一元一次方程解法---合并同类项与移项
.2解一元一次方程(1)——合并同类项与移项 讲练课件 2023-2024学年七年级数学

七年级上册
第三章 一元一次方程
解一元一次方程(1)——合并同类项与移项
新课学习
合并同类项解一元一次方程
例1 解方程:16x-9x=-15-20.
解:合并同类项,得
系数化为1,得
7x=-35
x=-5
.
.
1.解方程: b- b+b= ×6-1.
解:合并同类项,得
系数化为1,得
x=-1
.
.
.
4.(2022·长春市期末)解方程:3- x=x-12.
解:移项,得- x-x=-12-3.
合并同类项,得- x=-15.
系数化为1,得x= .
解一元一次方程的步骤:①移项(含未知数的项移到方程
的
右
边,常数项移到方程的
系数
1(方程两边同时除以一次项的
Hale Waihona Puke 左边);②合并同类项;③系数化为
系数化为1,得x=- .
(3)0.5x+0.7=1.9x.
解:移项,得0.5x-1.9x=-0.7.
合并同类项,得-1.4x=-0.7.
系数化为1,得x=0.5.
5.若多项式3x+5与5x-7的值相等,求x的值.
解:由题意,得3x+5=5x-7.
移项,得3x-5x=-7-5.
合并同类项,得-2x=-12.
).
列方程解决问题
例4 【教材P 91 习题T 6 改编】某种药含有甲、乙、丙三种药材,这三种
药材的质量比为2∶3∶7.现在要配制1 440 g这种药,这三种药材分别
3.2解一元一次方程——合并同类项与移项(讲+练)

3.2解一元一次方程——合并同类项与移项合并同类项解方程的方法与步骤(1)合并同类项,即把含有未知数的同类项和常数项分别合并.(2)系数化为1,即在方程的两边同时除以未知数的系数.注意:(1)解方程中的合并同类项和整式加减中的合并同类项一样,它们的依据都是乘法分配律,实质都是系数的合并,目的是运用合并同类项,使方程变得更简单,为运用等式性质2求出方程的解创造条件;(2)系数为1或-1的项,合并时不能漏掉.题型1:解一元一次方程——合并同类项1.解下列方程∶(1)3x+2x+x=24; (2)-3x+6x=18.【答案】(1)x=4 (2)x=6【变式1-1】(1)5x-6x=-57 (2)13x-15x+x=-3.【答案】(1)x=57 (2)x=3移项解方程的方法与步骤1.移项把等式的某项变号后移到另一边,叫做移项.移项必须变号.2.移项的依据移项的依据是等式的性质1,在方程的两边加(或减)同一个适当的整式,使含未知数的项集中在方程的一边,常数项集中在另一边.3.解简单的一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.注意:(1)移项通常把含有未知数的项移到“=”的左边,常数项移到“=”的右边(2)若将2=x变形为x=2,直接利用的是等式性质的对称性,不能改变符号.(3)方程中的每项都包括前面的符号.题型2:解一元一次方程——移项2.将下列方程移项(1)7+x=13,移项得x=13+7(2)5x=4x+8,移项得 5x-4x=8(3)3x-2=x+1,移项得 3x-x=2+1(4)8x=7x-2,移项得 8x-7x=-2(5)2x-1=3x+4,移项得 2x-3x=1+4【变式2-1】解下列方程(1)4x+2=3x-3; (2)4y=203y+16【答案】(1)x=-5 (2)y=-6【变式2-2】解下列方程(1)2x+3=4x-5; (2)9x-17=4x-2.【答案】(1)x=4 (2)x=3题型3:绝对值方程3.解方程 |2x-3|=1.【分析】解绝对值方程的关键是把绝对值符号去掉,将方程转化为普通方程求解.【解答】∶因为|2x-3|=1,所以2x-3=1或2x-3=-1,解得x=2或x=1.【变式3-1】如果|2x+3|=|1﹣x|,那么x的值为( )A.−23B.−32或1C.−23或﹣2D.−23或﹣4【分析】根据绝对值的意义得到2x+3=1﹣x或2x+3=﹣(1﹣x),然后解两个一次方程即可.【解答】解:∵|2x+3|=|1﹣x|,∴2x+3=1﹣x或2x+3=﹣(1﹣x),题型4:依题意构建方程求解4.代数式2x+5与x+8的值相等,则x的值是 .【答案】3【解析】【解答】解:∵代数式2x+5与x+8的值相等,∴2x+5=x+8,解得:x=3,故答案为:3.【分析】根据已知条件:2x+5与x+8的值相等,可得到关于x的方程,解方程求出x的值.【变式4-1】当x= 时,代数式6x+1与-2x-5的值互为相反数。
【人教版七年级上册数学上册】3.2解一元一次方程(一)——合并同类项与移项课时2

解:因为种白菜与种西红柿的面积之比是3:2,种西红
柿与种芹菜的面积之比是5:7,所以种白菜、西红柿、
芹菜的面积之比是15: 10: 14.
设种白菜的面积为15x公顷,种西红柿的面积为10x公
顷,种芹菜的面积为14x公顷.
2.现有菜地975公顷,要种植白菜、西红柿和芹菜,其
中种白菜与种西红柿的面积之比是3:2,种西红柿与种
芹菜的面积之比是5:7,则三种蔬菜各种多少公顷?
根据题意,得15x+10x+14x=975.
合并同类项,得39x = 975.系数化为1,得x=25.
所以15x=375,10x = 250,14x =350.
答:种白菜、西红柿、芹菜的面积分别为375公顷、
100棵,其中一班植树的棵数比二班植树的棵数多4,三
班植树的棵数比二班植树的棵数的2倍少4,求三个班各
植树多少棵.
解:设二班植树 x 棵,则一班植树(x+4)棵,三班植树
(2x-4)棵.
根据题意,得x+x+4+2x-4=100.
新知探究 跟踪训练
某学校在植树节开展植树活动,七年级三个班共植树
100棵,其中一班植树的棵数比二班植树的棵数多4,三
由三个数的和是 -1701,得x-3x+9x=-1701.
合并同类项,得7x=-1701.
系数化为1,得x=-243.
所以 -3x=729,9x=-2187 .
答:这三个数是 -243,729,-2187.
列一元一次方程解决实际问题的一般步骤:
审题
设未知数
找等量关系
列方程
写出答案
人教版七年级上册解一元一次方程——合并同类项与移项(第1课时)课件x

2 7 − 2.5 + 3 − 1.5 = −15 × 4 − 6 × 3
1
2
解:(1)合并同类项,得− = −2,系数化为1,得 = 4
(2)合并同类项,得6 = -78.系数化为1,得 = -13
教学新知
例2 有一列数,按一定规律排列成1,-3,9,-27,81,-243……
课堂练习
解:设原两位数十位上数为
则原两位数为10 + 2 = 12,新两位数为10 × 2 + = 21.
根据题意知21 − 12=36.合并同类项,得9 = 36.
系数化为1,得 = 4.12 × 4 = 48.
答:原两位数为48.
3.一条环形跑道长400米,甲练习骑自行车平均每分钟550米,乙练习
3.2 一元一次方程
3.2 解一元一次方程(一)
——合并同类项与移项(1)
2 4 = 140
课题引入
问题1:约公元820年,中亚细亚数学家阿尔一花拉子米
写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本
取名为《对消与还原》.“对消”与“还原”是什么意思呢?
通过下面几节课的学习讨论,相信同学们一定能回答这个问题.
10
180吨
量为1800吨,那么1月份的产量为_________________.
6.某超市的收银员在记帐时发现现金少了153.9元,查帐后得知是一
笔支出款的小数点被看错了一位,则她查出这笔看错了的支出款实际
17.1
是_______元.
知识拓展
如图,将一列数按如图的方式排列成一个方阵,用一个长方形框
白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色
一元一次方程的解法-合并同类项与移项

解方程 $4x - 2 = 5 - x$
进阶练习题
题目4
解方程 $3x - 5 = 4(x - 2)$
题目5
解方程 $2(x - 3) = x + 1$
题目6
解方程 $3x + 2 = 5x - 1$
综合练习题
01
02
03
题目7
解方程 $2x - 3 = (x + 2)/2 - (x - 1)/3$
下一步的学习计划
深入学习一元一次方程的其他 解法,如因式分解法、公式法 等。
练习更多的题目,提高自己的 解题能力和技巧。
探索一元一次方程在实际问题 中的应用,加深对数学与生活 联系的认识。
THANKS FOR WATCHING
感谢您的观看
性质
移项过程中,不改变方程中各项的符 号和数值。
移项的方法与步骤
方法:将方程中的某一项从一边移到另一边, 通过加减一个常数来平衡。
01
1. 确定需要移项的项;
03
02
步骤
04
2. 改变该项的符号;
3. 将该项移到方程的另一边;
05
06
4. 确保移项后的方程仍然保持平衡。
移项的注意事项
确保移项后的方程仍然是一元一 次方程;
几何问题
在几何问题中,我们经常需要使用代数方法来描述几何形状的性质和关系。例 如,在解决平面几何问题时,我们经常需要使用代数方法来计算角度、长度等 数值。
在科学问题中的应用
物理问题
在物理问题中,我们经常需要使用一元一次方程来描述物理 现象和规律。例如,在解决力学问题时,我们经常需要使用 一元一次方程来描述物体的运动状态和受力情况。
步骤
解一元一次方程——合并同类项与移项

❖ 问题2:
❖ 洗衣厂今年计划生产洗衣机25500台,其中 Ⅰ型,Ⅱ型,Ⅲ型三种洗衣机的数量之比为 1:2:14,这三种洗衣机计划各生产多少台?
解:设Ⅰ型 x 台,Ⅱ型2x 台;Ⅲ型 14 x 台,
则:
x 2x 14x 25500
合并同类项,得 17x 25500
系数化为1,得x=1500 答: Ⅰ型1500台,Ⅱ型3000台,
每人分3本,共分出3x本,加上剩余的20本, 这批书共 3x+20 本. 每人分4本,需要__4_x_ 本,减去缺的25本, 这批书共 4x-25 本.
2、找相等关系 这批书的总数是一个定值,表示它的两个等式相等
3、列方程
3x+20 = 4x-25
3x+20 = 4x-25
提问1:怎样解这个方程?它与前面遇到
Ⅲ型21000台。
例题:解方程 3x 2x 8x 7
解:系合数并化 同1类,项得,x得-3x=77
3
解下列方程
1 5x 2x 9
你一定会! 2
1 x 3 x 7 22
3 3x 0.5x 10
(4)6m 1.5m 2.5m 3
阿尔·花拉米子(约780— —约850)中世纪阿拉伯数学家。 出生波斯北部城市花拉子模(现属 俄罗斯),曾长期生活于巴格达, 对天文、地理、历法等方面均有所 贡献。它的著作通过后来的拉丁文 译本,对欧洲近代科学的诞生产生 过积极影响。
义务教育课程标准实验教科书
人民教育出版社出版
七年级上册
第三章一元一次方程
——合并同类项与移项 固始县草庙一中 李付红
学习目标:
1.怎样合并同类项?(ax=b的形式) 2.什么叫做移项,需要注意
什么? 3.掌握解方程的一般步骤
3.2解一元一次方程-合并同类项与移项利用合并同类项解一元一次方程(教案)

实践活动和小组讨论环节,学生们表现得相当积极。他们通过合作解决问题,不仅加深了对知识的理解,还培养了团队协作能力。不过,我也观察到,有些小组在讨论时,个别成员参与度不高,这可能需要我在组织小组活动时,更多地关注每个学生的参与情况,确保每个人都能融入到讨论中来。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.2解一元一次方程-合并同类项与移项”。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决一些数量关系的问题?”比如,小华买了3本书和2支笔花了27元,如果笔的价格是5元,你能算出书的价格吗?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解一元一次方程的奥秘。
最后,我也要反思自己在课堂上的语言表达和教学节奏。有时候,可能因为担心学生理解不了,我会不自觉地重复讲解,导致课堂节奏有些拖沓。接下来,我需要在这方面多加注意,力求用更精炼的语言和更合理的节奏,让课堂教学更加高效。
3.2解一元一次方程-合并同类项与移项利用合并同类项解一元一次方程(教案)
一、教学内容
本节课选自七年级数学教材第三章“一元一次方程”中的3.2节“解一元一次方程-合并同类项与移项”。教学内容主要包括以下两个方面:
1.合并同类项:指导学生理解同类项的概念,掌握合并同类项的方法,并能将其应用于解一元一次方程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
专题5-3 求解一元一次方程(一)-移项、合并同类项(知识讲解)

专题5.3 求解一元一次方程(一)-移项、合并同类项(知识讲解)【学习目标】1.会应用移项、合并同类项法则解一些简单的一元一次方程.2.通过具体的实例感知、归纳移项法则,进一步探索方程的解法.3.进一步认识解方程的基本变形,感悟解方程过程中的转化思想.【要点梳理】移项的概念:把等式一边的某项变号后移到另一边,叫做移项。
特别说明:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
移项、合并同类项解方程步骤:解方程的步骤及依据分别是:(1)移项(等式的性质1)(2)合并(分配律)(3)系数化为1(等式的性质2)【典型例题】知识点一、解方程1.解方程:(1)x-3=31;(2)4x=3x-5;(3)-7x=21;(4)-32x=32.【答案】(1)x=34;(2)x=-5;(3)x=-3;(4)-1.【分析】(1)(2)移项合并即可求出解;(3)(4)将x系数化为1,即可求出解.解:(1) 移项,得x=31+3,x=34;(2)移项,得4x-3x=-5,x=-5;(3) 系数化为1,得x=-3;(4)方程两边同时乘以23⎛⎫-⎪⎝⎭,得x=32×23⎛⎫-⎪⎝⎭=-1.故答案为:(1)x=34;(2)x=-5;(3)x=-3;(4)-1.【点拨】本题考查解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.举一反三:【变式1】 解方程(1) 4 2.5 1.515x x x -+= (2)5757x x -=+【答案】(1)5;(2)-6【分析】(1)直接合并同类项,系数化1即可解得方程;(2)利用移项,合并同类项,系数化1即可解得方程;解:(1)4 2.5 1.515x x x -+=, 合并同类项得:315x =,系数化1得:x=5;(2)5757x x -=+, 移项得:575+7x x -=, 合并同类项得:212x -=,系数化1得:-6x =【点拨】本题主要考查一元一次方程的解法,解一元一次方程的基本步骤有:去分母,去括号,移项,合并同类项,系数化1,根据方程的特点,灵活运用相应步骤解方程.【变式2】解方程:(1)36156x x -=--; (2)45173x x +=-; (3) 2.57.5516y y y --=-; (4)11481.5533z z +=-. 【答案】(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)(2)(3)(4)先移项,再合并同类项,最后系数化为1即可.解:(1)移项,得36156x x +=-+.合并同类项,得99x =-.系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-. 系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=.合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点拨】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 知识点二、一元一次方程中“纠错”题2.解方程:1145155x x +=--. 佳佳的解题过程如下:解:移项,得1145155x x +=-.① 合并同类项,得34x =.①系数化为1,得43x =.① 请问佳佳的解题步骤有误吗?如果有误,从第几步开始出错的?并且将正确答案写出来.【答案】有误,从第①步开始出错的.正确的解题过程见解析【分析】根据一元一次方程的解法步骤判断即可.解:有误,从第①步开始出错的.正确的解题过程:移项,得1145155x x +=--, 合并同类项,得36x =-,系数化为1,得2x =-. 【点拨】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.举一反三:【变式1】下面是两位同学的作业.请你用曲线把出错误的步骤画出来,并把正确的写在右边.(1) 解方程: 215x x -=-+.解:215x x -=+,6x =.(2)解方程:715y y =+. 解: 71y y =+,71y y -=,61y =,16y =. 【分析】根据解一元一次方程的步骤:移项,合并同类项,系数化为1,进行解方程即可求解. 解:①215x x -=+ 改正:215x x +=+ 2x =(2) 71y y =+ 改正:755y y =+ 52y = 【点拨】本题主要考查解一元一次方程的步骤,解决本题的关键是要熟练掌握解一元一次方程的步骤.【变式2】 下面是张铭同学今天做的家庭作业:问题:将等式5x ﹣3y=4x ﹣3y 变形.解:因为5x ﹣3y=4x ﹣3y ,所以5x=4x (第一步)所以5=4(第二步) 上述过程中,第一步是怎么得到的?第二步得出错误的结论,其原因是什么?【答案】第一步是两边都加3y ,第二步错误的原因是x=0时,两边都除以x 无意义 【解析】【分析】根据等式的性质逐步分析即可,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.解:第一步是根据等式的性质1,把等式的两边都加3y ,第二步根据等式的性质2可知,错误的原因是x =0时,两边都除以x 无意义.【点拨】本题考查了等式的基本性质,熟练掌握等式的2条基本性质是解答本题的关键.【变式3】某同学解方程52486x x -=-的过程如下,请你指出他开始出错的一步及错误的原因,并改正.解:移项,得58624x x -=--,①合并同类项,得330x -=-,①方程两边同时除以-3,得10x =.①;【答案】该同学的移项是错误的,原因见解析.【分析】根据解一元一次方程的步骤及移项的定义进行分析,即可得到答案.解:该同学的移项是错误的,原因是-24进行移项后符号没有改变.根据移项的定义可知,正确移项是58624x x -=-+,合并同类项,得318x -=,方程两边同时除以-3, 得6x =-.【点拨】本题考查解一元一次方程——移项,解题的关键是熟练掌握移项.知识点三、一元一次方程中同解原理3、已知2(26)m -与|n+2|互为相反数,则求方程m x +3n=6的解. 【答案】4x =【分析】由题意可得()22620m n -++=,然后根据非负数的性质可求出m 、n ,代入原方程后再求解方程即可.解:由题意得:()22620m n -++=,所以260,20m n -=+=,解得3,2m n ==-,则方程mx+3n=6即为366x -=,移项、合并同类项,得3x=12,系数化为1,得x=4.【点拨】本题考查了非负数的性质和一元一次方程的解法,属于常考题型,正确理解题意、熟练掌握基本知识是解题的关键. 举一反三:【变式1】已知关于x 的方程3x+2a =x+7,某同学在解这个方程时,不小心把右端的+7抄成了-7,解得的结果为x =2,求原来方程的解.【答案】x =9【分析】根据方程的解满足方程,可得关于a 的方程,根据解方程,可得a 的值,根据移项、合并同类项、系数化为1,可得答案.解:将x=2代入3x+2a=x -7,得6+2a=-5,解得a=-112. 当a=-112时,原方程为3x -11=x+7, 移项、合并同类项,得2x=18,系数化为1,得x=9,原方程的解为x=9.【点拨】本题考查了一元一次方程的解,将方程的解代入方程得出a 的值是解题关键.【变式2】已知关于x 的方程130.58192x a a +=-与方程3122x x -=-的解互为相反数,求a 的值.【答案】3a =【分析】首先解得方程3122x x -=-的解,然后根据相反数的定义将方程3122x x -=-的解的相反数代入第一个方程来求a 的值即可.解:解方程3122x x -=-,得1x =-,∴方程130.58192x a a +=-的解是1x =把1x =代入130.58192x a a +=-,得130.58192a a , 解之得:3a = 【点拨】本题考查了一元一次方程的解的定义,熟悉相关性质是解题的关键.【变式3】已知关于x 的一元一次方程(m -6)x 2-2x+n=0与x -(3-x )=1的解相同,求m 、n 的值.【答案】m=6,n=4【分析】先根据等式的性质求出方程x -(3-x )=1的解;根据两个方程的解相同, 将求得的解代入到一元一次方程(m -6)x 2-2x+n=0中, 不难求出n 的值.解: 利用等式的基本性质求解方程,x -(3-x )=1, 可得x=2.因为方程(m -6)x2-2x+n=0为一元一次方程,得m -6=0,m=6,因为两方程的解相同,所以x=2也是方程(m -6)x2-2x+n=0的解.将x=2代入-2x+n=0可得: -4+n=0,解得n=4.故答案:m=6,n=4.【点拨】本题是一道关于解方程的问题, 解题的关键是求出第一个方程的解.知识点四、一元一次方程的创新题4、一般情况下a 2+b 3=a+b2+3不成立,但有些数可以使得它成立,例如:a =b =0,我们称使得a 2+b 3=a+b 2+3成立的一对数a ,b 为“相伴数对”,记为(a , b).(1)若(1 , b)是“相伴数对”,求b 的值;(2)若(m , n)是“相伴数对”,求代数式m −10n −2(5m −3n +1)的值.【答案】(1)−94;(2)-2【解析】(1)、首先根据“相伴数对”的定义列出关于b 的一元一次方程,从而求出b 的值;(2)、根据“相伴数对”的定义得出关于m 和n 的代数式,然后进行化简得出9m+4n=0,最后将所求的代数式进行化简,利用整体代入的思想进行求解.解 :(1)∵(1 , b)是“相伴数对”,∴12+b 3=1+b 2+3,解得:b =−94;(2)由(m , n)是“相伴数对”可得:m 2+n 3=m+n 2+3,则15m +10n =6m +6n ,即9m +4n =0,则原式=m −10n −10m +6n −2=−9m −4n −2=−2.举一反三:【变式1】数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、①、①,摆成如图所示的一个等式.然后翻开纸片①是4x 2+5x +6,翻开纸片①是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x 是方程2x =-x -9的解,求纸片①上代数式的值.【答案】(1)244x x ++;(2)1.【分析】(1)由①=①+①即可求解;(2)由方程2x =-x -9求出x 值,再代入纸片①上的代数式求值即可.解:(1)222456(32)44x x x x x x =+=+--=+-+①②③++,所以纸片①上的代数式为244x x ++;(2)解2x =-x -9得3x =-,将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.【点拨】本题考查了整式的加减运算及代入求值,同时涉及了解一元一次方程,灵活掌握整式的加减运算是解题的关键.【变式2】下图是一个运算程序:(1)若2,3x y =-=,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.【答案】(1)-7;(2)-2 【分析】(1)根据x 、y 的值和运算程序得出3m x y =-,代入即可得出答案(2) 根据运算程序分4m >和4m ≤两种情况列出关于m 的方程,解方程即可得出y 的值解: (1)2,3x y =-=,x y ∴≤,32337m x y ∴=-=--⨯=-.(2)由己知条件可得4,x y m ==,当4m >时,由43m m +=,得2m =-,符合题意:当4m ≤时,由43m m -=得1m =,不符合题意,舍掉.2y ∴=-.【点拨】本题考查了代数式求值和一元一次方程的应用,把满足条件的字母的值代入计算得到对应的代数式的值.也考查了观察图表的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x=200,
5x=500.
出示幻灯片1
出示幻灯片2
出示幻灯片3
个人反思
本节课是正式解一元一次方程的第一节课,有的学生可能受等式性质的影响,对移项解一元一次方程有些冲突,为了解决这个问题,可以向学生说明,移项就是应用等式性质的结果.
一元一次方程解法---合并同类项与移项这篇文章共6582字。
1.系数化为1时,乘除颠倒.
2.移项后不变号.
3.移项和等式性质混淆
教学重点
能用合并同类项和移项解一元一次方程.
教学难点
体会合并同类项和移项是化归的一种手段
学生学情分析
七年级学生已经学习过简易方程,因此这部分内容较易把握。重点在于明确步骤,理清变化过程,体会与以前所学知识的区别。
教学策略设计
教学环节
教师活动设计:让学生充分思考,给予其思考的时间和空间,必要时可以进行讨论,然后让学生表达自己的看法.
解:设新.旧工艺的废水排量分别为2xt和5xt.
根据废水排量与环保限制最大量之间的关系,得
5x-200=2x+100.
移项,得
5x-2x=100+200.
合并同类项,得
3x=300.
系数化为1,得
x=100.
问题2.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
例3解下列方程.
(1)3x+7=32-2x;(2)x-3=
解:(1)移项,得
3x+2x=32-7.
合并同类项,得
5x=25.
系数化为1,得
x=5.
(2)移项,得
x-=1+3.
合并同类项,得
归纳本节学到的两种解一元一次方程的步骤和方法——合并同类项和移项,让学生体会合并同类项和移项之间的关系.
分析:因为新.旧工艺的废水排量之比为2:5,所以可设它们分别为2xt和5xt,再根据它们与环保限制的最大量之间的关系列方程.
让学生独立解决问题1所得到的方程,并总结出合并同类项的方法.
例1解下列方程:
.
系数化为1,得
x=-8.
例4某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量要比环保限制的最大量少100t.新.旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?
1.一个问题中多个等量关系的处理问题,有的等量关系是用来表示未知量的,不如本题中未知量有三个,但只能用一个未知数表示,这时就得需要用未知量之间的关系来表示;有的等量关系是用来列方程的.
2.用等量关系列出方程,怎样解这个方程呢?
3.总量=各部分量的和,是一个基本的等量关系
解决问题
(1)表示同一个量的两个不同式子相等是一个基本的等量关系.
(2)所列方程怎样转化为,应用等式的性质变形,让学生观察变形前后的不同,自己提出变形前后的变化规律.
教师总结学生得到的规律:把等式一边的某项变号后移到另一边,叫做移项.
1,-3,9,-27,81,-243,…,其中某3个相邻的数的和为-1701,这三个数是多少?
解:设第一个数是x,则它后面的一个数是-3x,-3x后面的一ቤተ መጻሕፍቲ ባይዱ数是9x,根据题意有:
x+(-3x)+9x=-1701,
合并得,
7x=1701,
系数化为1得,
x=-243,
所以-3x=729,9x=-2187.
(1)2x-=6-8;(2)7x-2.5x+3x-1.5x=-15×4-6×3.
解:(1)合并同类项,得
.
系数化为1,得
x=4.
(2)合并同类项,得
6x=-78.
系数化为1,得
x=-13.
学生活动设计:学生独立思考,在独立思考的基础上可以进行讨论,然后交流,学生在思考中可以发现这一列数的排列规律是:后一个数是前一个数的-3倍,于是当设第一个数是x时,它后面的一个数是-3x,-3x后面的一个数是9x,根据相等关系,不难得到方程.
本节课是正式解一元一次方程的第一节课有的学生可能受等式性质的影响对移项解一元一次方程有些冲突为了解决这个问题可以向学生说明移项就是应用等式性质的结果
一元一次方程解法---合并同类项与移项
《一元一次方程解法---合并同类项与移项》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
作业内容
教学设计表单
学习内容分析
学习目标描述
1.经历运用方程解决实际问题的过程.
2.学会合并(同类项),会解“ax+bx=c”类型的一元一次方程.
3.掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.
学习内容分析
提示:可从学习内容概述、知识点划分及其相互间的关系等角度分析
教学目标
活动设计
信息技术运用说明
复习与回顾:
通过课本介绍的中亚西亚数学家阿尔-花拉子米的《对消与还原》提出问题.
应用问题1来回顾前面列方程解决问题的基本思想.
某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍.前年这个学校购买了多少台计算机?
解决问题
例2有一列数,按一定规律排列: