特种功能材料 碳纳米管的特性及其应用
碳纳米管材料的性质分析与应用

碳纳米管材料的性质分析与应用碳纳米管是一种由碳原子组成的纳米材料,具有高强度、高导电性和高导热性等特点,因此受到了广泛关注。
本文将讨论碳纳米管材料的性质分析与应用。
一、碳纳米管的结构和性质分析碳纳米管的结构类似于由碳原子组成的一个或多个圆柱形,其直径大约在1到100纳米之间,长度可以达到数十微米。
碳纳米管具有很强的机械强度和稳定性,原因在于其碳原子之间形成了一种非常稳定的共价键结构。
在电学方面,碳纳米管也表现出极好的导电性能,从而在电子器件和导电材料中发挥了重要作用。
此外,碳纳米管还具有热稳定性、化学稳定性以及低摩擦等优异特性,使其在仿生学、材料学和机械工程等领域具有广泛的应用前景。
二、碳纳米管在电子器件中的应用由于碳纳米管的半导体性质和导电性能,因此在纳米电子学研究领域中得到了广泛应用。
最近的研究表明,碳纳米管可以作为半导体材料制备场效应晶体管,并在微电子器件和集成电路中发挥重要作用。
碳纳米管场效应晶体管可以大大提高电路的响应速度和功率效率,此外还具有在高电压下良好的稳定性。
由于碳纳米管的微观尺寸限制了电路的噪声限制,从而提高了电路的信噪比。
三、碳纳米管在生物医学中的应用碳纳米管在生物医学中的应用可追溯到2002年,研究表明碳纳米管在生物医学中的应用主要侧重于药物释放、生物成像和作为实验室生物学中的牵引工具等方面。
其中,碳纳米管的药物释放功能是最有发展前景的应用之一。
碳纳米管可以通过修饰表面分子和光敏剂等手段,控制药物的释放速度和药效,从而有效地治疗癌症和其他疾病。
四、碳纳米管在材料加固中的应用碳纳米管的高强度和稳定性也被广泛应用于材料加固领域,例如高强度的复合材料和防弹衣等。
由于碳纳米管的高强度和低密度,因此对于机载、航空和装甲等应用,可以降低材料的重量,提高其效率。
五、碳纳米管在环境治理中的应用碳纳米管还可以作为环境治理的重要工具,如有机污染物的去除和水资源的净化等。
例如,研究表明碳纳米管可以通过吸附和光催化降解机制,去除水中的有机污染物。
碳纳米管 用途 -回复

碳纳米管用途-回复碳纳米管是一种具有独特结构和特性的纳米材料,由碳原子通过特定的方法在纳米尺度下形成管状结构。
碳纳米管具有高强度、高导电性、高导热性和良好的化学稳定性等优异特性,因此在众多领域中具有广泛的应用前景。
首先,碳纳米管在材料科学领域具有广泛应用。
由于碳纳米管的高强度和轻质性质,它们被广泛应用于增强复合材料的制备。
将碳纳米管作为增强剂加入到复合材料中,可以显著提高材料的力学性能,如强度和刚度。
同时,碳纳米管具有良好的导电性和导热性,在电子器件和导热材料等方面也得到了应用。
碳纳米管可以作为电极材料,用于制备高性能的锂离子电池和超级电容器等电子器件。
其次,碳纳米管在能源领域具有重要的应用潜力。
碳纳米管的高导电性、高导热性以及良好的化学稳定性使其成为理想的催化剂载体。
碳纳米管可以作为载体,将金属或半导体纳米颗粒负载其中,形成高效的催化剂,用于催化水分解、电催化CO2还原和金属空气电池等能源转换和储存领域。
此外,碳纳米管还可以用于制备柔性太阳能电池和柔性燃料电池等新型能源器件,具有高能量转换效率和可弯曲性。
此外,碳纳米管在生物医学领域也具有广泛的应用。
由于碳纳米管具有良好的生物相容性和生物活性,它们可以作为载体或传感器应用于药物传输和生物分析等领域。
碳纳米管可以用作药物输送系统的载体,将药物包裹在管内,利用碳纳米管的高表面积提高药物的负荷量和缓释效果。
此外,碳纳米管还可以用于生物传感器的制备,通过与生物分子的特异性相互作用,实现对生物分子的检测和分析。
最后,碳纳米管在环境保护和污染治理领域也有重要的应用价值。
由于碳纳米管具有良好的吸附性能和分离性能,它们可以被用于水污染物的处理和气相有害气体的去除。
碳纳米管可以以纳米过滤膜的形式,用于水中微量有害物质的分离和去除。
碳纳米管还可以被用作吸附剂,吸附和去除水中的有机污染物和重金属离子。
此外,碳纳米管还可以用作催化剂去除有害气体,如环境中的有机气体和有毒气体。
碳纳米管的性质与应用

碳纳米管的性质与应用碳纳米管是一种研究热点,同时也是一种具有广泛应用前景的纳米材料。
碳纳米管具有很多优异的性质,例如高度的机械强度、热导率、光学性质和电学性质等,这些性质使得碳纳米管在各领域中得到了广泛的关注和研究。
本文将从性质和应用两方面来探讨碳纳米管的特点。
一、碳纳米管的性质1. 机械性质碳纳米管具有非常高的机械强度,这是由于其形成时的晶格缺陷极少,且由碳原子构成的共价键是相当强的。
研究表明,碳纳米管的强度可以达到200GPa以上,因此在强度要求高的场合,例如航天航空领域、材料制造业及求医领域等等,碳纳米管都有广泛的应用。
2. 热学性质碳纳米管具有良好的热传导性质,由于它们的长度是大于直径的,因此导热主要沿着管轴方向,这种长程导热机制使得碳纳米管的热导率非常高,可以高达3000W/mK。
同时,其能够承受极高的温度,可以长期工作在1000℃以上的高温环境中,故在制造高精度、高稳定性元器件,以及制造高温传感器方面都有广泛应用。
3. 光学性质碳纳米管具有优良的光学性质,具有很高的吸收能力和强烈的荧光特性。
碳纳米管的宽带能使其吸收并辐射出不同波长的光,因此在生命科学、光电器件等领域得到广泛的应用。
4. 电学性质碳纳米管是一种非常具有潜力的电子材料,具有半导体和金属的特性。
这种双重的特性,使得碳纳米管可用于制造场效应晶体管、电化学电容器、电化学传感器等,同时,在信息技术、存储技术、生物医学等领域,碳纳米管也有着广泛的应用。
二、碳纳米管的应用1. 生物医学碳纳米管在生物医学中的应用非常广泛,主要包括药物传递、成像、生物分析及治疗等方面。
碳纳米管的生物相容性好,特异性高,可以将药物包载于碳纳米管表面,通过靶向技术将药物输送至受体细胞表面,从而达到治疗的目的。
此外,碳纳米管还能用于医学检测成像,如:磁共振成像、X射线成像、核酸检测等疾病诊断。
2. 能源材料由于碳纳米管的高热传导、高机械强度、高表面积和优质导体性质,使得碳纳米管可以用于电化学能源存储、传感及转换。
碳纳米管材料的研究及其应用前景

碳纳米管材料的研究及其应用前景碳纳米管(Carbon nanotubes,CNTs)是由碳原子组成的一种空心管状结构材料,具有极高的强度、导电性和导热性。
由于它独特的物理和化学特性,自其发现以来,研究人员不断探索其广泛的应用前景。
本文将介绍碳纳米管材料的基本特性、制备方法以及其在电子、能源、生物医学和环境保护等领域的应用前景。
一、碳纳米管材料的基本特性碳纳米管具有以下几种基本特性:1.直径十分微小:CNTs的直径在1~100纳米之间。
这使得CNTs具有很高的比表面积,能够增加与其他材料的接触面积。
2.极高的强度:CNTs的强度是其他材料的1~10倍,而重量却非常轻。
3.优异的导电性:CNTs的电阻率约为铜的1/10,可作为电子器件的理想材料。
4.高导热性:CNTs的导热性是铜的1.5倍。
5.化学惰性:由于碳的化学惰性,CNTs对大多数化学物质的影响较小,有利于其应用。
二、碳纳米管制备方法CNTs的制备方法种类繁多。
下面我们介绍几种典型的制备方法。
1.化学气相沉积法(CVD法)CVD法是一种通过气相物质反应制备CNTs的方法。
其基本原理是将碳源物质在高温下分解,使碳原子与金属催化剂相互作用生成碳纳米管。
CVD法是制备CNTs最优秀、最经济、最可定向的方法之一。
2.电弧放电法电弧放电法是一种利用碳棒电弧在惰性气氛中蒸发和冷凝的方法。
利用惰性气氛,如氦、氩、氮和氩氮混合气体等,在自由场内放电形成高温、高压电弧,产生不同形态(单壁、多壁)的CNTs。
3.化学还原法化学还原法通常使用碳酸钠和其他金属盐作为原料。
其基本原理是将金属离子还原为纳米金属,并使金属与碳源分解并生成CNTs。
化学还原法通常需要很长的反应时间,往往需要在高温条件下完成。
三、碳纳米管的应用前景1.电子学领域CNTs的高导电性和微小的直径使之成为微处理器中理想的电路元件。
CNTs的高速传输和强度也为光电晶体管、电晕放电、场发射和纳米电子器件提供了非常好的材料基础。
碳纳米管的性能及应用领域

碳纳米管的性能及应用领域碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有很多异常的力学、电学和化学性能。
近些年随着碳纳米管及纳米材料讨论的深入其广阔的应用前景也不断地呈现出来。
一、碳纳米管的性能1.1力学性能不同类型的碳纳米管碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。
碳纳米管的结构虽然与高分子材料的结构相像,但其结构却比高分子材料稳定得多。
碳纳米管是目前可制备出的具有最高比强度的材料。
若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲乏性及各向同性,给复合材料的性能带来极大的改善。
1.2导电性能碳纳米管制成的透亮导电薄膜碳纳米管上碳原子的P电子形成大范围的离域键,由于共轭效应显著,碳纳米管具有一些特别的电学性质。
碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。
对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。
对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1万倍。
1.3传热性能采纳了碳纳米管涂层的热水器内胆碳纳米管具有良好的传热性能,碳纳米管具有特别大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。
另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。
二、碳纳米管的应用2.1电子领域碳纳米电子管(CNTS)是一种具有显著电子、机械和化学特性的独特材料。
其导电本领不同于一般的导体。
性能方面的区分取决于应用,或许是优点,或许是缺点,或许是机会。
在一理想纳米碳管内,电传导以低温漂轨道传播的,假如电子管能无缝交接,低温漂是计算机芯片的优点。
诸如电连接等的混乱极大地修改了这行为。
对十较慢的模拟信号的处理速度,四周环围着平向球分子的碳纳米管充当传播者已被试验证明。
碳纳米管的多功能性质及其应用前景展望

碳纳米管的多功能性质及其应用前景展望碳纳米管是一种结构独特的碳材料,拥有众多优异的物理和化学特性。
它具有极高的强度和刚度,同时也具有优异的导电和导热性能。
这些特性使得碳纳米管成为一种极具应用前景的材料,被广泛应用于能源、材料、生物医学等领域。
1. 碳纳米管的制备碳纳米管的制备方法有很多种,如化学气相沉积(CVD)、电弧放电法、负离子注入等。
其中,CVD法是当前最主流的碳纳米管制备技术之一。
CVD法是利用金属催化剂如铁、镍等作为碳纳米管生长的催化剂,将一种含碳气体(如甲烷、乙烯等)引入反应管,通过高温下的化学反应,使碳纳米管沉积在催化剂表面上。
2. 碳纳米管的多功能性质碳纳米管具有多种优异的性质,如下所示:(1)高强度和高韧性碳纳米管的强度是钢铁的几百倍,可以承受极高的压力和拉力,同时也具有很好的韧性和弯曲性。
(2)很好的导电性和导热性碳纳米管是优秀的导电体和导热体,在微电子学和热管理领域有广泛的应用。
(3)超大的比表面积碳纳米管的比表面积极大,可以用于催化剂的载体、气体吸附材料和超级电容器等领域。
(4)抗腐蚀性能强由于碳纳米管形成的C-C键很强,因此碳纳米管具有很好的化学稳定性和抗腐蚀性能。
(5)生物相容性好碳纳米管在生物医学领域有着广泛的应用前景,因为碳纳米管与生物组织有很好的相容性。
3. 碳纳米管的应用前景展望目前,碳纳米管已经在多个领域得到了广泛的应用,下面列举几个典型的应用领域。
(1)能源领域碳纳米管作为电极材料被广泛应用于锂离子电池、超级电容器等能源领域。
碳纳米管的高比表面积和优异的导电性能使得其在能量密度和充电速度等性能上具有优势。
(2)材料领域碳纳米管作为一种新型材料,正在被广泛应用于复合材料、高强度纤维和超级材料等领域。
(3)生物医学领域碳纳米管在生物医学领域的应用前景非常广泛,可以用于药物输送、疫苗制备等领域,同时也可以用于生物成像和生物传感器等领域。
(4)环境领域碳纳米管可以用于污染物的检测和治理,同时也可以作为环境治理材料,如吸附材料等。
碳纳米管的力学性能与应用

碳纳米管的力学性能与应用咱今天来聊聊一个特别神奇的东西——碳纳米管!这玩意儿可不得了,它在好多领域都有着大用处。
先来说说碳纳米管的力学性能吧。
你能想象到吗,就这么小小的一根管子,它的强度那可是杠杠的!打个比方啊,有一次我在实验室里做实验,不小心把一个装有碳纳米管的小瓶子碰倒了,那瓶子咕噜噜滚了老远,捡起来一看,里面的碳纳米管一点事儿没有。
这要是普通的材料,早就摔得七零八落啦。
碳纳米管的抗拉强度极高,就好像是一个超级大力士,能承受巨大的拉力。
它的弹性也特别好,被拉伸之后还能恢复原状,就像一个有超强弹性的小皮筋。
而且它的韧性也是没得说,怎么弯曲都不容易折断。
正因为有这么出色的力学性能,碳纳米管在好多地方都大展身手呢。
在航空航天领域,它可以用来制造更轻更强的飞机部件。
想象一下,飞机的翅膀用碳纳米管材料制作,既轻又坚固,飞机就能飞得更高更远,还能节省燃料呢。
在体育用品方面,碳纳米管也有一席之地。
比如说网球拍、高尔夫球杆,如果加入了碳纳米管,那性能可就大大提升啦。
我就见过一个专业的网球运动员,拿着用碳纳米管增强的网球拍,那击球的威力和准头,简直让人惊叹。
每一次击球都呼呼生风,对手根本难以招架。
在电子领域,碳纳米管也发挥着重要作用。
它可以用来制作更小更强的电子元件,让我们的手机、电脑变得更加轻薄高效。
还记得我之前的那部旧手机,又厚又重,运行速度还慢。
现在有了碳纳米管技术,新手机又薄又快,简直是天壤之别。
在医疗领域,碳纳米管也能帮上大忙。
它可以作为药物的载体,精准地把药物送到病变部位,提高治疗效果。
就像有一次我朋友生病住院,医生就给他用了一种基于碳纳米管的新型药物,没多久他就康复出院了,那效果真是立竿见影。
总之,碳纳米管这东西,别看它小,它的力学性能和应用可真是让人刮目相看。
相信在未来,它还会给我们带来更多的惊喜,让我们的生活变得更加美好!从最初在实验室里对它的好奇,到如今看到它在各个领域的广泛应用,碳纳米管就像一个潜力无限的小战士,不断在科技的战场上冲锋陷阵,创造着一个又一个的奇迹。
特种功能材料 碳纳米管的特性及其应用

碳纳米管对3种金属离子的吸附量随着溶液 pH值的升高和离子强度的减小而增加。
六 碳纳米管的应用
6.1 高强度碳纤维材料
决定增强型纤维强度的一个关键是长
度和直径之比。目前材料材料工程师
希望得到的长度直径比至少是20∶1。
当n=m,手性角θ=30°时称 单 壁 纳 米 管 ( armchair tubule)
当 m=0 , 手 性 角 θ=0° 时 称 锯齿管(zigzag tubule)
当0°<θ<30°时称为手性管 (chiral tubule)
armchair tubule zigzag tubule
chiral tubule
10
单壁碳纳米管总是表现为金属性,锯齿形和手性纳米管中 部分表现为金属性,部分为半导体性。
=30 单壁纳米管
=0
0<<30
锯齿纳米管
手性纳米管
11
碳纳米管的类型(n, m)
(n,m)点和初 始点(0,0)划 上一条线,此线 极为碳纳米管的 圆周。
(n,m)和纳米管 的直径有着密不 可分的关系。
四 碳纳米管的制备方法
5.5 碳纳米管的场发射特性
碳纳米管具有优良的场致发射特性 (其中包括FED对阴极所要求的发射的 一致性、稳定性和高的发射点密度), 尤为适于制作新型平板显示器。
使用定向排列的CNT薄膜作为阴极的 FED具有成本低,工艺简单,可靠性高 的特点,可以用来制作点阵式显示器、 数码管等各种显示装置。
定向纳米碳管的场发射特性
纳米碳管中的碳原子以sp2杂 化,但由于存在一定曲率所 以其中也有一小部分碳属sp3 杂化。 在不考虑手性的情况下, SWNT 可 以 由 两 个 参 量 完 全 确定(直径和螺旋角或两个 表示石墨烯的指数(n,m)或 者螺旋向量Cn和垂直向量T。 MWNT则需要三个以上的参 数表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
日本电镜学家S. Iijima
在制备C60的沉积物中发现 纳米管揭开了CNTs研究的 序幕
美国物理学家 Mildred S. Dresselhaus
在Iijima的发现前后及时地预言了这种新的 碳结构的各种性质,同时预言了单壁管的存 在。她对碳纳米管结构的完整理解走在了世 界的最前面ቤተ መጻሕፍቲ ባይዱ
96年诺贝尔奖者Richard E. Smalley
4.2 碳氢化合物催化分解法
CVD:Chemical Vapour Deposition 指在远高于临界反应温度的条件下,通过化学反应,使 反应产物蒸气形成很高的过饱和蒸气压,自动凝聚形成 大量的晶核,这些晶核不断长大,聚集成颗粒,随着气 流进入低温区,最终在收集室内得到纳米粉体。 化学气相沉积反应原料是气态或易于挥发成蒸气的液态 或固态物质。 所用反应体系的选择要符合下面一些基本要求: ① 反应易于生成所需要的沉积物而其它副产物保留在气 相排出或易于分离。 ② 整个操作较易于控制。
(4)石墨烯
石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的 一种碳质新材料,是构建其它维度碳质材料的基本单元。
二 碳纳米材料的分类
C60 (零维)
碳纳米管 (一维) 石墨烯
金刚石 (三维)
石墨 (二维)
三 碳纳米管
“纳米豆腐的世界” 《碳纳米管化学纪事》
对纳米材料的发展做 出了不可磨灭的贡献
当n=m,手性角θ=30°时称 单 壁 纳 米 管 ( armchair tubule)
当 m=0 , 手 性 角 θ=0° 时 称 锯齿管(zigzag tubule)
当0°<θ<30°时称为手性管 (chiral tubule)
armchair tubule zigzag tubule
chiral tubule
纳米碳管中的碳原子以sp2杂 化,但由于存在一定曲率所 以其中也有一小部分碳属sp3 杂化。 在不考虑手性的情况下, SWNT 可 以 由 两 个 参 量 完 全 确定(直径和螺旋角或两个 表示石墨烯的指数(n,m)或 者螺旋向量Cn和垂直向量T。 MWNT则需要三个以上的参 数表示。
9
碳纳米管的分类
电弧区温度非常高,碳纳米管缺陷较多
理想的工艺条件:氦气为载气,气压 60—50Pa,电流60A~100A, 电压19V~25 V,电极间距1 mm~4mm,产率50%。Iijima等生产 出了半径约1 nm的单层碳管。
4.2 碳氢化合物催化分解法
化学气相沉积(CVD)法
能大规模制备、但杂质较多需后续处理
碳纳米管的特性及其应用
2013-09-10
碳家族
金刚石
富勒烯
石墨
碳纳米管
一 碳纳米材料发展简史
1985年 发现了巴基球(C60);柯尔、克罗托和斯莫利在模 拟宇宙长链碳分子的生长研究中,发现了与金刚石、石墨结 构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝 尔化学奖)
1991年 日本电气公司的S. Iijima在制备C60、对电弧放电 后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径 0.7-30 nm,被称为Carbon nanotubes (CNTs);
石墨电弧放电法 (已用于工业化生产) 化学气相沉积法 激光蒸发(烧蚀)法 等离子体法 增强等离子热流体化学蒸气分解沉积法PE-HF-CVD 热解聚合物法(化学热解法) 离子(电子束)辐射法 催化裂解法 电解法
提高纯度、增加产率
4.1 石墨电弧放电法
基本原理: 电弧室充惰性气体保护,两石 墨棒电极靠近,拉起电弧,再 拉开,以保持电弧稳定。放电 过程中阳极温度相对阴极较高, 所以阳极石墨棒不断被消耗, 同时在石墨阴极上沉积出含有 碳纳米管的产物。
1992年 瑞士洛桑联邦综合工科大学的D.Ugarte等发现了 巴基葱(Carbon nanoonion);
一 碳纳米材料发展简史
2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的
碳纳米管,稳定性稍差;
2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳
发展了一种大量制备碳纳米 管的方法——激光脉冲法 (laser ablation),并制造出 了大批高质量的单壁纳米管, 还组建了纳米管生产公司
单壁碳纳米管
多壁碳纳米管
按照石墨烯片的层数,可分为:
1) 单壁碳纳米管(Single-walled nanotubes, SWNTs): 由一层石墨烯片组成。单壁管典型的直径和长度分别为 0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。
二 碳纳米材料的分类
(1)碳纳米管
碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般 可分为单壁碳纳米管、多壁碳纳米管。
(2)纳米碳纤维
纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直 径介于纳米碳管(小于100 nm)和气相生长碳纤维之间。
(3)碳球
根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层 结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。
2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs): 含 有多层石墨烯片。形状象个同轴电缆。其层数从 2~50 不等,层间距为0.34±0.01nm,与石墨层间距 (0.34nm) 相当。多壁管的典型直径和长度分别为2~30 nm和 0. 1~50μm。
2 碳纳米管的微结构
米管。
2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研 究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表 征了单原子数目富勒烯分子C141。
2004 ,曼彻斯特大学的科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫发现 Graphene(石墨烯),进一步激发了人们研究碳纳米材料的热潮。
10
单壁碳纳米管总是表现为金属性,锯齿形和手性纳米管中 部分表现为金属性,部分为半导体性。
=30 单壁纳米管
=0
0<<30
锯齿纳米管
手性纳米管
11
碳纳米管的类型(n, m)
(n,m)点和初 始点(0,0)划 上一条线,此线 极为碳纳米管的 圆周。
(n,m)和纳米管 的直径有着密不 可分的关系。
四 碳纳米管的制备方法