函数、导数“任意、存在”型问题归纳

合集下载

高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)

高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)

函数与导数14 导数及其应用 恒成立及存在性问题一、具体目标: 1.导数在研究函数中的应用:①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次)。

②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). 2.生活中的优化问题:会利用导数解决某些实际问题。

考点透析:1.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象相结合;2.单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;3.适度关注生活中的优化问题. 3.备考重点:(1) 熟练掌握导数公式及导数的四则运算法则是基础;(2) 熟练掌握利用导数研究函数的单调性、极值(最值)的基本方法,灵活运用数形结合思想、分类讨论思想、函数方程思想等,分析问题解决问题. 二、知识概述: 一)函数的单调性:1.设函数y =f (x )在某个区间内可导,如果0)(>'x f ,则函数y =f (x )为增函数;如果f ' (x )<0,则函数y =f (x )为减函数;如果恒有f ' ( x )=0,则y =f (x )为常函数.2.应当理解函数的单调性与可导性并无本质的联系,甚至具有单调性的函数并不一定连续.我们只是利用可导来研究单调性,这样就将研究的范围局限于可导函数.3.f (x )在区间I 上可导,那么0)(>'x f 是f (x )为增函数的充分条件,例如f (x )=x 3是定义于R 的增函数, 但 f '(0)=0,这说明f '(x )>0非必要条件.)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定.4. 讨论可导函数的单调性的步骤: (1)确定)(x f 的定义域;【考点讲解】(2)求)(x f ',令0)(='x f ,解方程求分界点; (3)用分界点将定义域分成若干个开区间;(4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性.5.我们也可利用导数来证明一些不等式.如f (x )、g (x )均在[a 、b ]上连续,(a ,b )上可导,那么令h (x )=f (x )-g (x ),则h (x )也在[a ,b ]上连续,且在(a ,b )上可导,若对任何x ∈(a ,b )有h '(x )>0且 h (a )≥0,则当x ∈(a ,b )时 h (x )>h (a )=0,从而f (x )>g (x )对所有x ∈(a ,b )成立. 二)函数的极、最值: 1.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x )的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上必有最大值与最小值.(2)若函数f(x)在[a ,b ]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b ]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.三)高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究相关结论:结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>; 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>; 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>; 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;结论5:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空.1. 【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥【真题分析】在R 上恒成立,则a 的取值范围为( ) A .[]0,1B .[]0,2C .[]0,eD .[]1,e【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【答案】C2.【优选题】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【解析】本题考点是函数的单调性、存在性问题的综合应用.令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()21'=+xg x ex ,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12⎡⎫∈⎪⎢⎣⎭a e . 【答案】D3.【2019年高考北京】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞. 【答案】(]1,0--∞4.【优选题】已知函数f (x )=mx 2-x +ln x ,若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.【解析】f ′(x )=2mx -1+1x =2mx 2-x +1x ,即2mx 2-x +1<0在(0,+∞)上有解.当m ≤0时,显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故只需Δ>0,即1-8m >0,解得m <18.故实数m 的取值范围为⎝⎛⎭⎫-∞,18. 【答案】⎝⎛⎭⎫-∞,18 5.【优选题】若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 【解析】 由题意可知'21()2f x ax x=+,又因为存在垂直于y 轴的切线, 所以231120(0)(,0)2ax a x a x x+=⇒=->⇒∈-∞. 【答案 】 (,0)-∞ 6.【2018年江苏卷】若函数()()R a ax x x f ∈+-=1223在()∞+,0内有且只有一个零点,则()x f 在[]11,-上的最大值与最小值的和为________.【解析】本题考点是函数的零点、函数的单调性与最值的综合应用. 由题意可求得原函数的导函数为()0262=-='ax x x f 解得3,0ax x ==,因为函数在()∞+,0上有且只有一个零点,且有()10=f ,所以有03,03=⎪⎭⎫⎝⎛>a f a,因此有3,0133223==+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a a a a ,函数()x f 在[]01,-上单调递增,在[]10,上单调递减,所以有()()10max ==f x f ,()()41min -=-=f x f ,()()3min max -=+x f x f .【答案】–37.【2018年理新课标I 卷】已知函数()x x x f 2sin sin 2+=,则()x f 的最小值是_____________.【解析】本题考点是函数的单调性、最值与三角函数的综合应用. 由题意可()()⎪⎭⎫ ⎝⎛-+=-+=+='21cos 1cos 42cos 2cos 42cos 2cos 22x x x x x x x f ,所以当21cos <x 时函数单调减,当21cos >x 时函数单调增,从而得到函数的减区间为 ()Z k k k ∈⎥⎦⎤⎢⎣⎡--32,352ππππ,函数的增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-32,32ππππ,所以当()Z k k x ∈-=,32ππ时,函数()x f 取得最小值,此时232sin ,23sin -=-=x x ,所以()23323232min-=-⎪⎪⎭⎫ ⎝⎛-=x f ,故答案是233-. 【答案】233-8.【优选题】已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12x x 、都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是 . 【解析】由题意可知()'2af x x x=+≥(x >0)恒成立,∴22a x x ≥-恒成立, 令()()22211g x x x x =-=--+则()max x g a ≥,∵()22g x x x =-为开口方向向下,对称轴为x =1的抛物线,∴当x =1时,()22g x x x =-取得最大值()11=g ,∴1≥a 即a 的取值范围是[1,+∞).【答案】[)1,+∞9. 【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l ]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-. (ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.10.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x ≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==. 故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„. 由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此()0g t g =>…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a „. 综上所述,所求a的取值范围是0,4⎛ ⎝⎦. 【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.1.设函数a ax x x x f -+--=53)(23,若存在唯一的正整数0x ,使得0)(0<x f ,则a 的取值范围是( )A .)31,0( B .]45,31( C .]23,31( D .]23,45(【解析】当32a =时,3237()322f x x x x =--+,()()20,30f f <<,不符合题意,故排除C ,D.当54a =时,32515()344f x x x x =--+,()()()()10,20,30,40f f f f ><=>,故54a =符合题意.【答案】B2.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e -B .33[,)24e - C .33[,)24e D .3[,1)2e【解析】 ()0(21)xf x e x ax a <⇔-<-,记()(21)xg x e x =-,则题意说明存在唯一的整数0x ,使()g x 的图象在直线y ax a =-下方,【模拟考场】'()(21)x g x e x =+,当12x <-时,'()0g x <,当12x >-时,'()0g x >,因此当12x =-时,()g x 取得极小值也是最小值21()22g e --=-,又(0)1g =-,(1)0g e =>,直线y ax a =-过点(1,0)且斜率为a ,故1(0)1(1)3a g g e a a-->=-⎧⎨-=-≥--⎩,解得312a e≤<. 【答案】D3.若函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围( ) A.()1,3- B.()3,1- C.()3,+∞ D.(),1-∞- 【解析】考查函数()2ln xg x a x x a m =+--,则问题转化为曲线()y g x =与直线2y =有两个公共点,则()()ln 2ln 1ln 2x x g x a a x a a a x '=+-=-+,则()00g '=, 当01a <<时,ln 0a <,当0x <时,10x a ->,()1ln 0x a a -<,20x <,则()1ln 20x a a x -+<, 当0x >,10x a -<,()1ln 0x a a ->,20x >,则()1ln 20x a a x -+>,此时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,同理,当1a >时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,因此函数()2ln xg x a x x a m =+--在0x =处取得极小值,亦即最小值,即()()min 01g x g m ==-,)由于函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点, 结合图象知12m -<,解得13m -<<,故选A. 【答案】A 4. (1)求函数()f x 的单调区间;(2)若当[]1,2x ∈-时()f x m <恒成立,求m 的取值范围 【解析】试题分析:(1)由原函数求出导数,通过导数的正负求出相应的单调区间(2)将不等式恒成立问题转化为求函数的最值问题,本题中需求函数()f x 的最大值,可通过导数求解.试题解析:(1)由()'2320fx x x =--> 得1x >或()1,+∞(2上递减,在区间[]1,2上递增,又,所以在区间[]1, 2-上max 7f =要使()f x m <恒成立,只需7m >即可.【答案】(1,()1,+∞ 2)7m >5.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x =或2a x =.当)x ∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 6.已知函数()ln 2a xf x x x =++. (1)求函数()f x 的单调区间;(2)设函数()()ln 1g x x x f x =+-,若1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x af x x x x +-'=-+=,令()0f x '=,则2220x x a +-=,480a ∆=+>时,即12a >-,方程两根为11x ==--2x =-122x x +=-,122x x a =-,①当12a ≤-时,0∆≤,()0f x '≥恒成立,()f x 的增区间为()0,+∞;②当102a -<≤时,1220x x a =-≥,10x <,20x ≤,()0,x ∈+∞时,()0f x '≥,()f x 的增区间为()0,+∞;③当0a >时,10x <,20x >,当()20,x x ∈时,()0f x '<,()f x 单调递减,当()2+x x ∈∞,时,()0f x '>,单调递增;综上,当0a ≤时,()f x 的增区间为()0,+∞; 当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞.(2)1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,即ln ln 102a x x x x x ---+>,∴22ln ln 2x a x x x x x <--+,令()221ln ln 22x h x x x x x x x ⎛⎫=--+> ⎪⎝⎭,()2ln ln 11h x x x x x x '=+---+,()()21ln h x x x '=-,当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当()1+x ∈∞,时,()0h x '>,()h x 单调递减; ∴()()min 112h x h ==,∴12a <,则实数a 的取值范围时12⎛⎫-∞ ⎪⎝⎭,.【答案】(1)当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞;(2)12⎛⎫-∞ ⎪⎝⎭,.7.已知函数f (xln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【解析】(Ⅰ)函数f (x)的导函数1()f x x '=-,由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+==≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n --≤)n k -<0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =设()h x =22ln )1)((12x ag x x x a x h '=-+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 8.【优选题】已知函数21()(2)2ln 2f x x a x a x =-++(0)a >. (1)若曲线()y f x =在点(1,(1))f 处的切线为2y x b =+,求2a b +的值; (2)讨论函数()f x 的单调性;(3)设函数()(2)g x a x =-+,若至少存在一个0[,4]x e ∈,使得00()()f x g x >成立,求实数a 的取值范围.【解析】本题是函数的综合问题.(1)()f x 的定义域为(0,)+∞,2()(2)'=-++a f x x a x, ∴1(1)(2)22f a b =-+=+,(1)1(2)22'=-++=f a a , 解得132,2a b ==-,∴210a b +=-.(2)2(2)2(2)()()-++--'==x a x a x x a f x x x,当2a =时,()0(0,)'≥⇒∈+∞f x x ,∴()f x 的单调增区间为(0,)+∞.当02a <<时,由'()0(0,)(2,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,)a ,(2,)+∞由'()0(,2)f x x a <⇒∈,∴()f x 的单调减区间为(,2)a .当2a >时,由'()0(0,2)(,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,2),(,)a +∞由'()0(2,)f x x a <⇒∈,∴()f x 的单调减区间为(2,)a .综上所述:当2a =时,'()0(0,)f x x ≥⇒∈+∞,∴()f x 的单调增区间为(0,)+∞,当02a <<时,∴()f x 的单调增区间为(0,)a ,(2,)+∞,()f x 的单调减区间为(,2)a 当2a >时,∴()f x 的单调增区间为(0,2),(,)a +∞,()f x 的单调减区间为(2,)a .(3)若至少存在一个0[,4]x e ∈,使得00()()f x g x >,∴212ln 02x a x +>, 当[,4]x e ∈时,ln 1x >,∴2122ln xa x>-有解,令212()ln x h x x=-,∴min 2()a h x >.2'22111ln (ln )22()0(ln )(ln )x x x x x x h x x x -⋅-=-=-<, ∴()h x 在[,4]e 上单调递减,min 4()(4)ln 2h x h == ∴42ln 2a >得,2ln 2a >. 9.【2018山东模拟】设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)当时,1=m 曲线))(,在点(11)(f x f y =处的切线斜率.(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f > 恒成立,求m 的取值范围.【解析 】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力. (1)当1)1(,2)(,31)(1'2/23=+=+==f x x x f x x x f m 故时, 所以曲线))(,在点(11)(f x f y =处的切线斜率为1.(2) 12)(22'-++-=m x x x f ,令0)('=x f ,得到m x m x +=-=1,1因为m m m ->+>11,0所以当x 变化时,)(),('x f x f 的变化情况如下表:x )1,(m --∞m -1)1,1(m m +-m +1),1(+∞+m)('x f+0 - 0 +)(x f极小值极大值)(x f 在)1,(m --∞和),1(+∞+m 内减函数,在)1,1(m m +-内增函数。

导数常见题型归纳

导数常见题型归纳

导数常见题型归纳1.高考命题回顾例1.(2013全国1)已知函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()yg x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

分析:⑴2d c b 4,a ==== ⑵由⑴知()24x f 2++=x x ,()()12+=x ex g x设()()()()24122---+=-=x x x ke x f x kg x F x,则()()()122-+='xke x x F 由已知()100≥⇒≥k F ,令()k x x x F ln ,20-==⇒='①若21e k <≤则021≤<-x ,从而当()1,2x x -∈时,()0<'x F ,()x F 递减()+∞∈,1x x 时,()>'x F 0,()x F 递增。

()()()02x 111≥+-=≥x x x F F故当2-≥x 时()0≥x F 即()()x kg x f ≤恒成立。

②若2e k = 则()()()02222>-+='-ee x e x F x 。

()2->x 。

所以()x F 在()+∞-,2上单调递增,而()02=-F .所以-2x ≥时,()0≥x F 恒成立。

③若2e k >,则()()02222222<--=+-=---e k e ke F ,从而()0≥x F 不可能恒成立即()()x kg x f ≤不恒成立。

综上所述。

k 的取值范围[]2,1e例2.(2013全国2)已知函数)ln()(m x e x f x+-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >. 分析:(Ⅰ)1m =。

(完整版)函数导数任意存在”-型问题归纳总结,推荐文档

(完整版)函数导数任意存在”-型问题归纳总结,推荐文档

战略思想三: x R ,都有" f (x1) f (x) f (x2 )" f (x1), f (x2 ) 分别是 f (x) 的最小值和最大值, | x1 x2 | min 是同时出现最大值和最小值的最短区间.
y x1
x2 x
例 3.
已知函数
f
(x) 2sin( x 2
) ,若对 5
" f ( x1 x2 ) f (x1) f (x2 ) "恒成立的函数的个数是( )
2
2
A.0 B.1 C.2 D.3
解:本题实质就是考察函数的凸凹性,即满足条件" f ( x1 x2 ) f (x1) f (x2 ) "的函数,应是凸函
2
2
数的性质,画草图即知 y log2 2x 符合题意;
即 f (x) 在[1,1]上为增函数.
∵ f (1) 1,∴ x [1,1] ,恒有 f (x) 1; ∴要使 f (x) t2 2at 1 对所有 x [1,1] , a [1,1] 恒成立,
即要 t2 2at 1 1恒成立,故 t2 2at 0 恒成立,
令 g(a) 2at t2 ,只须 g(1) 0 且 g(1) 0 ,
x R ,都有"
f
(x1)
f (x)
f
(x2 )" 成立,则
| x1 x2 | 的最小值为____.
解 ∵对任意 x∈R,不等式 f (x1) f (x) f (x2 ) 恒成立,
∴ f (x1), f (x2 ) 分别是 f (x) 的最小值和最大值.
对于函数 y sin x ,取得最大值和最小值的两点之间最小距离是 π,即半个周期.
解得 t 2 或 t 0 或 t 2 .

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。

函数、导数任意、存在型问题归纳

函数、导数任意、存在型问题归纳

函数导数随意性和存在性问题研究导学语函数导数问题是高考试题中占比重最大的题型,先期所学利用导数解决函数图像切线、函数单一性、函数极值最值等问题的方法,仅可称之为解决这种问题的“战术”,若要更有效地完全解决此类问题还必须研究“战略”,因为此类问题是函数导数联合全称命题和特称命题形成的综合性题目. 常用战略思想以下:题型分类分析一.单一函数单一“随意”型战略思想一:“x A ,a ( ) f ( x) 恒建立” 等价于“当x A 时,a ( ) f (x)max”;f(x)上限“x A,a ( ) f (x) 恒建立”等价于“当x A时,a ( ) f (x)min”. f(x)下限a例 1 :已知二次函数 f (x) ax2 x ,若x [0,1] 时,恒有 | f (x) | 1,务实数a的取值范围.解:| f ( x) | 1 ,∴ 1 ax2 x 1;即 1 x ax2 1 x ;当 x 0 时,不等式明显建立,∴a∈ R.当 0 x 1 时,由 1 x ax2 1 x 得: 1 1 a 1 1 ,x2 x x2 x而 1 10 ,∴a 0. 又∵(1 12,∴a 2, 2 a 0,(x2 x ) min x2 x) max 综上得 a 的范围是a [ 2,0] .二.单一函数单一“存在”型战略思想二:“x A ,使得a ( ) f ( x) 建立” 等价于“当x A 时,a ( ) f ( x)min”;“x A,使得a ( ) f ( x) 建立”等价于“当x A 时,a ( ) f ( x) max”. f ( x)上限a f ( x)下限例 2.已知函数 f ( x) a ln x x2(a R ),若存在x[1,e] ,使得 f ( x) (a 2) x 建立,务实数 a 的取值范围 .分析: f (x) (a 2) x a( x ln x) x 2 2x .∵ x [1,e] ,∴ln x 1 x 且等号不可以同时取,所以ln x x ,即 x ln x 0 ,因此 a x2 2xx [1,e],x ln x ,令 g( x) x 2 2x x [1, e] ,又 g ( x) ( x 1)( x 2 2 ln x) ,x ln x ( x ln x) 2当 x [1, e] 时, x 1 0,ln x 1 , x 2 2 ln x 0 ,进而 g (x) 0 (仅当x=1时取等号),所以 g (x) 在 [1, e] 上为增函数,故 g(x) 的最小值为g(1) 1,所以a的取值范围是 [ 1, ) .三.单一函数双“随意”型战略思想三:x R ,都有 " f ( x 1 ) f (x) f ( x 2 )"f ( x 1 ), f (x 2 ) 分别是yx 2x 1xf ( x) 的最小值和最大值, | x 1 x 2 | min 是同时出现最大值和最小值的最短区间.例 3. 已知函数的最小值为 ____.f (x) 2sin(x ),若对x R ,都有 " f (x 1 )f ( x) f (x 2 )" 建立,则 | x 1 x 2 |25解 ∵对随意 x ∈ R ,不等式 f (x 1)f (x) f (x 2 ) 恒建立,∴ f ( x 1 ), f (x 2 ) 分别是 f ( x) 的最小值和最大值 .关于函数 y sin x ,获得最大值和最小值的两点之间最小距离是π,即半个周期 . 又函数 f (x)x ) 的周期为 4,∴ | x 1 x 2 | 的最小值为 2. 2sin(25yf (x 2)战略思想四:x 1, x 2 A, " f (x 1x2)f ( x 1)f ( x 2)" 建立22f (x) 在 A 上是上凸函数 f ' ' (x) 0例 4. 在 y2x, y log 2 2x, y x 2 , y cos x 这四个函数中,当 " f (x 1 x2)f ( x 1 )f ( x 2 )" 恒建立的函数的个数是 ()22A.0B.1C.2D.3解:本题实质就是观察函数的凸凹性 ,即知足条件 " f (x 1 x2)2数的性质,画草图即知 ylog 2 2x 切合题意;f (x 1)O x 1 x 2 x0 x 1 x 2 1 时,使f ( x 1 )f ( x2) " 的函数,应是凸函2战略思想五:x 1, x 2A, "f ( x 1 ) f ( x 2 )f ( x) 在 A 上是增函数x 1 x 20" 建立例 5 已知函数 f (x) 定义域为 [ 1,1], f (1) 1 ,若 m, n [ 1,1], m n 0 时,都有" f (m)f ( n) 0" ,若 f ( x) t 2 2at 1 对全部 x [ 1,1], a [1,1] 恒建立,务实数 t 取值范围 .m n解:任取 1 x 1 x 2 1,则 f (x 1)f (x 2 ) f ( x 1 )f ( x 2 )(x 1x 2 ) ,x 1 x 2由已知f (x 1)f (x 2 ) 0 ,又 x 1 x 2 0 ,∴ f ( x 1 ) f ( x 2 ) 0 ,x 1x 2即 f ( x) 在 [ 1,1]上为增函数 .∵ f (1) 1,∴ x [ 1,1],恒有 f (x) 1;∴要使 f ( x) t 2 2at 1 对全部 x[ 1,1], a [ 1,1]恒建立,即要 t 2 2at 1 1恒建立,故 t 2 2at 0 恒建立,令 g (a) 2at t 2 ,只须 g( 1) 0 且 g (1) 0 ,解得 t2 或 t 0 或 t 2 .战略思想六:x 1, x 2 A, | f (x 1) f (x 2 ) | t ( t 为常数)建立 t= f (x) max f ( x) min例 6. 已知函数 f (x)x 4 2x 3 ,则对随意 t 1, t 2[ 1 , 2] ( t 1 t 2 )都有 | f (t 1) f (t 2 ) |恒2建立,当且仅当 t 1 =____ , t 2 =____ 时取等号 .解:因为 | f ( x 1 ) f ( x 2 ) | |[ f ( x)] max [ f ( x)] min | 恒建立,由 f ( x)x 4 2 x 3 , x [1,2] ,2易求得 [ f (x)]maxf ( 3) 27 , [ f ( x)] minf ( 1)5 ,2 16216∴ | f ( x 1 ) f ( x 2 ) | 2 .战略思想七:x 1 , x 2 A, | f (x 1 ) f (x 2 ) | t | x 1 x 2 ||f ( x 1) f ( x 2 )| t| f ' (x) | t(t 0)x 1 x 2例 7. 已知函数 yf (x) 知足: (1) 定义域为 [1,1];(2) 方程 f (x) 0 起码有两个实根和 ;11(3) 过 f ( x) 图像上随意两点的直线的斜率绝对值不大于1.(1) 证明 : | f (0) | 1 ; (2) 证明:对随意 x 1 , x 2 [ 1,1],都有 | f (x 1)f ( x 2 ) | 1 .证明 (1)略;(2) 由条件 (2)知 f ( 1) f (1) 0 ,不如设 1 x 1 x 2 1,由 (3)知 | f ( x 1 ) f ( x 2 ) | | x 1 x 2 | x 2 x 1 ,又∵ | f (x 1)f (x 2 ) | | f ( x 1 ) | | f ( x 2 ) | | f ( x 1 ) f ( 1) | | f ( x 2 ) f (1) |x 1 1 1 x 22 (x 2 x 1 ) 2 | f ( x 1 ) f ( x 2 ) | ;∴ | f ( x 1 ) f (x 2 ) | 1例 8. 已知函数 f (x)x 3 ax b ,关于 x 1, x 2(0,3)( x 1x 2 ) 时总有 | f (x 1) f (x 2 ) | | x 1 x 2 |成3立,务实数 a 的范围 .解 由f (x)x 3 ax b ,得 f ' ( x) 3x 2 a ,当 x(0,3) 时, a f ' (x) 1 a ,∵ | f ( x 1 ) f ( x 2 ) | | x 1 x 2 |,3∴ | f (x 1)f (x 2 ) | 1,∴a 11 a 0x 1 x 21 a 1评注 由导数的几何意义知道,函数y f (x) 图像上随意两点 P(x 1, y 1 ), Q( x 2 , y 2 ) 连线的斜率ky 2y 1(x 1 x 2 ) 的取值范围,就是曲线上任一点切线的斜率 (假如有的话 )的范围,利用这个结论,可x 2 x 1以解决形如 | f (x 1)f ( x 2 ) | m | x 1 x 2 | |或 | f ( x 1 ) f ( x 2 ) | m | x 1 x 2 | (m >0) 型的不等式恒建立问题 .四.双函数“随意” +“存在”型:战略思想八:x 1 A, x 2 B ,使得 f ( x 1 ) g( x 2 ) 建立 f ( x)min g(x)min ;x 1 A, x 2 B ,使得 f (x 1 ) g ( x 2 ) 建立f ( x) maxg(x)max .例 9. 已知函数 f (x)2x25ln x , g( x)x 2 mx 4 ,若存在 x 1 (0,1) ,对随意 x 2 [1,2] ,x总有 f ( x 1 ) g( x 2 ) 建立,务实数 m 的取值范围 .分析:题意等价于 f (x) 在 (0,1) 上的最大值大于或等于 g ( x) 在 [1,2] 上的最大值 .f ( x)2x 25x 2'( x)1 或 x2 ,x 2,由 f 0 得, x2当 x(0, 1) 时, f ( x)0 ,当 x ( 1,1) 时 f ( x)0 ,22所以在( 0,1)上,f ( x) maxf ( 1)3 5ln 2 .2又 g(x) 在 [1,2] 上的最大值为 max{ g(1),g(2)} ,所以有f ( 1 ) g(1) 3 5ln 2 5 m m 8 5ln 221m8 5ln 2 ,f ( 1) g(2)3 5ln 28 2mm (115ln 2)22所以实数 m 的取值范围是 m8 5ln 2 .g(x)上限战略思想九: “x 1 A , x 2 B ,使得 f ( x 1 ) g( x 2 ) 建立”“ f (x) 的值域包括于. g( x) 的值域” .f (x)上限f (x)下限g(x)下限例 10. 设函数 f (x)1 x 3 1 x2 5 x 4 .3 33( 1)求 f ( x) 的单一区间.( 2 ) 设 a ≥ 1 , 函 数 g( x) x 3 3a 2 x 2a . 若 对 于任 意 x 1 [0,1] , 总 存 在 x 0 [0,1] , 使 得f ( x 1 ) g( x 0 ) 建立,求 a 的取值范围.分析:( 1) f ' (x)x 22 x 5 ,令 f ' ( x) ≥ 0 ,即 x 2 2 x 5≤ 0 ,解得:5 ≤ x ≤ 1 ,3 3 3 33∴ f ( x) 的单增区间为 [5,1] ;单一减区间为 ( ,5] 和 [1, ) .3 3( 2)由( 1)可知当 x [0,1] 时, f ( x) 单一递加, ∴ 当 x [0,1] 时, f ( x) [ f (0), f (1)] ,即 f ( x)[ 4, 3] ;又 g ' ( x) 3x 2 3a 2 ,且 a ≥ 1, ∴当 x [0,1] 时, g ' ( x) ≤ 0 , g( x) 单一递减,∴当 x [0,1] 时, g ( x) [ g (1),g (0)] ,即 g( x) [ 3a 2 2a 1, 2a] ,又关于随意 x 1[0,1] ,总存在 x 0 [0,1] ,使得 f ( x 1 ) g( x 0 ) 建立[ 4, 3] [ 3a 2 2a 1,2a] ,3a 22a 1≤43即2a,解得: 1≤ a≤23≤例 11. 已知函数 f ( x) ln x ax1 a1(a R) ;x1 (1) 当 a时,议论 f ( x) 的单一性;2)设 g (x)x 22bx 4 ,当 a 1时,若对 x 1 (0, 2) , x 2 [1,2] ,使 f ( x 1 ) g( x 2 ) ,务实数 4b 的取值范围;解:( 1)(解答过程略去,只给出结论)当 a ≤0 时,函数 f(x) 在( 0,1)上单一递减,在( 1,+∞)上单一递加;当 a= 1时,函数 f(x) 在( 0,+∞)上单一递减;2当 0<a< 1时,函数 f (x) 在( 0,1)上单一递减,在 2( 2)函数的定义域为( 0, +∞),1 1 (1,1) 上单一递加,在 (1, ) 上单一递减;aaf ( x ) = 1 - a+a 1 =- ax 2 x 1 a, a= 1时,由 f ( x )=0 可得 x 1=1,x 2 =3.x x 2 x 2 4因为 a= 1 ∈( 0, 1),x 2=3( 0,2),联合( 1)可知42函数 f(x) 在( 0,1)上单一递减,在( 1,2)上单一递加,所以 f(x) 在( 0,2)上的最小值为f(1)= -1.2因为“对x 1∈( 0,2), x 2∈ [1,2], 使 f(x 1) ≥g(x 2)”等价于“ g(x) 在 [1,2] 上的最小值不大于f(x) 在( 0,2)上的最小值 f(1)= - 1”. (※)2又 g(x)=(x - b)2+4 - b 2, x ∈[1,2], 所以 ①当 b<1 时,因为 [g(x)] min =g(1)=5 - 2b>0,此时与(※)矛盾;② 当 b ∈ [1,2] 时 , 因为 [g(x)] min =4- b 2≥ 0,相同与(※)矛盾;③ 当 b ∈( 2, +∞)时,因为 [g(x)] min =g(2)=8 - 4b.解不等式 8- 4b ≤- 1 ,可得 b ≥17.28综上, b 的取值范围是 [17,+∞ ).8五.双函数“随意” +“随意”型战略思想十:x 1 A, x 2 B ,使得 f ( x 1 ) g( x 2 ) 建立f (x)ming (x)max例12. 已 知 函 数 f ( x) 1 x 33x 1 , x 2 [ 2,2] ,都有 f (x 1)g (x 2 ) ,求x23x4, g (x)9x c, 若 对 任 意32c 的范围 .解: 因为对随意的 x 1 , x 2[ 2, 2] ,都有 f ( x 1 )g( x 2 ) 建立,∴ [ f ( x)] max [ g( x)]min ,∵ f ' (x) x 2 2 x 3 ,令 f ' ( x) 0 得 x 3, x1x > 3 或 x <-1; f ' ( x)0 得 1 x3 ;∴ f ( x) 在 [ 2, 1] 为增函数,在 [ 1,2] 为减函数 .∵ f ( 1)3, f (2)6 ,∴ [ f ( x)] max 3,.∴ 318 c ,∴ c24 .2例 13. 已知两个函数 f ( x) 8x 216xk, g( x)2x 3 5x 24x, x [ 3,3], k R ;(1) 若对 x [ 3,3] ,都有 f (x) g ( x) 建立,务实数 k 的取值范围;(2) 若 x[ 3,3] ,使得 f ( x)g (x) 建立,务实数 k 的取值范围;(3)若对 x 1 , x 2 [ 3,3] ,都有 f (x 1)g (x 2 ) 建立,务实数 k 的取值范围;解:( 1)设 h(x)g( x) f ( x) 2x 3 3x 2 12x k ,( 1)中的问题可转变为:x [ 3,3] 时, h( x) 0 恒建立,即 [ h( x)] min 0 .h ' ( x) 6x 2 6x 12 6( x 2)( x 1) ;当 x 变化时, h(x), h' (x) 的变化状况列表以下:x -3 (-3,-1) -1 (-1,2) 2 (2,3) 3h (x) + 0 -0 +h(x) k-45 增函数极大值减函数极小值增函数k-9因为 h( 1) k 7, h(2) k 20 ,所以,由上表可知 [ h( x)] min k 45 ,故k-45 ≥0,得 k≥45,即 k∈[45,+ ∞ ).小结:①关于闭区间I,不等式f(x)<k 对 x∈I 时恒建立[f(x)] max<k, x ∈I; 不等式 f(x)>k 对 x∈ I 时恒建立[f(x)] min>k, x ∈I.②本题常有的错误会法:由[f(x)] max≤ [g(x)] min解出 k 的取值范围 .这种解法的错误在于条件“[f(x)] max ≤ [g(x)] min”不过原题的充分不用要条件,不是充要条件,即不等价.(2)依据题意可知,( 2)中的问题等价于 h(x)= g(x) - f(x) ≥ 0 在 x∈ [-3,3] 时有解 ,故[h(x)] max≥ 0.由( 1)可知 [h(x)] max= k+7 ,所以 k+7 ≥ 0,即 k∈ [7,+∞ ).(3)依据题意可知,( 3)中的问题等价于[f(x)] max≤ [g(x)] min, x∈ [-3,3].由二次函数的图像和性质可得 , x∈ [-3,3] 时 , [f(x)] max=120 - k. y模仿( 1),利用导数的方法可求得x∈ [-3,3] 时 , [g(x)] min=- 21.g(x) 由 120- k≥- 21 得 k≥ 141,即 k∈[141,+ ∞ ). f(x) 说明:这里的 x1,x2是两个互不影响的独立变量 . O a xb x图1 从上边三个问题的解答过程能够看出,关于一个不等式必定要yg(x)f( x)O a x bx图2看清是对“x”恒建立,仍是“x”使之建立,同时还要看清不等式两边是同一个变量,仍是两个独立的变量 ,而后再依据不一样的状况采纳不一样的等价条件,千万不要莫名其妙的去猜 ..六.双函数“存在”+“存在”型战略思想十一:x1 A, x2 B ,使得 f ( x1 ) g (x2 ) 建立 f (x)min g ( x) max;x1 A, x2 B ,使得 f ( x1 ) g( x2 ) 建立 f ( x)max g (x)min.例 14 .已知函数 f ( x ) l nx x 3 ,1 g( x) x2 2bx 4 . 若存在4 4 xx1 ( 0 , 2,) x2 1,2 ,使 f ( x1) g(x2 ) ,务实数 b 取值范围.分析: f ( x) 1 1 3 (x 1)(x 3) ,x 4 4x2 4x2f (x) 在 (0,1) (1,2) f ( x)min f (1) 1上单一递加,在上单一递减,.2依题意有 f ( x) min g( x)max,所以g( x)max 1 . 又g ( x) (x b)2 b2 4 ,2g(1) 117 .2, 解得 b进而g(2)1 82战略思想十二: “ x 1 A, x 2B ,使得 f (x 1) g( x 2 ) 建立”等价于“ f (x) 的值域与 g(x) 的值域订交非空” .例 15. 已知函数 f ( x)x 3(1 a) x 2 a(a2) x(a R) , g ( x) 19x 1. 能否存在实数 a ,存6 3 在x 11,1 , x 20,2 ,使得 f '( x 1 ) 2ax 1 g( x 2 ) 建立?若存在,求出 a 的取值范围;若不存在,说明原因 .分析:在0,2 上 g x19 x 1 是增函数,故关于 x0,2 , g x1,6 .6 33设h xf x2ax 3x 2 2x a a2 ,当 x1,1 时, h( x) [ - a22a1, - a 2 2a5 ].3要存在 x 1 [ 1,1] , x 2 [ 0,2] 使得 h x 1 g x 2 建立,只需 [21212a 3 , - a2a5 ] [ 3 ,6]- a考虑反面, [ - a 2 2a 1 , - a 22a 5 ] [ 1 ,6]3312 2157 57则5 a2a 或 6< - a2a 3 ,解得 a1 3 或 a13 ,3进而所求为1 57a 1 573.3。

函数导数任意存在”-型问题归纳总结

函数导数任意存在”-型问题归纳总结

令 g(x)x 2 2x x ln xx [1,e] , 又 g (x)(x 1)(x 2 2ln x)(x ln x)2函数导数任意性和存在性问题探究导学语函数导数问题是高考试题中占比重最大的题型,前期所学利用导数解决函数图像切线、函数单调性、 函数极值最值等问题的方法, 仅可称之为解决这类问题的“战术” ,若要更有效地彻底解决此类问题还必须研究“战略,”因为此类问题是函数导数结合全称命题和特称命题形成的综合性题目 .常用战略思想如下:题型分类解析一.单一函数单一“任意”型f(x)上限战略思想一: “ x A , a ( )f ( x)恒成立”等价于“当x A 时, a ( ) f (x)max ;”f(x)下限“ x A , a ( ) f (x) 恒成立”等价于“当x A 时, a ( )f ( x) min ”.例 1 :已知二次函数 f (x) ax 2 x ,若 x [0,1] 时,恒有 | f (x)| 1,求实数 a 的取值范围 解: | f (x)| 1 ,∴ 1 ax 2 x 1;即 1 x ax 2 1 x ; 当 x 0 时,不等式显然成立,∴ a ∈R.21 1 1 1 当 0 x 1 时,由 1 x ax 21 x 得:2 a 2 , x x x x11 又∵(2 )max2 ,∴a 2, 2 a 0 ,xx综上得 a 的范围是 a [ 2,0] . .单一函数单一“存在”型x A ,使得 a ( ) f ( x)成立”等价于“当x A 时, a ( )f ( x) max取值范围解析:f (x) (a 2)x a(x ln x) x 2 2x . ∵x [1,e] ,∴ln x 1 x 且等号不能同时取,所以 ln x x ,即 x ln x 0 , x 2 2x因而 a x [1,e] ,x ln x ,而(x 12 1x )min 0,∴a 0.xx战略思想x A ,使得 a ( ) f (x) 成立”等价于“当x A 时,a ( ) f(x)min ”;f ( x)上限f ( x)下限例 2. 已知函数 f (x) aln x x 2(a R ),若存在 x [1,e] ,使得f (x) (a 2)x 成立,求实数 a 的当x [1, e]时,x 1 0,ln x 1,x 2 2ln x 0,从而g (x) 0 (仅当x=1 时取等号),所以g(x)在[1, e]上为增函数,故g(x) 的最小值为g(1) 1,所以 a 的取值范围是[ 1, ) .三.单一函数双“任意”型战略思想三:x R,都有" f(x1) f (x) f(x2)" f(x1), f (x2) 分别是f (x) 的最小值和最大值,|x1 x2 | min 是同时出现最大值和最小值的最短区间.例 3. 已知函数f (x) 2sin( x ) ,若对x R,都有" f (x1) f (x) f (x2)" 成立,则| x1 x2 |25的最小值为 __ .解∵对任意x∈R ,不等式f (x1) f (x) f (x2) 恒成立,∴f (x1), f (x2)分别是f (x) 的最小值和最大值对于函数y sin x ,取得最大值和最小值的两点之间最小距离是π,即半个周期x又函数f (x) 2sin( 2 5 )的周期为4,∴| x1 x2 |的最小值为 2.战略思想四:x1,x2 A, " f (x1 x2)f (x1) f (x2)"成立22f (x) 在 A 上是上凸函数 f ''(x) 02例 4. 在y 2x,y log2 2x,y x ,y cosx 这四个函数中,当0 x1 x2 1时,使" f (x1 x2)f(x1) f ( x2 )"恒成立的函数的个数是( )22A.0B.1C.2D.3解:本题实质就是考察函数的凸凹性,即满足条件" f(x1 x2)f (x1) f (x2)" 的函数,应是凸函22数的性质,画草图即知y log2 2x 符合题意;战略思想五:x1,x2 A,"f (x1) f (x2)0"成立f(x)在 A 上是增函数x1 x2例 5 已知函数f (x) 定义域为[ 1,1],f (1) 1,若m,n [ 1,1],m n 0时,都有f(m) f(n) 0" ,若f(x) t2 2at 1对所有x [ 1,1],a [ 1,1]恒成立,求实数t取值范围. mn解:任取1 x1 x2 1,则f (x1) f (x2) f (x1) f (x2) (x1 x2),x1 x2由已知 f (x1) f (x2) 0,又x1 x2 0,∴f (x1) f (x2) 0,x1 x2即f (x) 在[ 1,1]上为增函数.∵f (1) 1,∴x [ 1,1],恒有f (x) 1;2∴要使f (x) t2 2at 1对所有x [ 1,1],a [ 1,1]恒成立,即要t2 2at 1 1恒成立,故t2 2at 0 恒成立,2令g(a) 2at t2,只须g( 1) 0且g(1) 0,解得t 2或t 0或t 2.战略思想六:x1,x2 A,| f (x1) f (x2)| t ( t为常数)成立t= f (x)max f (x)min4 3 1例 6. 已知函数f (x) x4 2x3,则对任意t1,t2 [ ,2](t1 t2)都有| f(t1) f (t2)| 恒2成立,当且仅当t1 = __ ,t2 = ___ 时取等号.解:因为| f (x1) f (x2)| |[ f ( x)] max [ f ( x)] min |恒成立,4 3 1由f(x) x4 2x3,x [ ,2] ,23 27 1 5易求得[ f (x)]max f (3) 27,[ f (x)]min f ( 1) 5,2 16 2 16∴| f (x1) f (x2)| 2.战略思想七:x1,x2 A,| f (x1) f (x2)| t |x1 x2 ||f(x1) f(x2)| t | f '(x)| t(t 0)例7. 已知函数y f (x)满足:(1)定义域为[ 1,1] ;(2)方程f (x) 0 至少有两个实根1和1;(3)过f (x) 图像上任意两点的直线的斜率绝对值不大于 1.(1)证明:| f(0) | 1;(2)证明:对任意x1,x2 [ 1,1],都有| f (x1) f (x2)| 1.证明(1) 略;(2)由条件(2)知f( 1) f (1) 0,不妨设 1 x 1 x 2 1,由(3)知| f (x 1) f (x 2)| |x 1 x 2 | x 2 x 1, 又∵| f(x 1) f(x 2)| |f(x 1)| | f(x 2)| | f(x 1) f( 1)| |f(x 2) f(1)|x 1 1 1 x 2 2 (x 2 x 1) 2 | f(x 1) f(x 2)|;∴|f(x 1) f(x 2)| 133 例 8. 已知函数 f(x)x 3 ax b ,对于 x 1,x 2(0, )(x 1 x 2 )时总有 | f (x 1) f (x 2)| |x 1 x 2 |成3立,求实数 a 的范围 .3 ' 2解 由 f (x) x 3 ax b ,得 f '(x) 3x 2 a ,评注 由导数的几何意义知道,函数 y f (x)图像上任意两点 P(x 1,y 1),Q(x 2,y 2) 连线的斜率k y2 y1 (x 1 x 2 )的取值范围,就是曲线上任一点切线的斜率(如果有的话 )的范围,利用这个结论,可x 2 x1以解决形如 |f(x 1) f(x 2)| m|x 1 x 2||或| f(x 1) f(x 2)| m|x 1 x 2 | (m >0)型的不等式恒成立问题四.双函数“任意”+“存在”型: x 1A,x 2 B ,使得 f (x 1) g (x 2)成立 f (x)min g(x)min ;x 1 A, x 2B ,使得 f (x 1)g(x 2)成立f (x)maxg(x)max .总有 f (x 1) g( x 2 )成立,求实数 m 的取值范围 .解析:题意等价于 f(x)在(0,1)上的最大值大于或等于 g ( x)在[1,2] 上的最大值 2 2x 2 5x 2 1 f (x) 2 ,由 f '(x) 0得, x 或 x 2,x211 当 x (0, ) 时, f (x) 0,当 x ( ,1)时 f (x) 0 , 221 所以在( 0,1)上, f ( x)max f (1) 3 5ln2 .2当 x (0, 33)时,a f (x) 1 a ,∵| f(x 1) f(x 2)| |x 1 x 2 |,∴| f(x 1) f(x 2) | 1x 1 x 2a1 1a11a0战略思想八: 例 9 .已知函数2 f (x) 2xx 25ln x , g(x) xmx 4 ,若存在 x 1 (0,1) ,对任意 x 2 [1,2] ,又g(x)在[1,2]上的最大值为 max{g(1),g(2)} ,所以有所以实数 m 的取值范围是 m 8 5ln 2.战略思想九: “ x 1 A , x 2 B ,使得 f (x 1) g(x 2)成立”“f (x) 的值域包含于.g( x ) 的值域”.例 10.设函数 f (x)1x 3 1 x 2 5x 4.333(1)求 f (x) 的单调区间.32(2)设 a ≥1,函数 g(x) x 3 3a 2x 2a .若对于任意 x 1 [0,1] ,总存在 x 0 [0,1] ,使得 f (x 1) g( x 0 )成立,求 a 的取值范围.' 22 5 ' 2 2 5 5解析:( 1 ) f '(x) x 2x ,令 f '(x)≥0,即 x 2 x ≤ 0 ,解得: ≤ x ≤1,3 3 3 3 355f(x) 的单增区间为 [ ,1] ;单调减区间为 ( , ]和[1, ) .33(2)由(1)可知当 x [0,1]时, f ( x)单调递增, ∴当 x [0,1]时, f(x) [f (0), f (1)] , 即 f(x) [ 4, 3] ;又g '(x) 3x 2 3a 2,且 a ≥1,∴当x [0,1]时, g '( x) ≤ 0 , g( x)单调递减, ∴当 x [0,1] 时, g(x) [ g (1),g (0)] ,即 g(x) [ 3a 2 2a 1, 2a] , 又对于任意 x 1 [0,1] ,总存在 x 0 [0,1] ,使得 f (x 1) g(x 0)成立 [ 4, 3] [ 3a 2 2a 1, 2a] ,1a例 11 .已知函数 f(x) ln x ax 1(a R) ; x1(1) 当 a 时,讨论 f (x) 的单调性;222)设 g(x) x 2 2bx 4 ,1当 a 时,若对 x 1 (0, 2) , x 2 [1,2] ,使 f(x 1) g(x 2) ,求实数4f(21) g(1) f(21) g(2)3 5ln 2 5 m 3 5ln 2 8 2mm 8 5ln 21m (11 5ln 2)2m 8 5ln 2 ,f(x)上限f(x)下限即3a 2 2a 1 ≤ 3 ≤ 2a4,解得:≤a ≤3g(x)上限b 的取值范围;解:(1)(解答过程略去,只给出结论)当 a ≤0 时,函数 f(x)在( 0,1 )上单调递减,在( 1,+∞)上单调递增;1 当 a= 时,函数 f(x) 在( 0, +∞)上单调递减;2 11当 0<a< 时,函数 f (x) 在(0,1 )上单调递减,在 (1, 1)上单调递增,在 2'21, ) 上单调递减; a2 )函数的定义域为( 0 , +∞),f (x )=1-a+ a21xxax 2 x 1 aa= 1 时,由 f4x )=0 可得 x 1=1,x 2=3.因为a= 1∈(0, 1 ),x 2=3 (0,2),结合( 1)可知 42函数 f(x)在( 0,1 )上单调递减,在( 1,2 )上单调递增, 所以f(x) 在( 0,2 )上的最小值为 f(1)= - 12由于 对 x 1∈(0,2), x 2∈[1,2], 使 f(x 1) ≥g(x 2) ”等价于 “g(x)在[1,2]上的最小值不大于 f(x) 在( 0,2)上的最小值 f(1)= 1”2”※)又 g(x)=(x -b)2+4-b 2, x ∈[1,2], 所以当 b<1 时,因为 [g(x)] min =g(1)=5 - 2b>0, 此时与(※)矛盾; 当 b ∈[1,2]时, 因为 [g(x)] min =4 -b 2≥0,同样与(※)矛盾; 当 b ∈(2,+∞)时,因为 [g(x)] min =g(2)=8 -4b.1 17 解不等式 8- 4b ≤- ,可得b ≥ .2817 综上, b 的取值范围是[ ,+ ∞).8五.双函数“任意”+“任意”型战略思想十: x 1 A, x 2 B ,使得 f(x 1) g(x 2)成立 f (x)min g(x)max例 12. 已 知 函 数 f(x) 1x 3 x 2 3x 4,g(x)3 3 29x c,若对任x 1,x 2 [ 2,2] ,都有 f (x 1) g(x 2),求 c 的范围 .解:因为对任意的 x 1,x 2 [ 2,2] ,都有 f(x 1) g(x 2)成立,∴[ f ( x)] max [g(x)]min ,∵f '(x) x2 2x 3,令f '(x) 0得x 3,x 1x>3 或x<-1;f '(x) 0得1 x 3;∴f(x)在[ 2, 1]为增函数,在[ 1,2]为减函数.18 c∵f( 1) 3, f (2) 6,∴[ f (x)]max 3,.∴3 ,∴c 24.22 3 2例13.已知两个函数f(x) 8x2 16x k,g(x) 2x3 5x2 4x,x [ 3,3], k R;(1) 若对x [ 3,3] ,都有f (x) g(x)成立,求实数k 的取值范围;(2) 若x [ 3,3] ,使得f (x) g(x) 成立,求实数k的取值范围;(3) 若对x1,x2 [ 3,3] ,都有f (x1) g(x2)成立,求实数k的取值范围;解:(1)设h(x) g(x) f (x) 2x3 3x2 12x k ,(1)中的问题可转化为:x [ 3,3] 时,h(x) 0 恒成立,即[ h( x)] min 0.'2h'(x) 6x2 6x 12 6(x 2)(x 1);当x 变化时,h(x),h'(x) 的变化情况列表如下:因为h( 1) k 7, h(2) k 20 ,所以,由上表可知[ h( x)] min k 45,故k-45 ≥0,得k≥45,即k∈[45,+ ∞).小结:①对于闭区间I,不等式f(x)<k 对x∈I 时恒成立[f(x)] max <k, x ∈I;不等式f(x)>k 对x∈I 时恒成立[f(x)] min>k, x ∈I.②此题常见的错误解法:由[f(x)] max ≤[g(x)] min 解出k 的取值范围.这种解法的错误在于条件“ [f(x)] max ≤[g(x)] min”只是原题的充分不必要条件,不是充要条件,即不等价.( 2)根据题意可知, ( 2)中的问题等价于h(x)= g(x) -f(x) ≥0 在x ∈[-3,3]时有解,故[h(x)] max≥0.由( 1)可知[h(x)] max = k+7 ,因此k+7 ≥0,即k∈[7,+ ∞).(3)根据题意可知, (3)中的问题等价于 [f(x)] max ≤[g(x)] min ,x ∈[-3,3].由二次函数的图像和性质可得 , x ∈[-3,3]时, [f(x)] max =120 -k. 仿照( 1),利用导数的方法可求得 x ∈[-3,3]时, [g(x)] min =-21. 由 120 - k ≥-21 得 k ≥141,即 k ∈[141,+ ∞). 说明:这里的 x 1,x 2 是两个互不影响的独立变量从上面三个问题的解答过程可以看出 ,对于一个不等式一定要看清是对“ x ”恒成立,还是“ x ”使之成还是两个独立的变量 ,然后再根据不同的情况采取不同的等价条件 ,千万不要稀里糊涂的去猜六.双函数“存在”+“存在”型战略思想十一: x 1 A, x 2 B ,使得 f(x 1) g(x 2)成立f (x)min g(x)max ;x 1 A, x 2 B ,使得 f(x 1) g(x 2)成立f(x)max g(x)min .x 3 2例 14.已知函数 f (x) ln x 1, g(x) x 2 2bx 4.若存在 x 1 (0,2) , x 2 1,2 ,使4 4xf (x 1) g(x 2) ,求实数 b 取值范围1 f (x)在(0,1)上单调递增,在 (1,2)上单调递减,f(x)min f (1) .2依题意有 f ( x) min g(x)max ,所以 g(x)max12.又g(x) (x b)2 b 2 4,g(1) 1 从而g(2) 212,解得b 187.战略思想十二: “ x 1 A, x 2 B ,使得 f (x 1) g(x 2) 成立”等价于f (x) 的值域与 g(x) 的值域相交非空”3 219 1例 15 .已知函数 f(x) x 3 (1 a)x 2 a(a 2)x(a R) , g(x) x .是否存在实数 a ,存63在 x 11,1 , x 2 0,2 ,使得 f '(x 1) 2ax 1 g(x 2)成立?若存在,求出 a 的取值范围;若不存在,说明理由立,同时还要看清不等式两边是同一个变量, 解析: f (x) 1 1 32x 4 4x 2(x 1)(x 3)4x 219 1 1解析:在0,2 上g x x 是增函数,故对于x 0,2 ,g x ,66 3 32设h x f x 2ax 3x22x a a 2 ,当x 1,1 时,h(x) [-a2 2a 13,-a2 2a 5].3要存在x1 [ 1,1] ,x2 [0,2] 使得h x1 g x2 成立,只要[-a2 2a 13,-a2 2a 5] [ 13,6]33考虑反面,[-a2 2a 31,-a2 2a 5] [ 13,6]1 2 2 1 57 57则5 a 2a 或6< -a 2a 1,解得a 1 或a 1 ,3 3 3 357 57从而所求为1 a 1 .33。

高中数学函数与导数_高中数学函数与导数知识点汇总

高中数学函数与导数_高中数学函数与导数知识点汇总

高中数学函数与导数_高中数学函数与导数知识点汇总第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。

函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。

复合函数要注意外层函数的定义域由内层函数的值域决定。

第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。

函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。

对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。

在用定义进行判断时,要注意自变量在定义域区间内的任意性。

第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。

多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。

高考数学一轮总复习课件:专题研究 利用导数研究恒成立或存在性问题

高考数学一轮总复习课件:专题研究 利用导数研究恒成立或存在性问题

∴g′(x)=
[(x+1)(1+lnx)]′x-(x+1)(1+lnx) x2
=x-x2lnx.
令h(x)=x-lnx(分子的符号无法直接判断,故考虑再构造函 数进行分析),
∴h′(x)=1-1x=x-x 1. ∵x≥1,∴h′(x)≥0, ∴h(x)在[1,+∞)上单调递增,∴h(x)≥h(1)=1>0, ∴g′(x)>0,∴g(x)在[1,+∞)上单调递增, ∴g(x)min=g(1)=2,∴k≤2. 【答案】 (-∞,2]
【解析】 ∵f(x1)≤g(x2)恒成立,∴只需f(x1)≤g(x)min. 由g(x)=ex-x-1,得g′(x)=ex-1,令g′(x)>0,解得
x>0,令g′(x)<0,解得x<0.
∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴g(x)min=g(0)=0. ∴∀x1∈(0,+∞),ax12-(2a+1)x1+lnx1≤0恒成立,即只
故 h(x)在1a,1上单调递增,在(1,a)上单调递减. ∴h(x)max=h(1)=lna-1+1a(a>1). 令 φ(a)=lna-1+1a,a>1, 则 φ′(a)=1a-a12=a-a21>0,则 φ(a)在(1,+∞)上单调递增, ∴φ(a)>φ(1)=0,即 h(x)max>0,与 ln(ax)-x+1a<0 恒成立矛盾. ∴不存在 a 使 f(x)>g(x)对∀x∈1a,a恒成立. 【答案】 ①2-1ex-y-e=0 ②不存在 a,理由略
题型二 等价转化法求参数范围
例2 (1)(2021·河北保定模拟)已知函数f(x)=(x-a)·ln(ax), g(x)=x2-a+1ax+1,a≥1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数导数任意性和存在性问题探究导学语函数导数问题是高考试题中占比重最大的题型,前期所学利用导数解决函数图像切线、函数单调性、函数极值最值等问题的方法,仅可称之为解决这类问题的“战术”,若要更有效地彻底解决此类问题还必须研究“战略”,因为此类问题是函数导数结合全称命题和特称命题形成的综合性题目.常用战略思想如下:题型分类解析一.单一函数单一“任意”型战略思想一:“∀x A ∈,()()a f x >≥恒成立”等价于“当x A ∈时,max ()()a f x >≥”;“∀x A ∈,()()a f x <≤恒成立”等价于“当x A ∈时,min ()()a f x <≤”. 例1 :已知二次函数2()f x ax x =+,若∀[0,1]x ∈时,恒有|()|1f x ≤,求实数a 的取值范围. 解:|()|1f x ≤,∴211ax x -≤+≤;即211x ax x --≤≤-;当0x =时,不等式显然成立,∴a ∈R.当01x <≤时,由211x ax x --≤≤-得:221111a x x x x --≤≤-, 而min 211()0x x-=,∴0a ≤. 又∵max 211()2x x--=-,∴2,20a a ≥-∴-≤≤,综上得a 的范围是[2,0]a ∈-. 二.单一函数单一“存在”型战略思想二:“∃x A ∈,使得()()a f x >≥成立”等价于“当x A ∈时,min ()()a f x >≥”;“∃x A ∈,使得()()a f x <≤成立”等价于“当x A ∈时,max ()()a f x <≤”.例2. 已知函数2()ln f x a x x =+(a R ∈),若存在[1,]x e ∈,使得()(2)f x a x ≤+成立,求实数a 的取值范围.解析:()(2)f x a x ≤+⇒x x x x a 2)ln (2-≥-.∵[1,]x e ∈,∴x x ≤≤1ln 且等号不能同时取,所以x x <ln ,即0ln >-x x ,因而xx xx a ln 22--≥,[1,]x e ∈, 令x x xx x g ln 2)(2--=],1[e x ∈,又2)ln ()ln 22)(1()(x x x x x x g --+-=', 当],1[e x ∈时,1ln ,01≤≥-x x ,0ln 22>-+x x ,从而0)(≥'x g (仅当x=1时取等号),所以)(x g 在],1[e 上为增函数, 故)(x g 的最小值为1)1(-=g ,所以a 的取值范围是),1[+∞-. 三.单一函数双“任意”型af (x )下限f (x )上限f (x )f (x )战略思想三:∀x R ∈,都有"f ()f x 的最小值和最大值,1|x - 例3. 已知函数()2sin()25x f x ππ=+,若对∀x R ∈,都有12"()()()"f x f x f x ≤≤成立,则12||x x -的最小值为____.解 ∵对任意x ∈R ,不等式12()()()f x f x f x ≤≤恒成立, ∴12(),()f x f x 分别是()f x 的最小值和最大值.对于函数sin y x =,取得最大值和最小值的两点之间最小距离是π,即半个周期. 又函数()2sin()25x f x ππ=+的周期为4,∴12||x x -的最小值为2.战略思想四: ,,21A x x ∈∀1212()()"()"22x x f x f x f ++>成立 ⇔()f x 在A 上是上凸函数⇔0)(''≤x f例4. 在222,log 2,,cos y x y x y x y x ====这四个函数中,当1201x x <<<时,使1212()()"()"22x x f x f x f ++>恒成立的函数的个数是( ) A.0 B.1 C.2 D.3 解:本题实质就是考察函数的凸凹性,即满足条件1212()()"()"22x x f x f x f ++>的函数,应是凸函数的性质,画草图即知2log 2y x =符合题意;战略思想五: ,,21A x x ∈∀1212()()"0"f x f x x x ->-成立⇔()f x 在A 上是增函数例5 已知函数()f x 定义域为[1,1]-,(1)1f =,若,[1,1]m n ∈-,0m n +≠时,都有()()"0"f m f n m n->-,若2()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,求实数t 取值范围.解:任取1211x x -≤<≤,则12121212()()()()()f x f x f x f x x x x x --=--,由已知1212()()0f x f x x x ->-,又120x x -<,∴12()()0f x f x -<,即()f x 在[1,1]-上为增函数.∵(1)1f =,∴[1,1]x ∈-,恒有()1f x ≤;∴要使2()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立, 即要2211t at -+≥恒成立,故220t at -≥恒成立, 令2()2g a at t =-+,只须(1)0g -≥且(1)0g ≥, 解得2t ≤-或0t =或2t ≥.战略思想六: ,,21A x x ∈∀t x f x f ≤-|)()(|21(t 为常数)成立⇔t=min max )()(x f x f - 例6. 已知函数43()2f x x x =-+,则对任意121,[,2]2t t ∈-(12t t <)都有≤-|)()(|21t f t f 恒成立,当且仅当1t =____,2t =____时取等号.解:因为12max min |()()||[()][()]|f x f x f x f x -≤-恒成立, 由431()2,[,2]2f x x x x =-+∈-,易求得max327[()]()216f x f ==,min 15[()]()216f x f =-=-, ∴12|()()|2f x f x -≤.战略思想七:,,21A x x ∈∀|||)()(|2121x x t x f x f -≤-⇔t x x x f x f <--|)()(|2121⇔)0(t |)('|>≤t x f例7. 已知函数()y f x =满足:(1)定义域为[1,1]-;(2)方程()0f x =至少有两个实根1-和1; (3)过()f x 图像上任意两点的直线的斜率绝对值不大于1.(1)证明:|(0)|1f ≤; (2)证明:对任意12,[1,1]x x ∈-,都有12|()()|1f x f x -≤. 证明 (1)略;(2)由条件(2)知(1)(1)0f f -==,不妨设1211x x -≤≤≤,由(3)知121221|()()|||f x f x x x x x -≤-=-,又∵121212|()()||()||()||()(1)||()(1)|f x f x f x f x f x f f x f -≤+=--+-122112112()2|()()|x x x x f x f x ≤++-=--≤--;∴12|()()|1f x f x -≤例8. 已知函数3()f x x ax b =++,对于1212,(0,)3x x x x ∈≠时总有1212|()()|||f x f x x x -<-成立,求实数a 的范围.解 由3()f x x ax b =++,得'2()3f x x a =+,当x ∈时,'()1a f x a <<+,∵1212|()()|||f x f x x x -<-, ∴1212()()||1f x f x x x -<-, ∴11011a a a ≥-⎧⇒-≤≤⎨+≤⎩评注 由导数的几何意义知道,函数()y f x =图像上任意两点1122(,),(,)P x y Q x y 连线的斜率211221()y y k x x x x -=≠-的取值范围,就是曲线上任一点切线的斜率(如果有的话)的范围,利用这个结论,可以解决形如1212|()()|||f x f x m x x -≤-|或1212|()()|||f x f x m x x -≥-(m >0)型的不等式恒成立问题.四.双函数“任意”+“存在”型:战略思想八:12,x A x B ∀∈∃∈,使得12()()f x g x ≥成立min min ()()f x g x ⇔≥;12,x A x B ∃∈∀∈,使得12()()f x g x ≥成立max max ()()f x g x ⇔≥.例9.已知函数2()25ln f x x x x=--,2()4g x x mx =-+,若存在1(0,1)x ∈,对任意2[1,2]x ∈,总有12()()f x g x ≥成立,求实数m 的取值范围.解析:题意等价于()f x 在(0,1)上的最大值大于或等于()g x 在[1,2]上的最大值.22252()x x f x x -+'=,由'()0f x =得,12x =或2x =, 当1(0,)2x ∈时, ()0f x '>,当1(,1)2x ∈时()0f x '<, 所以在(0,1)上,max 1()()35ln 22f x f ==-+. 又()g x 在[1,2]上的最大值为max{(1),(2)}g g ,所以有185ln 2()(1)35ln 2521135ln 282(115ln 2)()(2)22m f g m m m f g ⎧≥-≥⎧⎪-+≥-⎧⎪⎪⇒⇒⎨⎨⎨-+≥-≥-⎩⎪⎪≥⎩⎪⎩85ln 2m ⇒≥-, 所以实数m 的取值范围是85ln 2m ≥-.战略思想九:“∀1x A ∈,∃2x B ∈,使得12()()f x g x =成立”⇔“()f x 的值域包含于.()g x 的值域”.f (x )下限f (x )上限g (x )下限g (x )上限例10.设函数32115()4333f x x x x =--+-. (1)求()f x 的单调区间.(2)设1a ≥,函数32()32g x x a x a =--.若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得10()()f x g x =成立,求a 的取值范围.解析:(1) '225()33f x x x =--+,令'()0f x ≥,即225033x x +-≤,解得:513x -≤≤, ∴()f x 的单增区间为5[,1]3-;单调减区间为5(,]3-∞-和[1,)+∞.(2)由(1)可知当[0,1]x ∈时,()f x 单调递增,∴当[0,1]x ∈时,()[(0),(1)]f x f f ∈, 即()[4,3]f x ∈--;又'22()33g x x a =-,且1a ≥,∴当[0,1]x ∈时,'()0g x ≤,()g x 单调递减,∴当[0,1]x ∈时,()[(1),(0)]g x g g ∈,即2()[321,2]g x a a a ∈--+-,又对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得10()()f x g x =成立⇔[4,3]--⊆2[321,2]a a a --+-,即2321432a a a⎧--+-⎨--⎩≤≤,解得:312a ≤≤例11.已知函数1()ln 1()af x x ax a R x-=-+-∈; (1)当12a ≤时,讨论()f x 的单调性; (2)设2()24g x x bx =-+,当14a =时,若对1(0,2)x ∀∈,2[1,2]x ∃∈,使12()()f x g x ≥,求实数b 的取值范围;解:(1)(解答过程略去,只给出结论)当a ≤0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;当a=21时,函数f(x)在(0,+∞)上单调递减; 当0<a<21时,函数()f x 在(0,1)上单调递减,在1(1,1)a -上单调递增,在1(1,)a -+∞上单调递减;(2)函数的定义域为(0,+∞),f '(x )=x 1-a+21xa -=-221x a x ax -+-,a=41时,由f '(x )=0可得x 1=1,x 2=3. 因为a=41∈(0,21),x 2=3∉(0,2),结合(1)可知 函数f(x)在(0,1)上单调递减,在(1,2)上单调递增,所以f(x) 在(0,2)上的最小值为f(1)= -21. 由于“对∀x 1∈(0,2),∃x 2∈[1,2],使f(x 1) ≥g(x 2)”等价于 “g(x)在[1,2]上的最小值不大于f(x) 在(0,2)上的最小值f(1)= -21”. (※) 又g(x)=(x -b)2+4-b 2, x ∈[1,2],所以① 当b<1时,因为[g(x)]min =g(1)=5-2b>0,此时与(※)矛盾; ② 当b ∈[1,2]时, 因为[g(x)]min =4-b 2≥0,同样与(※)矛盾; ③ 当b ∈(2,+∞)时,因为[g(x)]min =g(2)=8-4b.解不等式8-4b ≤-21,可得b ≥817. 综上,b 的取值范围是[817,+∞).五.双函数“任意”+“任意”型战略思想十:12,x A x B ∀∈∀∈,使得12()()f x g x ≥成立min max ()()f x g x ⇔≥ 例12.已知函数32149()3,()332x cf x x x xg x +=--+=-,若对任意12,[2,2]x x ∈-,都有12()()f x g x <,求c 的范围.解:因为对任意的12,[2,2]x x ∈-,都有12()()f x g x <成立,∴max min [()][()]f x g x <,∵'2()23f x x x =--,令'()0f x >得3,1x x ><-x >3或x <-1;'()0f x <得13x -<<; ∴()f x 在[2,1]--为增函数,在[1,2]-为减函数. ∵(1)3,(2)6f f -==-,∴max [()]3,f x =.∴1832c+<-,∴24c <-. 例13.已知两个函数232()816,()254,[3,3],f x x x k g x x x x x k R =+-=++∈-∈; (1) 若对[3,3]x ∀∈-,都有()()f x g x ≤成立,求实数k 的取值范围; (2) 若[3,3]x ∃∈-,使得()()f x g x ≤成立,求实数k 的取值范围; (3) 若对12,[3,3]x x ∀∈-,都有12()()f x g x ≤成立,求实数k 的取值范围; 解:(1)设32()()()2312h x g x f x x x x k =-=--+,(1)中的问题可转化为:[3,3]x ∈-时,()0h x ≥恒成立,即min [()]0h x ≥. '2()66126(2)(1)h x x x x x =--=-+;当x 变化时,'(),()h x h x 的变化情况列表如下:因为(1)7,(2)20h k h k -=+=-,所以,由上表可知min [()]45h x k =-, 故k-45≥0,得k ≥45,即k ∈[45,+∞).小结:①对于闭区间I ,不等式f(x)<k 对x ∈I 时恒成立⇔[f(x)]max <k, x ∈I;不等式f(x)>k 对x ∈I 时恒成立⇔[f(x)]min >k, x ∈I.②此题常见的错误解法:由[f(x)]max ≤[g(x)]min 解出k 的取值范围.这种解法的错误在于条件“[f(x)]max≤[g(x)]min ”只是原题的充分不必要条件,不是充要条件,即不等价.(2)根据题意可知,(2)中的问题等价于h(x)= g(x)-f(x) ≥0在x ∈[-3,3]时有解,故[h(x)]max ≥0.由(1)可知[h(x)]max = k+7,因此k+7≥0,即k ∈[7,+∞).(3)根据题意可知,(3)中的问题等价于[f(x)]max ≤[g(x)]min ,x ∈[-3,3]. 由二次函数的图像和性质可得, x ∈[-3,3]时, [f(x)]max =120-k.仿照(1),利用导数的方法可求得x ∈[-3,3]时, [g(x)]min =-21.由120-k ≥-21得k ≥141,即k ∈[141,+∞). 说明:这里的x 1,x 2是两个互不影响的独立变量.从上面三个问题的解答过程可以看出,对于一个不等式一定要看清是对“∀x ”恒成立,还是“∃x ”使之成立,同时还要看清不等式两边是同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件,千万不要稀里糊涂的去猜..六.双函数“存在”+“存在”型战略思想十一:12,x A x B ∃∈∃∈,使得12()()f x g x ≤成立min max ()()f x g x ⇔≤;12,x A x B ∃∈∃∈,使得12()()f x g x ≥成立max min ()()f x g x ⇔≥.例14.已知函数3()l n144x f x x x=-+-,2()24g x x bx =-+.若存在1(0,2)x ∈,[]21,2x ∈,使12()()f x g x ≤,求实数b 取值范围.解析:22113(1)(3)()444x x f x x x x --'=--=-, ()f x ∴在(0,1)上单调递增,在(1,2)上单调递减,min 1()(1)2f x f ∴==-.依题意有min max ()()f x g x ≤,所以max 1()2g x ≥-.又22()()4g x x b b =--+, 从而⎪⎩⎪⎨⎧-≥-≥21)2(21)1(g g ,解得817≤b . 战略思想十二:“12,x A x B ∃∈∃∈,使得12()()f x g x =成立”等价于“()f x 的值域与()g x 的值域相交非空”.例15.已知函数32()(1)(2)()f x x a x a a x a R =+--+∈,191()63g x x =-.是否存在实数a ,存在[]11,1x ∈-,[]20,2x ∈,使得112'()2()f x ax g x +=成立?若存在,求出a 的取值范围;若不存在,说明理由.解析:在[]0,2上()19163g x x =-是增函数,故对于[]0,2x ∈,()1,63g x ⎡⎤∈-⎢⎥⎣⎦. 设()()()22322h x f x ax x x a a '=+=+-+,当[]1,1x ∈-时,∈)(x h [312-2--a a ,52-2+-a a ].要存在]1,1[1-∈x ,]2,0[2∈x 使得()()12h x g x =成立,只要[312-2--a a ,52-2+-a a ]Φ≠-⋂]6,31[考虑反面, [312-2--a a ,52-2+-a a ]Φ=-⋂]6,31[则 21523a a ->--或6<312-2--a a,解得13a >-+或13a <--,从而所求为11a --≤≤-+.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

相关文档
最新文档