电缆.电缆电抗X*={0.2/3}*0.2=0.013.这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小.【5】短路容量的计算电抗加定,去除100.例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量Sd=100/2=50 MVA.短路容量单位:MVA【6】短路电流的计算6KV,9.2除电抗;10KV,5.5除电抗; 35KV,1.6除电抗; 110KV,0.5除电抗.0.4KV,150除电抗例:已知一短路点前各元件电抗标么值之和为X*∑=2, 短路点电压等级为6KV,则短路点的短路电流Id=9.2/2=4.6KA.短路电流单位:KA【7】短路冲击电流的计算1000KVA及以下变压器二次侧短路时:冲击电流有效值Ic=Id, 冲击电流峰值ic=1.8Id 1000KVA以上变压器二次侧短路时:冲击电流有效值Ic=1.5Id, 冲击电流峰值ic=2.5Id 例:已知短路点{1600KVA变压器二次侧}的短路电流Id=4.6KA,则该点冲击电流有效值Ic=1.5Id,= 1.5*4.6=7.36KA,冲击电流峰值ic=2.5Id=2.5*406=11.5KA.可见短路电流计算的关键是算出短路点前的总电抗{标么值}.但一定要包括系统电抗。
IGBT模块驱动技术及应用

二、IGBT驱动与保护
驱动线
IGBT驱动线在设计过程中,尽量设计短,并双绞。
二、IGBT驱动与保护
结温
高结温将有助于减少在高杂散电感条件下的震荡
二、IGBT驱动与保护
二、IGBT驱动与保护
Vce尖峰
Vce尖峰电压由IGBT关断过程中杂散电感及二极管反向恢复产生。
L=85nH
L=185nH
衡IGBT的通态损耗和开关损耗。
一、IGBT基本原理
(2)非穿通(NPT)型IGBT
与PT型IGBT不同,NPT型IGBT以掺杂的N-
栅极
发射极
基区为衬底,P掺杂发射区设计的很薄,没有
PT型IGBT的N型缓冲区,这样在阻断状态,电
场只在N型衬底内存在。因为电场不再“穿
通”N型衬底,因此被称为“非穿通”型IGBT。
针对感性负载,为了防止过压,IGBT需要
并联一个续流二极管给电流提供续流回路。RC
N+
P
IGBT并不是简单的在外部并联一个半导体二极
管,而是在半导体内部实现了一个二极管,主
N-基区
(衬底)
要用于谐振电路、硬开关电路中。
N场终止层
P
N
集电极
P
一、IGBT基本原理
英飞凌IGBT
二、IGBT驱动与保护
IGBT模块驱动技术及应用
一、IGBT基本原理
目
录
二、IGBT驱动与保护
三、双脉冲测试
四、安全工作区
一、IGBT基本原理
1. IGBT基本介绍
IGBT(InsulatedGateBipolarTransistor)绝缘栅双极型晶体管
IGBT之父:Jayant Baliga(贾杨.巴利加)教授(20世纪80年代发明)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ic的峰值电流
IC的峰值电流
IC(Integrated Circuit,集成电路)是指将大量的电子元件,如晶体管、电容器和电阻器等,集成在一块小型的半导体材料上的电子元件。
IC广泛应用于各个领域,如计算机、通信、消费电子等,而IC的峰值电流是IC设计和应用中一个重要的参数。
峰值电流是指IC在正常工作时,电流波形中的最大值。
在IC的设计和应用过程中,峰值电流的考虑是非常重要的。
首先,正常工作时的峰值电流决定了IC的功耗。
功耗是IC设计中需要考虑的一个重要指标,因为功耗的增加会导致IC发热,进而影响IC的可靠性和寿命。
因此,在IC设计中需要合理控制峰值电流,以降低功耗,提高IC的性能。
峰值电流还与IC的供电电压有很大的关系。
一般来说,IC的峰值电流会随着供电电压的增加而增加,这是因为供电电压的增加会导致IC内部晶体管的开启电压降低,从而增加电流的流动。
然而,当峰值电流过大时,可能会导致IC内部的电压降低,从而影响IC的正常工作。
因此,在IC设计和应用中,需要合理选择供电电压,以保证IC的稳定工作。
峰值电流还与IC的工作频率有关。
一般来说,IC的工作频率越高,峰值电流也会越大。
这是因为高频率的工作会导致电流的快速变化,
从而增加峰值电流。
然而,当峰值电流过大时,可能会引起电磁干扰和电压波动等问题,影响IC的性能。
因此,在高频率应用中,需要合理控制峰值电流,以保证IC的稳定工作。
IC的峰值电流还与工作环境温度有关。
一般来说,温度升高会导致电子元件的导电能力减弱,从而导致峰值电流减小。
因此,在高温环境下,IC的峰值电流可能会比低温环境下小。
然而,当温度过高时,可能会导致IC内部的电子元件损坏,从而影响IC的正常工作。
因此,在IC设计和应用中,需要合理控制峰值电流,以适应不同的工作环境。
IC的峰值电流是IC设计和应用中一个重要的参数。
合理控制峰值电流可以降低功耗,提高IC的性能;合理选择供电电压可以保证IC的稳定工作;合理控制工作频率可以避免电磁干扰和电压波动;合理考虑工作环境温度可以提高IC的可靠性。
因此,对于IC的设计和应用来说,合理控制峰值电流是非常重要的。
通过科学的设计和合理的应用,可以充分发挥IC的性能,满足不同领域的需求。