CMOS图像传感器的基本原理及设计考虑

合集下载

cmos图像传感器原理

cmos图像传感器原理

cmos图像传感器原理CMOS图像传感器原理。

CMOS图像传感器是一种集成了图像传感器和信号处理电路的器件,它是数字摄像头和手机摄像头中最常用的一种传感器。

CMOS图像传感器具有低功耗、集成度高、成本低等优点,因此在数字摄像头、手机摄像头、监控摄像头等领域得到了广泛应用。

CMOS图像传感器的工作原理主要包括光电转换、信号放大和数字输出三个步骤。

首先,当光线照射到CMOS图像传感器上时,光子被转换成电子,并被储存在每个像素的电容中。

然后,通过信号放大电路将电荷信号转换成电压信号,并进行放大处理。

最后,经过A/D转换器将模拟信号转换成数字信号,输出给后续的图像处理电路。

CMOS图像传感器的核心部件是像素阵列,它由许多个像素单元组成。

每个像素单元包括光电转换器、信号放大器和采样保持电路。

当光线照射到像素阵列上时,每个像素单元都会产生对应的电荷信号,然后通过列选择线和行选择线的控制,将信号读取出来,并传输给信号放大电路进行放大处理。

CMOS图像传感器的优势在于集成度高、功耗低、成本低、易于制造等特点。

与传统的CCD图像传感器相比,CMOS图像传感器不需要额外的模拟信号处理电路,因此在集成度上有很大的优势。

另外,CMOS图像传感器的功耗较低,适合于移动设备和便携式设备的应用。

此外,CMOS图像传感器的制造工艺相对简单,成本较低,可以大规模生产,满足市场需求。

在实际应用中,CMOS图像传感器不仅应用于数字摄像头和手机摄像头中,还广泛应用于医疗影像、工业检测、安防监控等领域。

随着科技的不断进步,CMOS图像传感器的分辨率、灵敏度和集成度将会不断提高,为各种应用领域带来更加优质的图像传感器解决方案。

总的来说,CMOS图像传感器作为一种集成度高、功耗低、成本低的图像传感器,具有广泛的应用前景。

随着技术的不断进步,它将会在数字摄像头、手机摄像头、医疗影像、工业检测、安防监控等领域发挥越来越重要的作用。

CMOS图像传感器原理及应用

CMOS图像传感器原理及应用
总结词
随着消费者对高清晰度图像的需求增加,CMOS图像传感器的像素尺寸不断增大,同时分辨率也在逐 步提高。
详细描述
为了满足市场对高清晰度图像的需求,CMOS图像传感器厂商不断推出具有更大像素尺寸和更高分辨 率的产品。这使得图像传感器能够捕捉到更多的细节,提供更丰富的色彩和更准确的图像还原。
高速和高动态范围性能的追求
帧率
帧率是指传感器能够以每秒拍摄的图 像帧数。帧率越高,传感器能够捕捉 到的动态场景就越流畅。
04 CMOS图像传感器的应用 领域
消费电子产品
数码相机
CMOS图像传感器广泛应 用于数码相机中,提供高 清晰度的照片和视频。
智能手机
智能手机中的后置和前置 摄像头都采用了CMOS传 感器,以实现高质量的拍 照和视频通话。
平板电脑
平板电脑中的摄像头也使 用了CMOS传感器,为用 户提供便捷的拍摄功能。
工业和医疗领域
工业检测
CMOS传感器在工业领域中用于生产线上的检测和质量控制,提高生产效率和产 品质量。
医疗影像
CMOS传感器可以用于医疗设备中,如内窥镜和显微镜,提供高清晰度的图像, 有助于医生进行诊断和治疗。
安全监控和无人驾驶
需要进一步研究和解决的问题
噪声抑制
动态范围与分辨率
CMOS图像传感器易受到噪声干扰,如何 有效抑制噪声、提高图像质量是亟待解决 的问题。
进一步提高CMOS图像传感器的动态范围 和分辨率,以满足更高要求的图像采集需 求。
集成与小型化
低功耗设计
随着应用领域的不断拓展,对CMOS图像 传感器的集成度和尺寸要求也越来越高, 需要研究更先进的工艺和设计方法。
安全监控
CMOS传感器广泛应用于安全监控领域,为公共场所和私人 住宅提供高清视频监控,提高安全保障。

cmos设计中用到的光学知识

cmos设计中用到的光学知识

cmos设计中用到的光学知识
1. 光学传感器:CMOS 图像传感器是一种常见的光学传感器,它基于光电效应将光信号转换为电信号。

在设计 CMOS 图像传感器时,需要考虑光的波长、光强、光谱响应等因素,以确保传感器能够准确地捕捉图像信息。

2. 光学成像:在 CMOS 光学成像系统中,需要使用透镜、反射镜等光学元件来聚焦和调整光的传播方向。

设计人员需要了解光学成像的基本原理,如透镜成像公式、光学系统的像差等,以优化成像质量。

3. 光的传播:在 CMOS 集成电路中,光信号通常通过光纤或光波导进行传输。

设计人员需要了解光在不同介质中的传播特性,如折射率、光的散射和吸收等,以确保光信号的有效传输。

4. 光学互连:随着集成电路的发展,光学互连技术逐渐成为一种有前途的替代方案,它可以实现高速、低功耗的数据传输。

在设计光学互连结构时,需要考虑光的耦合效率、光的偏振等因素。

5. 光学封装:CMOS 芯片通常需要进行封装以保护芯片并提供与外部世界的接口。

在光学封装设计中,需要考虑光的进出、光的损耗等因素,以确保光学性能不受封装的影响。

总之,光学知识在 CMOS 设计中扮演着重要的角色,它涉及到传感器、成像、光传输、光学互连和封装等方面。

深入了解光学原理和技术对于优化 CMOS 设计和提高其性能至关重要。

cmos图像传感器ppt课件可编辑全文

cmos图像传感器ppt课件可编辑全文

数码相机传感器尺寸
单反相机一般采用的是大尺寸的APS-C画幅感光元 件,而有些卡片相机采用的是1/2.3英寸感光元件,虽 然它们可能都拥1800万像素,但是区别在于二者的单 个像素宽度不同。APS-C画幅、1800万像素感光元件 的每一个像素宽约为4.3微米,而1/2.3英寸、1800万像 素感光元件的每一个像素宽约有1.68微米。
6.6
11.00
1/1.7英寸 7.76
5.82
9.70
1/2.3英寸 6.16
4.62
7.70
1/3.2英寸 4.13
3.05
5.13
面积 864.00 518.94 372.88 332.27 261.80 224.90 116.16 58.08 45.16 28.46 12.60
数码相机的像素:
尾端各有3个像元为虚设单元。
图9.SXGA型图像传感器的像敏区结构
六、典型CMOS图像传感器
SXGA型CMOS成像器件的光谱特性如图10所示。
图10.SXGA型图像传感器的光谱响应特性曲线
六、典型CMOS图像传感器
SXGA型CMOS成像器件的输出特 性如图11所示。曲线的线性段的动 态范围仅为66dB。若采用对数放大
图5.主动式像敏单元结构的基本电路
图6.主动式像敏单元时序图
三、CMOS图像传感器的像敏单元结构
主动式像素结构(Active Pixel Sensor.简称APS), 又叫有源式, 几乎在CMOS PPS像素结构发明的同时,人 们很快认识到在像素内引入缓冲器或放大器可以改善像素 的性能,在CMOS APS中每一像素内都有自己的放大器。集 成在表面的放大晶体管减少了像素元件的有效表面积,降 低了“封装密度”,使40%~50%的入射光被反射。这种传 感器的另一个问题是,如何使传感器的多通道放大器之间 有较好的匹配,这可以通过降低残余水平的固定图形噪声 较好地实现。由于CMOS APS像素内的每个放大器仅在此读 出期间被激发,所以CMOS APS的功耗比CCD图像传感器的 还小。

CMOS图像传感器基本原理与应用简介

CMOS图像传感器基本原理与应用简介

CMOS图像传感器在数码相机中的应用简介人们使用胶卷照相机已经上百年了,20世纪80年代以来,人们利用高新技术,发展了不用胶卷的CCD数码相机。

使传统的胶卷照相机产生了根本的变化。

电可写可控的廉价FLASH ROM的出现,以及低功耗、低价位的CMOS摄像头的问世。

为数码相机打开了新的局面,数码相机框图如图所示。

从图中可以看出,数码相机的内部装置已经和传统照相机完全不同了,彩色CMOS摄像头在电子快门的控制下,摄取一幅照片存于DRAM中,然后再转至FLASH ROM中存放起来。

根据FLASH ROM的容量和图像数据的压缩水平,可以决定能存照片的张数。

如果将ROM换成PCMCIA卡,就可以通过换卡,扩大数码相机的容量,这就像更换胶卷一样,将数码相机的数字图像信息转存至PC机的硬盘中存贮,这就大大方便了照片的存贮、检索、处理、编辑和传送。

图像传感器是将光信号转换为电信号的装置,在数字电视、可视通信市场中有着广泛的应用。

60年代末期,美国贝尔实脸室发现电荷通过半导体势阱发生转移的现象,提出了固态成像这一新概念和一维CCD(Charge-Coupled Device电荷耦合器件)模型器件。

到90年代初,CCD技术已比较成热,得到非常广泛的应用。

但是随着CCD应用范围的扩大,其缺点逐渐暴露出来。

首先,CCD技术芯片技术工艺复杂,不能与标准工艺兼容。

其次,CCD技术芯片需要的电压功耗大,因此CCD技术芯片价格昂贵且使用不便。

目前,最引人注目,最有发展潜力的是采用标准的CMOS(Complementary Metal Oxide Semiconductor 互补金属氧化物场效应管)技术来生产图像传感器,即CMOS图像传感器。

CMOS图像传感器芯片采用了CMOS工艺,可将图像采集单元和信号处理单元集成到同一块芯片上。

由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型、微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。

cmos传感器工作原理

cmos传感器工作原理

cmos传感器工作原理CMOS传感器是一种常见的数字图像传感器,广泛应用于数码相机、手机摄像头、安防监控等领域。

它具有低功耗、高集成度、低噪声等优点,成为了替代CCD传感器的主流技术。

本文将详细介绍CMOS 传感器的工作原理。

一、CMOS传感器的基本结构CMOS传感器由像素阵列和读出电路两部分组成。

像素阵列由大量光敏元件(也称为光电二极管或光电晶体管)组成,每个光敏元件对应一个像素点,用于接收光信号并转换为电信号。

读出电路负责将每个像素点产生的电信号放大并转换为数字信号输出。

二、CMOS传感器的工作原理1. 光敏元件的工作原理光敏元件是CMOS传感器中最基本的单元,它由一个PN结构组成。

当光线照射到PN结时,会产生载流子(即正负离子对),其中正离子向P区移动,负离子向N区移动,在PN结上形成电荷分布。

这些电荷会被收集到P型或N型衬底上,并形成电压信号。

这个过程称为光电转换。

2. 像素点的输出原理每个像素点都有一个对应的读出电路,用于将光敏元件产生的电信号放大并转换为数字信号输出。

读出电路通常由放大器、采样器和模数转换器等组成。

其中,放大器负责将微弱的电信号放大到一定程度,采样器负责对放大后的信号进行采样,模数转换器将采样后的模拟信号转换为数字信号输出。

3. CMOS传感器的工作流程当光线照射到CMOS传感器上时,每个像素点都会产生一个电荷,并通过读出电路被转化为数字信号输出。

具体流程如下:(1)曝光阶段:当快门打开时,光线进入镜头并照射到CMOS传感器上。

此时,每个像素点会产生一定数量的电荷。

(2)清除阶段:曝光结束后,需要将所有像素点中残留的电荷清零。

这个过程称为清除。

(3)读出阶段:在清除完成后,开始进行读出操作。

每个像素点中产生的电荷会被读出并通过放大、采样和模数转换等步骤转化为数字信号输出。

三、CMOS传感器的优缺点1. 优点(1)低功耗:CMOS传感器采用的是基于MOSFET的读出电路,功耗比CCD传感器低得多。

CMOS传感器的工作原理

CMOS传感器的工作原理

CMOS传感器的工作原理CMOS传感器是一种常用于数码相机和手机摄像头中的图像传感器。

它有着更高的集成度和更低的功耗,因此在数字图像捕捉和处理方面具有广泛的应用。

本文将详细介绍CMOS传感器的工作原理。

一、基本结构CMOS传感器是由许多微小的像素组成的,每个像素都包含了光电二极管、放大器和模数转换器。

下面详细介绍这些组成部分的工作原理。

1. 光电二极管光电二极管是CMOS传感器最基本的部分。

当光线照射到光电二极管上时,光子会与半导体材料发生相互作用,产生电子-空穴对。

其中的电子会被电场引力吸引到一侧,形成电流。

2. 放大器放大器的作用是放大光电二极管产生的微弱电流。

CMOS传感器中的每个像素都配备了一个放大器,使得从不同像素中获取的电流能够被放大并进一步处理。

3. 模数转换器模数转换器(ADC)将模拟电流转换为数字信号。

模数转换器将连续的模拟电流转换为离散的数字信号,以便进一步的数字信号处理和存储。

二、工作原理当光线照射到CMOS传感器上时,每个像素中的光电二极管会产生微弱的电流。

这些电流被放大器放大,并通过模数转换器将其转换为数字信号。

在CMOS传感器中,每个像素都有自己的感光区域和存储电容。

感光区域用来接收光线,而存储电容则存储感光区域产生的电荷。

存储电容的大小决定了每个像素的感光能力。

当光线照射到感光区域时,感光区域产生电荷并储存在存储电容中。

随后,通过控制电路将电荷从存储电容中读取出来,并将其转化为电流信号。

这个电流信号经过放大器放大后,经过模数转换器转换为数字信号。

三、优势CMOS传感器相对于传统的CCD传感器具有以下优势:1. 集成度高:CMOS传感器可以与其他电路集成在一起,形成一个更紧凑、更高性能的图像处理系统。

2. 低功耗:CMOS传感器由于结构特点以及使用的工作电压较低,功耗相对较低。

3. 快速读取:CMOS传感器可以实现快速的图像读取,适用于高速拍摄和连拍模式。

4. 强大的信号处理:CMOS传感器所集成的信号处理电路使其能够在传感器上对图像进行预处理,提高图像质量。

简述cmos图像传感器的工作原理及应用

简述cmos图像传感器的工作原理及应用

简述cmos图像传感器的工作原理及应用CMOS图像传感器是一种用于转换光信号为电子信号的器件,可以将光学图像转换成数字图像,其工作原理是基于光电效应和集成电路技术。

CMOS图像传感器由图像传感单元阵列和信号处理单元组成。

图像传感单元阵列由大量的光敏单元组成,每个光敏单元具有一个光感受器和一个电荷积累器,用于将光信号转换为电荷,并对图像进行采样。

每个光敏单元相邻之间通过衬底电位的设置实现光电转换效应。

信号处理单元负责将电荷转换为电压、放大、采样和数字化。

CMOS图像传感器的工作原理如下:当光照射到光敏单元上时,光敏单元中的光感受器将光信号转化为电荷。

电荷通过电场的作用从光感受器向电荷积累器偏移,并在电荷积累器中积累。

一旦接收到光信号并完成电荷积累后,将在传感器的特定位置产生电压信号。

然后,信号处理单元会将电荷转换为电压,并对图像进行放大、采样和数字化处理。

最后,图像传感器将数字图像通过数据接口发送给外部设备。

CMOS图像传感器具有以下几个优点:1. 集成度高:CMOS图像传感器可以集成在单个芯片上,因此可以实现小尺寸和轻量化,适合于集成在各种移动设备中。

2. 低功耗:CMOS图像传感器的功耗相对较低,可以延长设备的电池寿命。

3. 成本低:相比于传统的CCD图像传感器,CMOS图像传感器的制造工艺更简单,成本更低。

4. 高速读取:CMOS图像传感器可以实现高速连续拍摄,适用于高速摄影和视频录制等应用。

5. 可编程性强:CMOS图像传感器的信号处理单元可以通过软件配置进行调整和优化,实现更灵活的图像处理。

CMOS图像传感器在各个领域都有广泛的应用,包括但不限于以下几个方面:1. 摄像头和视频监控:CMOS图像传感器可以应用于手机摄像头、数码相机、安防摄像头等领域,实现图像和视频的捕捉和处理。

2. 机器视觉和工业自动化:CMOS图像传感器可以应用于机器视觉系统中,用于图像的识别、测量和检测,广泛应用于工业自动化、智能制造等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CMOS图像传感器的基本原理及设计考虑1、引言20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。

CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。

但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。

CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。

但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。

如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过C CD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。

由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。

现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。

实际上,更确切地说,CMOS图像传感器应当是一个图像系统。

一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。

事实上,当一位设计者购买了CM OS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。

与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。

2、基本原理从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置。

CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比。

由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内。

这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS图像传感器的种种干扰。

然而今天,随着制作工艺的提高,使在像素内部增加复杂功能的想法成为可能。

现在,在像素位置以内已经能增加诸如电子开关、互阻抗放大器和用来降低固定图形噪声的相关双采样保持电路以及消除噪声等多种附加功能。

实际上,在Conexant公司(前Rockwell半导体公司)的一台先进的CMOS摄像机所用的CMOS图传感器上,每一个像素中都设计并使用了6个晶体管,测试到的读出噪声只有1均方根电子。

不过,随着像素内电路数量的不断增加,留给感光二极管的空间逐渐减少,为了避免这个比例(又称占空因数或填充系数)的下降,一般都使用微透镜,这是因为每个像素位置上的微小透镜都能改变入射光线的方向,使得本来会落到连接点或晶体管上的光线重回到对光敏感的二极管区域。

因为电荷被限制在像素以内,所以CMOS图像传感器的另一个固有的优点就是它的防光晕特性。

在像素位置内产生的电压先是被切换到一个纵列的缓冲区内,然后再被传输到输出放大器中,因此不会发生传输过程中的电荷损耗以及随后产生的光晕现象。

它的不利因素是每个像素中放大器的阈值电压都有细小的差别,这种不均匀性就会引起固定图像噪声。

然而,随着CMOS图像传感器的结构设计和制造工艺的不断改进,这种效应已经得到显著弱化。

这种多功能的集成化,使得许多以前无法应用图像技术的地方现在也变得可行了,如孩子的玩具,更加分散的保安摄像机、嵌入在显示器和膝上型计算机显示器中的摄像机、带相机的移动电路、指纹识别系统、甚至于医学图像上所使用的一次性照相机等,这些都已在某些设计者的考虑之中。

3设计考虑然而,这个行业还有一个受到普遍关注的问题,那就是测量方法,具体指标、阵列大小和特性等方面还缺乏统一的标准。

每一位工程师在比较各种资料一览表时,可能会发现在一张表上列出的是关于读出噪声或信噪比的资料,而在另一张表上可能只是强调关于动态范围或最大势阱容量的资料。

因此,这就要求设计者们能够判断哪一个参数对他们最重要,并且尽可能充分利用多产品的CMOS图像传感器家族。

一些关键的性能参数是任何一种图像传感器都需要关注的,包括信噪比、动态范围、噪声(固定图形噪声和读出噪声)、光学尺寸以及电压的要求。

应当知道并用来对比的重要参数有:最大势阱容量、各种工作状态下的读出噪声、量子效率以及暗电流,至于信噪比之类的其它参数都是由那些基本量度推导出来的。

对于像保安摄像机一类的低照度级的应用,读出噪声和量子效应最重要。

然而对于象户外摄影一类的中、高照度级的应用,比较大的最大势阱容量就显得更为重要。

动态范围和信噪比是最容易被误解和误用的参数。

动态范围是最大势阱容量与最低读出噪声的比值,它之所以引起误解,是因为读出噪声经常不是在典型的运行速度下测得的,而且暗电流散粒噪声也常常没有被计算在内。

信噪比主要决定于入射光的亮度级(事实上,在亮度很低的情况下,噪声可能比信号还要大)。

所以,信噪比应该将所有的噪声源都考虑在内,有些资料一览表中常常忽略散粒噪声,而它恰恰是中、高信号电平的主要噪声来源。

而S NRDARK得到说明,实际上与动态范围没有什么两样。

数字信噪比或数字动态范围是另一个容易引起混淆的概念,它表明的只是模拟/数字(A/D)转换器的一个特性。

虽然这可能很重要,但它并不能精确地描述图像的质量。

同时我们也应清楚地认识到,当图像传感器具有多个可调模拟增益设置时,模拟/数字转换器的分辨率不会对图像传感器的动态范围产生限制。

光学尺寸的概念的模糊,是由于传统观念而致。

使用光导摄像管只能在部分范围内产生有用的图像。

它的计算包括度量单位的转换和向上舍入的方法。

采用向上舍入的方法,先以毫米为单位测量图像传感器的对角线除以16,就能得到以英寸为单位的光学尺寸。

例如0.97cm的尺寸是1.27cm而不是0.85cm。

假如你选择了一个光学尺寸为0.85cm的图像传感器,很可能出现图像的四周角落上的映影(阴影)现象。

这是因为有些资料一览表欺骗性地使用了向下舍入的方法。

例如,将0.97c m的尺寸称为0.85cm,理由很简单:0.85cm光学尺寸的图像传感器的价格要比1.27cm光学尺寸的图像传感器的价格低得多,但是这对系统工作性能产生不利影响。

所以,设计者应该通过计算试用各种不同的图像传感器来得到想要的性能。

CMOS图像传感器的一个很大的优点就是它只要求一个单电压来驱动整个装置。

不过设计者仍应谨慎地布置电路板驱动芯片。

根据实际要求,数字电压和模拟电压之间尽可能地分离开以防止串扰。

因此良好的电路板设计,接地和屏蔽就显得非常重要。

尽管这种图像传感器是一个CMOS装置并具有标准的输入/输出(I/O)电压,但它实际的输入信号相当小,而且对噪声也很敏感。

到目前为止,已设计出高集成度单芯片CMOS图像传感器。

设计者力求使有关图像的应用更容易实现多功能,包括自动增益控制(AG C)、自动曝光控制(AEC)、自动平衡(AMB)、伽玛样正、背景补偿和自动黑电平校正。

所有的彩色矩阵处理功能都集成在芯片中。

CM OS图像传感器允许片上的寄存器通过I2C总线对摄像机编程,具有动态范围宽、抗浮散且几乎没有拖影的优点。

4、CMOS APS的潜在优点和设计方法4.1CMOS APS胜过CCD图像传感器的潜在优点CMOS APS胜过CCD图像传感器的潜在优点包括[1]~[5]:1)消除了电荷反复转移的麻烦,免除了在辐射条件下电荷转移效率(C TE)的退化和下降。

2)工作电流很小,可以防止单一振动和信号闭锁。

3)在集成电路芯片中可进行信号处理,因此可提供芯迹线,模/数转换的自调节,也能提供由电压漂移引起的辐射调节。

与硅探测器有关,需要解决的难题和争论点包括[1]~[2]:1)在体材料界面由于辐射损伤而产生的暗电流的增加问题。

2)包括动态范围损失的阈值漂移问题。

3)在模/数转换电路中,定时和控制中的信号闭锁和单一扰动问题。

4.2CMOS APS的设计方法CMOS APS的设计方法包括:1)为了降低暗电流而进行研制创新的像素结构。

2)使用耐辐射的铸造方法,再研制和开发中等尺寸“dumb”(哑)成像仪(通过反复地开发最佳像素结构)。

3)研制在芯片上进行信号处理的器件,以适应自动调节本身电压Vt的漂移和动态范围的损失。

4)研制和开发耐辐射(单一扰动环境)的定时和控制装置。

5)研制和加固耐辐射的模/数转换器。

6)寻找低温工作条件,以便在承受最大幅射强度时,找到并证实最佳的工作温度。

7)研制和开发大尺寸、全数字化、耐辐射的CMOSAPS,以便生产。

8)测试、评价和鉴定该器件的性能。

9)引入当代最高水平的组合式光学通信/成像系统测试台。

5、像素电路结构设计目前,已设计的CMOS图像传感器像素结构有:空隙积累二极管(HAD)型结构、光电二极管型无源像素结构、光电二极管型有源像素结构、对数变换积分电路型结构、掩埋电荷积累和敏感晶体管阵列(B CAST)型结构、低压驱动掩埋光电二极管(LV-BPD)型结构、深P 阱光电二极管型结构、针型光电二极管(PPD)结构和光栅型有源像素结构等。

5.1CMOS PPS像素结构设计光电二极管型CMOS无源像素传感器(CMOS PPS)的结构自从1967年Weckler首次提出以来实质上一直没有变化,其结构如图1所示。

它由一个反向偏置的光敏二极管和一个开关管构成。

当开关管开启时,光敏二极管与垂直的列线连通。

位于列线末端的电荷积分放大器读出电路保持列线电压为一常数,并减小KTC噪声。

当光敏二极管存贮的信号电荷被读出时,其电压被复位到列线电压水平,与此同时,与光信号成正比的电荷由电荷积分放大器转换为电荷输出。

单管的PD CMOS PPS允许在给定的像素尺寸下有最高的设计填充系数,或者在给定的设计填充系数下,可以设计出最小的像素尺寸。

另外一个开关管也可以采用,以实现二维的X Y寻址。

由于填充系数高且没有许多CCD中多晶硅叠层,CMOS PPS像素结构的量子效率较高。

但是,由于传输线电容较大,CMOSPPS读出噪声较高,典型值为250个均方根电子,这是致命的弱点。

5.2 CMOS APS的像素结构设计几乎在CMOS PPS像素结构发明的同时,科学家很快认识到在像素内引入缓冲器或放大器可以改善像素的性能。

虽然CMOS图像传感器的成像装置将光子转换为电子的方法与CCD相同,但它不是时钟驱动,而是由晶体三极管作为电荷感应放大器。

在一些CMOS图像传感器中,每组像素的顶端有一个放大器,每个像素只有一个作为阈值电流值开关的三极管。

相关文档
最新文档