小学奥数 牛吃草问题(2)
小学奥数之牛吃草问题附含答案解析

"牛吃草问题就是追及问题,牛吃草问题就是工程问题。
〞英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供应10头牛吃,可以吃22天,或者供应16头牛吃,可以吃10天,如果供应25头牛吃,可以吃几天?解题关键:牛顿问题,俗称"牛吃草问题〞,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比拟,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到〔22-10〕天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两局部来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:〔10×22-16×1O〕÷(22-1O〕=〔220-160〕÷12 =60÷12 =5〔头〕这片草供25头牛吃的天数:〔10-5〕×22÷〔25-5〕=5×22÷20 =5.5〔天〕答:供25头牛可以吃5.5天。
---------------------------------------------------------------- "一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?〞这道题太简单了,一下就可求出:3×10÷6=5〔天〕。
如果我们把"一堆草〞换成"一片正在生长的草地〞,问题就不则简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定〔均匀变化〕的问题就是牛吃草问题。
例1 牧场上一片青草,每天牧草都匀速生长。
六年级奥数:牛吃草问题_题型归纳

六年级奥数:牛吃草问题_题型归纳
1、牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。
如果牧草每周匀速生长,可供21头牛吃几周?
2、有一口水井,如果水位降低,水就不断地匀速涌出,且到了一定的水位就不再上升。
现在用水吊水,如果每分吊4桶,则15分钟能吊干,如果每分钟吊8桶,则7分吊干。
现在需要5分钟吊干,每分钟应吊多少桶水?
3、有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。
如果需要6天割完,需要派多少人去割草?
4、有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完。
这桶酒每天漏掉的酒可供几人喝一天?
5、一水库存水量一定,河水均匀入库。
5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。
若要6天抽干,需要多少台同样的抽水机?。
牛吃草问题例题及答案解析2

牛吃草问题例题及答案解析2奥数应用题浓度问题例1:甲,乙两队开挖一条水渠.甲队单独挖要8天完成,乙队单独挖要12天完成.现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成.乙队挖了多少天解:可以理解为甲队先做3天后两队合挖的.=3(天)例2:加工一批零件,甲单独做20天可以完工,乙单独做30天可以完工.现两队合作来完成这个任务,合作中甲休息了2 .5天,乙休息了若干天,这样共14天完工.乙休息了几天解:分析:共14天完工,说明甲做(14-2.5)天,其余是乙做的,用14天减去乙做的天数就是乙休息的天数.14-=1(天)例3:一池水,甲,乙两管同时开,5小时灌满,乙,丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲,丙两管同时开2小时才能灌满.乙单独开几小时可以灌满解:分析:把乙先开做6小时看作与甲做2小时,与丙做2小时,还有2小时,现在可理解为甲乙同开2小时,乙丙同开2小时,剩下的是乙2小时放的.1÷=20(小时)例4:某工程,甲,乙合作1天可以完成全工程的.如果这项工程由甲队单独做2天,再由乙队单独做3天,能完成全工程的.甲,乙两队单独完成这项工程各需要几天解:分析:可以理解为两队合作2天,余下的是乙1天做的,乙的工效, 甲:=12(天)例5:一项工程,甲先单独做2天,然后与乙合做7天,这样才能完成全工程的一半.已知甲,乙工效的比是2:3.如果这项工程由乙单独做,需要多少天才能完成解:分析:乙的工效是甲工效的3÷2=1.5倍,设甲的工效为x,乙的工效为1.5x,(2+7)x+1.5x×7=,解之得:x=,乙工效1÷1.5x =26(天)1、把浓度为25%的盐水30千克,加水冲淡为15%的盐水,问需要加水多少千克?2、有浓度为2.5%的盐水210克,为了制成浓度为3.5%的盐水,从中要蒸发掉多少克水?3、一瓶100克的酒精溶液加入80克水后,稀释成浓度为40%的新溶液,原溶液的浓度是多少?4、甲,乙两种酒精浓度分别为70%和55%,现在要配制浓度为65%的酒精3000克,应当从这两种酒精中各取多少克?5、一杯纯牛奶,喝去25%再加满水,又喝去25%,再加满水后,牛奶的浓度是多少?6、有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克?7、一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?8、有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克?9、已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。
小学奥数系列6-1-10牛吃草问题及参考答案

小学奥数系列6-1-10牛吃草问题一、题目1. 青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。
“廿”即二十之意。
)【解说】题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)2. 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?3. 仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。
仓库里原有的存货若用1辆汽车运则需要多少天运完?4. 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?5. 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?6. 牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则多少头牛96天可以把草吃完?7. 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?8. 林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)9. 一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?10. 由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?11. 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
(完整版)小学五年级奥数:牛吃草问题(题目+答案)

精心整理精心整理牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)① 一个牧场,19头牛只需要24天就将草吃完。
问没有卖掉4设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x 头:6x+2(x-4)=312x=40② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×128头牛)=5(份)从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的44×12=48(份)(头)③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。
假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。
问:原有羊多少只? 设一只羊吃一天的草量为一份.每天新长的草量:(8×20-14×10)÷(20-10)=2(份)原有的草量:8×20-2×20=120(份)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)羊的只数:120÷6=20(只)④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?青草的生长速度:(17×30-19×24)÷(30-24)=9(份)精心整理精心整理原有的草的份数:17×30-9×30=240(份)让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?每天草减少的量:(20×5-16×6)÷(6-5)=4(份)牧场上原有的草:(20+4)×5=120(份)可供11头牛吃:120÷(11+4)=8(天)⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12头牛吃7天,那么可供6头牛吃几天?每天草减少的量:(20×5-12×7)÷(7-5)=8(份)牧场上原有的草:(20+8)×5=140(份)可供6头牛吃:140÷(6+8)=10(天)⑦牧场上的一片牧草,可供24头牛吃6,那么可以供19头牛吃几周?每周新生草量:(18×10-24×6)÷(10-6)原来有草:24×6-9×6=90(份)设19头牛吃完这片牧草用了x周:19x=90+9xX=9。
小学奥数---牛吃草问题02(含答案解析)

小学奥数—牛吃草问题牛吃草问题(奥数知识点总结):基本公式:草生长速度=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);原草量=较长时间×(较长时间牛头数-×生长速度);或原草量=较短时间×(较短时间牛头数-×生长速度)问牛吃能吃几天数时=原草量÷(牛头数《问题的牛头数》-草生长速度)问可供多少头牛吃时=原草量÷吃的天数+草生长速度1、牧场上一片青草,每天牧草都匀速生长。
这片牧草可供20头牛吃10天,或者可供23头牛吃8天。
问:可供16头牛吃几天?2、有一片牧草每天匀速生长,可供10头牛吃12天,可供8头牛吃20天,那么最多可以养多少头牛,使得这片草永远吃不完?3、一个大型的污水池存有一定量的污水,并有污水不断流入,若安排4台污水处理设备,36天可将池中的污水处理完;若安排5台污水处理设备,27天可将池中污水处理完;若安排7台污水处理设备,多少天可将池中污水处理完.4、一水库原存有一定量的水,且水库源头有河水均匀入库,用5台抽水机连续20天可以把水库抽干,用6台同样的抽水机连续15天也可以把水库的水抽干.因工程需要,要求6天抽干水库的水,需要同样的抽水机多少台?5、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?6 、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。
问:该扶梯共有多少级?7、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。
如果同时打开7个检票口,那么需多少分钟?8、有一片草场,10头牛8天可以吃完草场上的草;15头牛,如果从第二天开始每天少一头,可以5天吃完.那么草场上每天长出来的草够多少头牛吃一天.小学奥数-牛吃草、基本公式:草生长速度=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);原草量=较长时间×(较长时间牛头数-草生长速度);或原草量=较短时间×(较短时间牛头数-草生长速度)问牛吃能吃几天数时=原草量÷(牛头数《问题的牛头数》-草生长速度)问可供多少头牛吃时=原草量÷吃的天数+草生长速度1、牧场上一片青草,每天牧草都匀速生长。
牛吃草问题(2)
小学奥数知识点回顾:牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;1、牧场上长满牧草,每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
可供25头牛吃几天?2、一牧场上的青草每天都匀速生长。
这片青草可供27头牛吃6周,或供23头牛吃9周。
那么可供21头牛吃几周?3、一片牧场可供24头牛吃6周,20头牛吃10周,这片牧场可供18头牛吃几周?4、有一水井,继续不断涌出泉水,每分钟涌出的水量相等。
如果使用3架抽水机来抽水,36分钟可以抽完,如果使用5架抽水机来抽水,20分钟可抽完。
现在12分钟内要抽完井水,需要抽水机多少架?5、有一水池,池底有泉水不断涌出。
要想把水池的水抽干,如用10台抽水机需抽8小时;如用8台抽水机需抽12小时。
那么,如果用6台抽水机,需抽多少小时?6、有一牧场长满草,每天牧草匀速生长。
这个牧场可供17头牛吃30天,可供19头牛吃24天。
现有牛若干头在吃草,6天后,杀了4头牛,余下的牛吃了2天将草吃完。
问原来有牛多少头?7、有3个牧场长满草,第一牧场33公亩,可供牛22头吃54天;第二牧场28公亩,可供17头牛吃84天,第三牧场40公亩,可供多少头牛吃24天?(每块地每公亩草量相同且都是匀速生长)8、有一片牧场,24头牛6天可以将草吃完,或21头牛8天可以吃完。
要使牧草永远吃不完,至多可以放牧几头牛?9、禁毒图片展8点开门,但很早便有人排队等候入场。
从第一个观众到达时起,每分钟来的观众人数一样多。
如果开3个入场口,8点9分就不再有人排队;如果开5个入场口,8点5分就没有人排队。
四年级奥数牛吃草问题完整版
四年级奥数牛吃草问题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
牛吃草问题1
1.有一片牧草,已知27头牛6天把草吃尽,23头牛9天也可把草吃尽,如果有21头牛,几天可以把草吃尽?
2.一片草地长满了匀速生长的牧草,可供10头牛吃20天,15头牛吃10天,问可供25头牛吃几天?
3.一块牧场长满了草,每天均匀生长。
这块牧场可供10头牛吃40天,可供15头牛吃20天,问可供25头牛吃几天?
4.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果10人淘水3小时可淘完,5人淘水8小时可淘完,如果2小时淘完,要安排多少人淘水?
5.一水库存水一定,河水均匀入库,5台抽水机连续20天可抽干水,6台同样的抽水机连续15天可抽干,若要求6天抽干,需要多少台同样的抽水机?
6.一个水池原有水量一定,有流水每天均匀流入池里,用5台抽水机20天可以抽完,用6台同样的抽水机15天可以抽完,若6天抽完池里的水,需用同样的抽水机多少台?
7.有一片牧草,12头牛28天可吃完10公亩牧场上全部的牧草,21头牛63天可吃完30公亩牧场上全部的牧草,多少头牛126天可吃完72公亩牧场的草(每公亩原有的草量,每公亩每天生长的草量相同)。
(小学奥数)牛吃草问题(二)
6-1-10.牛吃草問題(二)教學目標1.理解牛吃草這類題目的解題步驟,掌握牛吃草問題的解題思路.2.初步瞭解牛吃草的變式題,會將一些變式題與牛吃草問題進行區別與聯繫知識精講英國科學家牛頓在他的《普通算術》一書中,有一道關於牛在牧場上吃草的問題,即牛在牧場上吃草,牧場上的草在不斷的、均勻的生長.後人把這類問題稱為牛吃草問題或叫做“牛頓問題”.“牛吃草”問題主要涉及三個量:草的數量、牛的頭數、時間.難點在於隨著時間的增長,草也在按不變的速度均勻生長,所以草的總量不定.“牛吃草”問題是小學應用題中的難點.解“牛吃草”問題的主要依據:①草的每天生長量不變;②每頭牛每天的食草量不變;③草的總量=草場原有的草量+新生的草量,其中草場原有的草量是一個固定值④新生的草量=每天生長量⨯天數.同一片牧場中的“牛吃草”問題,一般的解法可總結為:⑴設定1頭牛1天吃草量為“1”;⑵草的生長速度=(對應牛的頭數⨯較多天數-對應牛的頭數⨯較少天數)÷(較多天數-較少天數);⑶原來的草量=對應牛的頭數⨯吃的天數-草的生長速度⨯吃的天數;⑷吃的天數=原來的草量÷(牛的頭數-草的生長速度);⑸牛的頭數=原來的草量÷吃的天數+草的生長速度.“牛吃草”問題有很多的變例,像抽水問題、檢票口檢票問題等等,只有理解了“牛吃草”問題的本質和解題思路,才能以不變應萬變,輕鬆解決此類問題.例題精講模組一、“牛”吃草問題的變例【例 1】在地鐵車站中,從月臺到地面有一架向上的自動扶梯.小強乘坐扶梯時,如果每秒向上邁一級臺階,那麼他走過20級臺階後到達地面;如果每秒向上邁兩級臺階,那麼走過30級臺階到達地面.從月臺到地面有級臺階.【考點】牛吃草問題【難度】3星【題型】填空【關鍵字】對比思想方法【解析】本題非常類似於“牛吃草問題”,如將題目改為:“在地鐵車站中,從月臺到地面有一架向上的自動扶梯.小強乘坐扶梯時,如果每秒向上邁一級臺階,那麼他走過20秒後到達地面;如果每秒向上邁兩級臺階,那麼走過15秒到達地面.問:從月臺到地面有多少級臺階?”採用牛吃草問題的方法,電梯20155-=秒內所走的階數等於小強多走的階數:21512010÷=階/秒,扶梯長度為20(12)60⨯-⨯=階,電梯的速度為1052⨯+=(階)。
小学奥数牛吃草
• 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021
解:假设1头牛1天吃的草的数量是1份
10×20=200份……原草量+20天的生长量
15×10=150份……原草量+10天的生长量
草每天的生长量: (200-150)÷(20-10)=5份
原草量: 200-20×5=100份 或150-10×5=100份
100份 + 5份
剩下25-5=20头
5头
吃
20头牛吃100份草能吃几天? 100÷(25-5)=5天
(100-90)÷(6-5)=10份 原草量: 100+5×10=150份
或90+6×10=150份
150份 - 10份
剩下150-100=50份
10天减少 10×10=100份
50份草可供多少头牛吃10天?
(150-10×10)÷10=5头
[自主训练] 由于天气逐渐寒冷,牧场上的牧草每天以均 匀的速度减少,经测算,牧场上的草可供30头牛吃8天, 可供25头牛吃9天,那么可供21头牛吃几天?
•
例2 由于天气逐渐冷起来,牧场上的草不仅不长大,反 而以固定速度在减少。已知某块草地上的草可供20头牛 吃5天,或可供15头牛吃6天。照此计算,可供多少头牛 吃10天?
解:假设1头牛1天吃的草的数量是1份
20×5=100份……原草量-5天的减少量
15×6=90份……原草量-6天的减少量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛吃草问题(2)
例1:由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,已知某块草地上的草可供20头牛吃5天,或供15头牛吃6天。
照此计算:可供多少头牛吃10天?
练习:
1、天气渐冷,牧场上的草以固定的速度在减少,已知牧场上的草可供40头牛吃 4天,或供24头牛吃6天,照此计算:这个牧场可供多少头牛吃8天?4头牛可吃多少天?
2、有一个酒槽,每天漏泄等量的酒,现让6人饮此酒,则4天喝完;若让4人
饮此酒,则5天喝完。
每人饮酒量相同,问:若16人饮几天喝完?几人可喝 8天?
3、一个水池,装有一个进水管和三个同样的出水管。
先打开进水管,等水池存
了一些水后,再打开出水管。
如果同时打开两个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。
请问:出水管比进水管晚开多少分钟?
例2:自动扶梯以均匀的速度从下往上行驶,两位性急的孩子要从扶梯上楼。
已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩子用5
分钟到达楼上,女孩用6分钟到达楼上。
问:该扶梯共有多少级台阶?
练习:
1、自动扶梯以均匀的速度行驶,小明和小红要从扶梯上楼,已知小明每分钟走 25级台阶,小红每分钟走20级台阶。
结果小明用5分钟,小红用6分钟分别到达楼上,该扶梯共有多少级台阶?
2、两个顽皮的孩子逆着自动扶梯的方向行走,在20秒里,男孩可走27级台阶,
女孩可走24级台阶,男孩走2分钟到达另一端,女孩用3分钟到达另一端。
该扶梯共有多少级台阶?
能力检测:
1、由于天气逐渐变冷,牧场上的草每天以均匀的速度在减少。
经计算,牧场上
的草可供20头牛吃5天,或可供16头牛吃6天。
那么可供11头牛吃几天?
2、冬天来了,牧场上的牧草每天均匀减少,经计算,牧场上的草可供25头牛吃 6天,或可供15头牛吃8天。
可供多少头牛吃10天?
3、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底,白天往下爬,一只每天
白天爬20分米,另一只爬15分米,夜里往下滑,它们滑行的速度相同。
结果一只恰好用5个昼夜到达井底,另一只恰好用6个昼夜到达井底。
那么井深多少米?
4、一片牧草,由于天气变冷,导致牧草均匀减少。
已知这片牧草可供15头牛吃 12天,或者可供7头牛吃20天。
那么①可供10头牛吃几天?②可供几头牛吃6天?
5、经测算,地球上的资源可供100亿人生活100年,或供80亿人生活300年,
假设地球新增资源的速度是一样,那么为满足人类不断发展的需要,地球最多能养活多少人?。