小学奥数 牛吃草问题
小学奥数之牛吃草问题含答案

小学奥数之牛吃草问题含答案This model paper was revised by LINDA on December 15, 2012.“牛吃草问题就是追及问题,牛吃草问题就是工程问题。
”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数?想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12?=60÷12?=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20?=5.5(天)答:供25头牛可以吃5.5天。
----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
小学奥数中的牛吃草问题

一牧场,可供58头牛吃7天,或者可供50头牛吃9天,假设草的生长量每天相等,每头牛每天的吃草量也相等,那么,可供多少头牛吃6天?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。
【解答】①假设1头牛1天吃1份草②每天的新长草:58×7=406(份),50×9=450(份)450-406=44(份),44÷(9-7)=22份,即每天新长草22份。
③原有草:406-7×22=252(份)④分牛讨论原有草原有草7天的新长草9天的新长草多出的2天新长草新长草:22份→22头(每天22头牛专门应付新长草)原有草:252份,252÷6=42(份)→42头合计22+42=64头牛答:可供64头牛吃6天(化动为静)有一片牧场,草每天都在迅速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。
设每头牛每天吃草的量是相等的,如果放牧18头牛,几天可以吃完牧草?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。
【解答】①假设1头牛1天吃1份草②每天的新长草:24×6=144(份),21×8=168(份)168-144=24(份),24÷(8-6)=12份,即每天新长草12份。
③原有草:144-6×12=72(份)④分牛讨论原有草原有草6天的新长草8天的新长草多出的2天新长草新长草:12份→12头(每天12头牛专门应付新长草)原有草:72份,72÷(18-12)=12(天)如果放牧18头牛,12天可以吃完牧草(化动为静)如果要使队伍10分钟消失,需要打开多少个检票口?【思路】其实这也是一道变形的牛吃草问题。
排队等候的人是“草”,检票口是“牛”,检票前若干分钟排队的人是“原有草”,每分钟新增的人是“新长草”。
小学奥数系列6-1-10牛吃草问题及参考答案

小学奥数系列6-1-10牛吃草问题一、题目1. 青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。
“廿”即二十之意。
)【解说】题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)2. 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?3. 仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。
仓库里原有的存货若用1辆汽车运则需要多少天运完?4. 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?5. 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?6. 牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则多少头牛96天可以把草吃完?7. 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?8. 林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)9. 一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?10. 由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?11. 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
(完整版)小学五年级奥数:牛吃草问题(题目+答案)

精心整理精心整理牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)① 一个牧场,19头牛只需要24天就将草吃完。
问没有卖掉4设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x 头:6x+2(x-4)=312x=40② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×128头牛)=5(份)从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的44×12=48(份)(头)③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。
假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。
问:原有羊多少只? 设一只羊吃一天的草量为一份.每天新长的草量:(8×20-14×10)÷(20-10)=2(份)原有的草量:8×20-2×20=120(份)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)羊的只数:120÷6=20(只)④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?青草的生长速度:(17×30-19×24)÷(30-24)=9(份)精心整理精心整理原有的草的份数:17×30-9×30=240(份)让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?每天草减少的量:(20×5-16×6)÷(6-5)=4(份)牧场上原有的草:(20+4)×5=120(份)可供11头牛吃:120÷(11+4)=8(天)⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12头牛吃7天,那么可供6头牛吃几天?每天草减少的量:(20×5-12×7)÷(7-5)=8(份)牧场上原有的草:(20+8)×5=140(份)可供6头牛吃:140÷(6+8)=10(天)⑦牧场上的一片牧草,可供24头牛吃6,那么可以供19头牛吃几周?每周新生草量:(18×10-24×6)÷(10-6)原来有草:24×6-9×6=90(份)设19头牛吃完这片牧草用了x周:19x=90+9xX=9。
四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解work Information Technology Company.2020YEAR例1:牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。
可以吃:72÷6=12天。
例2:一片牧场上长满牧草,如牧草每天都匀速生长。
则牧场可供27头牛吃6天或23头牛吃9天。
问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。
我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。
例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。
如果用12人舀水,3小时舀完。
如果只有5个人舀水,要10小时才能舀完。
现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。
设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。
六年级奥数-牛吃草问题

2、有一个长方形的水箱,上面有一个注水孔,底
面有一个出水孔,两孔同时打开后,如果每小 时注水30立方分米,7小时可以注满水箱;如果 每小时注水45立方分米,注满水箱可少用2.5小
时。那么每小时由底面小孔排出多少里放分米 的水(设每小时排水量相同)?
2、由于天气逐渐冷起来,牧场上的草以固定速度 在减少。已知牧场上的草可供33头牛吃5天或可 供24头牛吃6天。照此计算这个牧场可供多少头 牛吃10天?
【例题3】
自动扶梯以均匀速度由下往上行驶着,两位性急的孩 子要从扶梯上楼。已知男孩每分钟走20级台阶,女孩 每分钟走15级台阶,结果男孩用5分钟到达楼上,女 孩用了6分钟到达楼上。问:该扶梯共有多少级台阶?
“牛吃草”问题
【例题1】
一片青草地,每天都匀速长出青草,这片青草可供 27头牛吃6周或23头牛吃9周,那么这片草地可供21 头牛吃几周?
举一反三1
1、一片草地,每天都匀速长出青草,如果可供24头 牛吃6天,20头牛吃10天,那么可供19头牛吃几天?
2、牧场上一片草地,每天牧草都匀速生长,这片 牧草可供10头牛吃20天,或者可供15头牛吃10 天,问可供25头牛吃几天?
【例题4】
一只船有一个漏洞,水以均匀的速度进入船内, 发现漏洞时已经进了一些水。如果用12人舀水, 3小时舀完。如果只有5个人舀水,要10小时才 能舀完。现在要想2小时舀完,需要多少人?
举一反三4
1、有一水池,池底有泉水不断涌出。用10部抽水 机20小时可以把水抽干,用15部相同的抽水机 10小时可以把水抽干。那么要用25部这样的抽 水机多少小时可以把水抽干?
举一反三3
1、自动扶梯以均匀速度行驶着,小明和小红从扶梯 上楼。已知小明每分钟走25级台阶,小红每分钟走 20级台阶,结果小明用5分钟小红用了6分钟分别到 达楼上。该扶梯共有多少级台阶??
六年级奥数—牛吃草问题

六年级奥数——牛吃草问题牛吃草问题常用到四个基本公式;分别是:①草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数②原有草量=牛头数×吃的天数-草的生长速度×吃的天数③吃的天数=原有草量÷牛头数-草的生长速度④牛头数=原有草量÷吃的天数+草的生长速度这四个公式是解决牛吃草问题的基础..一般设每头牛每天吃草量不变;设为"1";解题关键是弄清楚已知条件;进行对比分析;从而求出每日新长草的数量;再求出草地里原有草的数量;进而解答题总所求的问题..练习1.牧场上长满牧草;草平均匀速生长;这片牧场可供10头牛吃20天;可供15头牛吃10天..问可供25头牛吃几天2.一块草地长满了草;草每天还在匀速生长..已知3头牛36天可把草吃光;5头牛20天可把草吃光..现在要求12天把草吃光;需要几头年牛去吃3.一块草地长满了草;草每天匀速生长..如果17头牛去吃;30天可把草吃光;如果19头牛去吃;24天可把草吃光..现在有若干头牛去吃草;吃了6天后;4头牛死亡;余下的牛继续吃了2天才将草吃光..问原来有多少头牛4.一个水池装有1根进水管和8根相同的排水管..先打开进水管给水池注入一定数量的水;然后同时打开排水管排水;当然进水管还在继续进水..如果打开全部排水管;则3个小时可将水池中的水排光;如果只打开3根排水管;则要18小时才能将水池中的水排光..问:想要8小时排光池中的水;至少需打开几根排水管5.三块草地长满草;草每天匀速生长..第一块草地33亩;可供22头牛吃54天;第二块草地28亩;可供17头牛吃84天;第三块草地40亩;可供多少头牛吃24天6.牧场上的青草每天都在匀生长..这片牧场可供27头牛吃6天;或者可供23头牛吃9天..那么可供21头牛吃几天7.有一片牧场;草每天都匀速生长草每天增长量相等;如果放牧24头牛;则6天吃完牧草;如果放牧21头牛;则8天可吃完牧草;假设每头牛吃草的量是相等的..1如果放牧16头牛;几天可以吃完牧草 2要使牧草永远吃不完;最多可放多少头牛8.有一水池;池底不断有泉水匀速涌出..用10台抽水机20小时可将水抽干;用15台相同的抽水机10小时可将水抽干..问用25台抽水机多少小时可将水抽干9.一块草地;草每天匀速生长..10头牛3天可吃光;5头牛8天可吃光..如果2天要吃光;需要多少头牛来吃10.一湖存有一定量的水;流入均匀入湖..5台抽水机20天可抽干..6台同样的抽水机15天可抽干..若要求6天抽干;需几台这样的抽水机11.一个水池有10根进水管和10根相同的排水管..先打开进水管给水池注入一定的水;然后同时打开排水管进水管不关闭..如果打开10根排水管;则3个小时可将水池里的水排光;如果打6根排水管;则6个小时可将水池里的水排光..问想要10个小时排空水池;则至少要开几根排水管12.一片牧场;可供18头牛吃4天;可供23头牛吃3天..现在有13头牛;放牧了3天后;又购进5头牛..问还吃几天;正好吃完全部的草13.由于天气逐渐冷起来;牧场上的草不仅不增加;反而以固定的速度在减少..已知某牧场的草可供20头牛吃5天或可供15头牛吃6天;照此计算可供多少头牛吃10天14.某车站在检票前若干分钟就开始排队;每分钟来的旅客人数一样多;从开始检票到等候检票的队伍消失;同时开4个检票口需30分钟;同时开5个检票口需20分钟;如果同时开7个检票口;那么需要多少分钟15.仓库里原有一批存货;后又陆续运货进仓;且每天运进的货一样多..用同样的汽车运货出仓;如果每天用4辆汽车;则9天恰好运完;如果每天用5辆汽车;则6天恰好运完..仓库原有的存货若用1辆汽车运;则需要多少天才能运完16.有快;中;慢三辆车同时从同一地点出发;沿同一公路追赶前面的一个骑车人;这三辆车分别有6他钟;10分钟和12分钟追上了骑车人..现在已知快车速度为24千米/小时;中速车速度为20千米/小时;那么慢速车每小时走多少千米。
奥数专题之牛吃草问题

奥数专题之牛吃草问题1【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【答案】C【例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【答案】C【例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【答案】D【注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。
下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。
【例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。
问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】A.5台B.6台C.7台D.8台【答案】B【例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?A.16B.20C.24D.28【答案】C【例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)A.2周B.3周C.4周D.5周【答案】C【例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。
某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了A.2小时B.1.8小时C.1.6小时D.0.8小时【答案】D奥数专题之牛吃草问题21有一片牧场,草每天都匀速的生长,如果放牧24头牛,则6天吃完草;如果放牧21头牛则8天吃完草.设每头每天吃相等的,问2.如果放牧16头牛几天可吃完牧草?3.要使草永远吃不完,最多只能放牧几头牛?4,有一片牧草,如果养27头牛,这些牛6天可以把草吃尽,如果养23头牛,这些牛9天可以把草吃尽,如果养21头牛,这些牛几天可以把草吃尽?5,牧场上有一片牧草,供24头牛6周吃完,供18头牛10周吃完.假定草的生长速度不变,那么供19头牛需要几周吃完?6.有三块牧地,面积分别为3又1/3平方米,10平方米,24平方米,第一块牧地12头可吃4星期,第二块牧地21头可吃9星期,第三块牧地可供几头牛吃18星期?7.一批货物,用5匹马运,6天可以运完;用6头牛运,4天可以运完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一:牛吃草问题
※.
这里我们把草场草量称为“原有量”把每天长出的草量称为“日产量”
那么牛吃草问题的核心公式为:
原有量 =(牛数-日产量)×天数
※.解题思路:
A.对于简单的牛吃草问题,一般可以根据已知条件,分步骤解答。
首先:求出日产量(每天长出的草量)
然后:求出原有量(草场草量)
最后:求出题目。
B.对于较为复杂的牛吃草问题,我们将在下面例题中,具体分析。
-----------------------------------------------------------------
例1.牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?
分析:这是一道基本的牛吃草问题,我们可以按照思路A解答。
解:设1头牛1天吃的草为1份。
每天长出的草量为:(10×20-15×10)÷(20-10)= 5(份)
草场原有的草量为:10×20-5×20 = 100(份)
25头牛可以吃的天数:100÷(25-5)= 5(天)
答:这片草地可供25头牛吃5天。
课堂练兵:
牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20
天,或者可供15头牛吃10天。
问:可供几头牛吃5天?
例2.由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?
分析:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。
但我们可以利用例1的方法,求出每天减少的草量和原有的草量。
解:设1头牛1天吃的草为1份。
每天减少的草量为:(20×5-15×6)÷(6-5)= 10(份)
草场原有的草量为:20×5+10×5 = 150(份)
设:可供x头牛吃10天?
150 = (x+10)×10
x = 5
答:可供5头牛吃10天。
例3. 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用
了5分钟到达楼上,女孩用了6分钟到达楼上。
问:该扶梯共有多少
级?
分析:与例1比较,“总的草量”变成了“扶梯的梯级总数”,“草”
变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草
问题。
解:自动扶梯每分钟走:(20×5-15×6)÷(6-5)=10(级),自动扶梯共有:(20+10)×5=150(级)。
答:扶梯共有150级。
例4. 有一水池,池底有泉水不断涌入。
用10部抽水机20时可以把水抽干;
用15部同样的抽水机,10时可以把水抽干。
那么,用25部这样的抽
水机多少小时可以把水抽干?
分析:这里水池相当于草场,抽水机相当于牛,抽水的时间相当于牛吃草的天数,所以也可以看作牛吃草问题解决。
解:设1部抽水机1小时抽掉的水量为1份。
每小时涌入的水量:(10×20-15×10)÷(20-10)= 5(份)
水池原有水量:10×20-5×20 = 100(份)
25部抽水机抽干水的时间:100÷(25-5)= 5(小时)答:用25部这样的抽水机5小时可以把水抽干。
习题:
1.一牧场上的青草每天都匀速生长。
这片青草可供27头牛吃6周或供23头牛吃9周。
那么,可供21头牛吃几周?
2.有一条船触礁破了一个洞,河水均匀的进入船内,发现漏洞时,船已进了一些水,如果12个人淘水则3小时可以把水淘完,如果5人淘水,则10小时可以把水淘完,如果需要2小时内淘完水,需要多少人?
3.有一片青草,每天生长的速度相同,已知这片青草可供15头牛吃20天,或者76只羊吃12天,如果一头牛吃草量相当于4只羊的吃草量,那么8头牛和64只羊一起吃,可以吃多少天?
4.某个水库原存有一定量的水河水均匀流入水库,5台抽水机连续20天可可将水库的水抽干,6台同样的抽水机15天可将水抽干,若要6天抽干水库的水,则需要多少台同样的抽水机?
*例5*.一个水池装一个进水管和三个同样的出水管。
先打开进水管,等水池存了一些水后,再打开出水管。
如果同时打开2个出水管,那么8
分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。
那么出水管比进水管晚开多少分钟?
分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水
管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也
与例1相似。
出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水。
因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题。
设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量。
两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是
有的水,可以求出原有水的水量为
解:设出水管每分钟排出的水为1份。
每分钟进水量
答:出水管比进水管晚开40分钟。
*练习*.一牧场上的青草每天都匀速生长。
这片青草可供17头牛吃30天,或供19头牛吃24天。
现有一群牛,吃了6天后卖掉4头,余下的牛又吃了2天将草吃完,这群牛原来有多少头?。