小学数学牛吃草问题综合讲解
牛吃草问题的详细解法

牛吃草问题的详细解法一、牛吃草问题基础概念。
1. 问题描述。
- 牛吃草问题又称为消长问题或牛顿问题。
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
2. 基本公式。
- 设每头牛每天的吃草量为1份。
- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。
- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。
二、牛吃草问题示例及解析。
1. 题目1。
- 有一片牧场,草每天都在匀速生长。
如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。
问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。
- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。
要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。
- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。
- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。
2. 题目2。
- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。
那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。
- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。
小学数学《牛吃草问题》

小学数学《牛吃草问题》“牛吃草”问题【知识梳理】牛吃草问题是牛顿问题,因牛顿提出而得名的。
“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用3x10÷6=5(天),如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。
因为草每天走在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。
【重难点】解题思路培养:解答这类题的关键是要想办法从变化中找到不变的量。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。
正确计算草地上原有的草及每天长出的草,问题就容易解决了。
掌握四个基本:公式解决牛吃草问题常用到四个基本公式,分别是:假设定一头牛一天吃草量为“1”1)草的生长速度=(对应的牛头数x吃的较多天数-相应的牛头数x吃的较少天数)÷(吃的较多天数-吃的较少天数);2)原有草量=牛头数x吃的天数-草的生长速度x吃的天数;`3)吃的天数=原有草量÷(牛头数-草的生长速度):4)牛头数=原有草量÷吃的天数+草的生长速度。
[特色讲解]1.牧场上有一片牧草,可供27 头牛吃6周,或者供23 头牛吃9周。
如果牧草每周匀速生长,可供21头牛吃几周?答案:12周解析:27x6=16223x9=207207-162=4545/(9-6)=15每周生长数162-15x6=72(原有量)72/(21-15)=12周2.有一口水井,如果水位降低,水就不断地匀速涌出,且到了一定的水位就不再上升。
现在用水桶吊水,如果每分吊4桶,则15分钟能吊干,如果每分钟吊8桶,则7分吊干。
现在需要5分钟吊干,每分钟应吊多少桶水?答案:11桶解析:4x15=608x7=5660-56=44/(15-7)=0.5(每分钟涌量)60-15x0.5=52.5(原有水量)52.5+/(5x0.5)/5=11 桶练习题1、有一块草地,可供15头牛吃20天,供76只羊吃12天,已知一头牛和四只羊的吃草量一样多。
牛吃草问题含例题答案解析讲解

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场;是17世纪英国伟大的科学家牛顿提出来的..典型牛吃草问题的条件是假设草的生长速度固定不变;不同头数的牛吃光同一片草地所需的天数各不相同;求若干头牛吃这片草地可以吃多少天..由于吃的天数不同;草又是天天在生长的;所以草的存量随牛吃的天数不断地变化..小升初冲刺第2讲牛吃草问题基本公式:1 设定一头牛一天吃草量为“1”2草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;3原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4吃的天数=原有草量÷牛头数-草的生长速度;5牛头数=原有草量÷吃的天数+草的生长速度..例1、牧场上长满了牧草;牧草每天匀速生长;这片牧草可供10头牛吃20天;可供15头牛吃10天..问:这片牧草可供25头牛吃多少天解:假设1头牛1天吃的草的数量是1份草每天的生长量:200-150÷20-10=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷25-5=5天自主训练牧场上长满了青草;而且每天还在匀速生长;这片牧场上的草可供9头牛吃20天;可供15头牛吃10天;如果要供18头牛吃;可吃几天解:假设1头牛1天吃的草的数量是1份草每天的生长量:180-150÷20-10=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷18-3=8天例2、由于天气逐渐冷起来;牧场上的草不仅不长大;反而以固定速度在减少..已知某块草地上的草可供20头牛吃5天;或可供15头牛吃6天..照此计算;可供多少头牛吃10天解:假设1头牛1天吃的草的数量是1份草每天的减少量:100-90÷6-5=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量 150-10×10÷10=5头自主训练由于天气逐渐寒冷;牧场上的牧草每天以均匀的速度减少;经测算;牧场上的草可供30头牛吃8天;可供25头牛吃9天;那么可供21头牛吃几天解:假设1头牛1天吃的草的数量是1份草每天的减少量:240-225÷9-8=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷21+15=10天例3、自动扶梯以均匀速度由下往上行驶着;两位性急的孩子要从扶梯上楼..已知男孩每分钟走20级梯级;女孩每分钟走15级梯级;结果男孩用了5分钟到达楼上;女孩用了6分钟到达楼上..问:该扶梯共有多少级男孩:20×5 =100级自动扶梯的级数-5分钟减少的级数女孩;15×6=90级自动扶梯的级数-6分钟减少的级数每分钟减少的级数= 20×5-15×6 ÷6-5=10级自动扶梯的级数= 20×5+5×10=150级自主训练两个顽皮孩子逆着自动扶梯行驶的方向行走;男孩每秒可走3级阶梯;女孩每秒可走2级阶梯;结果从扶梯的一端到达另一端男孩走了100秒;女孩走了300秒..问该扶梯共有多少级3×100=300自动扶梯级数+100秒新增的级数2×300=600自动扶梯级数+300秒新增的级数每秒新增的级数:2×300-3×100÷300-100=1.5级自动扶梯级数= 3×100-100×1.5=150级1. 有一片牧场;操每天都在匀速生长每天的增长量相等;如果放牧24头牛;则6天吃完草;如果放牧21头牛;则8天吃完草;设每头牛每天的吃草量相等;问:要使草永远吃不完;最多只能放牧几头牛假设1头1天吃1个单位246=144218=168168-144=24每天长的草可供24/2=12头牛吃最多只能放12头牛2;有一片草地;草每天生长的速度相同..这片草地可供5头牛吃40天;或6供头牛吃30天..如果4头牛吃了30天后;又增加2头牛一起吃;这片草地还可以再吃几天假设1头1天吃1个单位540=200;630=180200-180=20每天长的草:20/40-30=2原有草:200-240=120430=120 ;302=60 60/4=15天3;假设地球上新增长资源的增长速度是一定的;照此推算;地球上的资源可供110亿人生活90年;或可供90亿人生活210年;为了人类不断繁衍;那么地球最多可以养活多少亿人假设1亿人头1天吃1个单位11090=9900;90210=1890018900-9900=90009000/210-90=754;一游乐场在开门前有100人排队等候;开门后每分钟来的游客是相同的;一个入口处每分钟可以放入10名游客;如果开放2个入口处20分钟就没人排队;现开放4个入口处;那么开门后多少分钟后没人排队22010=400400-100=300300/20=15100+154=160160/410=41因为草量=原有草量+新长出的草量;而且草量是均匀增长的..所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量; 即为:吃的较多天数时的总草量=草地原有草量+草的生长速度较多天数时的时间..同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量;即为:吃的较少天数时的总草量=草地原有草量+草的生长速度较少天数时的时间..两个一做差;式子中的“原有草量”就被减掉了;等号的左边就是两次情况之下总草量的差;右边等于草的生长速度两次情况下的时间差;所以直接把时间差除到左边去;就得到了草的生长速度了..2牛吃的草的总量包括两个方面;一是原来草地上的草;而是新增长出来的草..所以“牛头数×吃的天数”表示的就是牛一共吃了多少草;牛在这段时间把草吃干净了;所以牛一共吃了多少草就也表示草的总量..当然草的总量减去新增长出来的草的数量;就剩下原来草地上面草的数量了..牛吃草问题概念及公式问题又称为消长问题或牛顿牧场;是17世纪英国伟大的科学家牛顿提出来的..典型牛吃草问题的条件是假设草的生长速度固定不变;不同头数的牛吃光同一片草地所需的天数各不相同;求若干头牛吃这片草地可以吃多少天..由于吃的天数不同;草又是天天在生长的;所以草的存量随牛吃的天数不断地变化..解决牛吃草问题常用到四个基本公式;分别是︰1 设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` 3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度..这四个公式是解决消长问题的基础..由于牛在吃草的过程中;草是不断生长的;所以解决消长问题的重点是要想办法从变化中找到不变量..牧场上原有的草是不变的;新长的草虽然在变化;但由于是匀速生长;所以每天新长出的草量应该是不变的..正是由于这个不变量;才能够导出上面的四个基本公式..牛吃草问题经常给出不同头数的牛吃同一片次的草;这块地既有原有的草;又有每天新长出的草..由于吃草的牛头数不同;求若干头牛吃的这片地的草可以吃多少天..解题关键是弄清楚已知条件;进行对比分析;从而求出每日新长草的数量;再求出草地里原有草的数量;进而解答题总所求的问题..这类问题的基本数量关系是:1.牛的头数×吃草较多的天数-牛头数×吃草较少的天数÷吃的较多的天数-吃的较少的天数=草地每天新长草的量..2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草..解多块草地的方法多块草地的“牛吃草”问题;一般情况下找多块草地的最小公倍数;这样可以减少运算难度;但如果数据较大时;我们一般把面积统一为“1”相对简单些..“牛吃草”问题分析华图公务员考试研究中心数量关系资料分析教研室研究员姚璐华图名师姚璐例1有一块牧场;可供10头牛吃20天;15头牛吃1 0天;则它可供25头牛吃多少天A.3B.4C.5D.6华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天;这片草场可供25头牛吃Y天根据核心公式代入200-150/20-10=5 1020-520=100 100/25-5=5天璐例2有一块牧场;可供10头牛吃20天;15头牛吃10天;则它可供多少头牛吃4天A.20B.25C.30D.35华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天;根据核心公式代入20×10-15×10=5 10×20-5×20=100 100÷4+5=30头华图名师姚璐例3如果22头牛吃33公亩牧场的草;54天后可以吃尽;17头牛吃28公亩牧场的草;84天可以吃尽;那么要在24天内吃尽40公亩牧场的草;需要多少头牛A.50B.46C.38D.35华图名师姚璐答案D华图名师姚璐解析设每公亩牧场每天新长出来的草可供X头牛吃1天;每公亩草场原有牧草量为Y ;24天内吃尽40公亩牧场的草;需要Z头牛根据核心公式:;代入;因此 ;选择D华图名师姚璐注释这里面牧场的面积发生变化;所以每天长出的草量不再是常量..下面我们来看一下上述“牛吃草问题”解题方法;在真题中的应用..华图名师姚璐例4有一个灌溉用的中转水池;一直开着进水管往里灌水;一段时间后;用2台抽水机排水;则用40分钟能排完;如果用4台同样的抽水机排水;则用16分钟排完..问如果计划用10分钟将水排完;需要多少台抽水机广东2006上A.5台B.6台C.7台D.8台华图名师姚璐答案B华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量;共需Y台抽水机有恒等式:解 ;得 ;代入恒等式华图名师姚璐例5有一水池;池底有泉水不断涌出;要想把水池的水抽干;10台抽水机需抽8小时;8台抽水机需抽12小时;如果用6台抽水机;那么需抽多少小时北京社招2006A.16B.20C.24D.28华图名师姚璐答案C华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量;共需Y小时有恒等式:解 ;得 ;代入恒等式华图名师姚璐例6林子里有猴子喜欢吃的野果;23只猴子可在9周内吃光;21只猴子可在12周内吃光;问如果有33只猴子一起吃;则需要几周吃光假定野果生长的速度不变浙江2007A.2周B.3周C.4周D.5周华图名师姚璐答案C华图名师姚璐解析设每天新生长的野果足够X只猴子吃;33只猴子共需Y周吃完有恒等式:解 ;得 ;代入恒等式华图名师姚璐例7物美超市的收银台平均每小时有60名顾客前来排队付款;每一个收银台每小时能应付80名顾客付款..某天某时刻;超市如果只开设一个收银台;付款开始4小时就没有顾客排队了;问如果当时开设两个收银台;则付款开始几小时就没有顾客排队了浙江20 06A.2小时B.1.8小时C.1.6小时D.0.8小时华图名师姚璐答案D华图名师姚璐解析设共需X小时就无人排队了..例题:1、旅客在车站候车室等车;并且排队的乘客按一定速度增加;检查速度也一定;当车站放一个检票口;需用半小时把所有乘客解决完毕;当开放2个检票口时;只要10分钟就把所有乘客OK了求增加人数的速度还有原来的人数设一个检票口一分钟一个人1个检票口30分钟30个人2个检票口10分钟20个人30-20÷30-10=0.5个人原有1×30-30×0.5=15人或2×10-10×0.5=15人2、有三块草地;面积分别是5;15;24亩..草地上的草一样厚;而且长得一样快..第一块草地可供10头牛吃30天;第二块草地可供28头牛吃45天;问第三块地可供多少头牛吃80天这是一道牛吃草问题;是比较复杂的牛吃草问题..把每头牛每天吃的草看作1份..因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天;每亩面积长84-60=24份所以;每亩面积每天长24÷15=1.6份所以;每亩原有草量60-30×1.6=12份第三块地面积是24亩;所以每天要长1.6×24=38.4份;原有草就有24×12=288份新生长的每天就要用38.4头牛去吃;其余的牛每天去吃原有的草;那么原有的草就要够吃80天;因此288÷80=3.6头牛所以;一共需要38.4+3.6=42头牛来吃..两种解法:解法一:设每头牛每天的吃草量为1;则每亩30天的总草量为:1030/5=60;每亩45天的总草量为:2845/15=84那么每亩每天的新生长草量为84 -60/45-30=1.6每亩原有草量为60-1.630=12;那么24亩原有草量为1 224=288;24亩80天新长草量为241.680=3072;24亩80天共有草量3 072+288=3360;所有3360/80=42头解法二:10头牛30天吃5亩可推出30头牛30天吃15亩;根据28头牛4 5天吃15亩;可以推出15亩每天新长草量28×45-30×30/45-30=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24头2 4亩需牛:180/80+2424/15=42头。
四年级奥数-牛吃草问题例题讲解

例1:牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天?分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。
可以吃:72÷6=12天。
例2:一片牧场上长满牧草,如牧草每天都匀速生长。
则牧场可供27头牛吃6天或23头牛吃9天。
问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。
我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。
例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。
如果用12人舀水,3小时舀完。
如果只有5个人舀水,要10小时才能舀完。
现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。
设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。
例4:有一片牧场,24头牛6天可以将草吃完,或21头牛8天可以吃完。
要使牧草永远吃不完,至多可以放牧几头牛?分析:要牧草永远吃不完,就要保证每天最多只吃新增的量,否则一旦超过每天新增的量,吃了原来的量,总有一天会吃完。
牛吃草问题解题技巧讲解

牛吃草问题解题技巧讲解牛吃草问题是一种常见的数学问题,它涉及到物理、数学、经济学等多个领域,具有广泛的应用和重要的意义。
下面,我将为您讲解牛吃草问题的解题技巧。
一、牛吃草问题的基本特征牛吃草问题的基本特征如下:1. 有一个固定的牧场,面积足够大,可以容纳一定数量的牛。
2. 牧场中的草是不断生长的,每天生长速度相同。
3. 牛每天吃掉的草量与牛的数量成反比,即每头牛每天吃掉的草量是一定的。
4. 牛的数量发生变化,草的生长速度也会发生变化。
二、牛吃草问题的解题步骤1. 列出牛吃草问题的基本方程:草场每天的草量增加量 = 每头牛每天的吃草量×牛的数量草场的总草量 = 草场每天的草量增加量 + 每头牛每天的吃草量×牛的数量2. 确定变量和未知数:变量:牛的数量 n;未知数:草场每天的草量增加量 x;草场的总草量 y。
3. 分析问题,画出草场增长图:根据题目中给出的信息,画出草场增长图,确定变量和未知数。
4. 求解方程,解决问题:根据草场增长图和基本方程,解出方程,得到牛的数量 n 和草场每天的草量增加量 x。
5. 重复检查,确定答案:在解决问题的过程中,要不断重复检查求解的结果,确保答案正确无误。
三、牛吃草问题的变形和扩展牛吃草问题有多种变形和扩展,下面列举几种常见的情况:1. 多牧场牛吃草问题:在牛吃草问题中,一个牧场同时可供多头牛吃草,此时需要分别列出每头牛每天吃掉的草量和草场每天的草量增加量,然后根据草场增长图和基本方程求解。
2. 周期牛吃草问题:在牛吃草问题中,草的生长速度和牛的数量成周期变化,此时需要根据周期变化的特点,列出相应的方程和图形,然后求解。
3. 风险投资问题:在牛吃草问题中,牛的数量和草场每天的草量增加量不是固定的,而是受到风险投资的影响,此时需要根据实际情况,列出相应的方程和图形,然后求解。
以上就是我对牛吃草问题解题技巧的讲解,希望对您有所帮助。
牛吃草问题 非常完整版例题讲解+课后作业

牛吃草问题例题讲解【例题1】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。
“廿”即二十之意。
)【题意翻译】:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例题2】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例题3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?【例题4】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?【例题5】一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【巩固】有一片草场,草每天的生长速度相同。
若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。
那么,17头牛和20只羊多少天可将草吃完?【例题6】有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?【巩固】一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【例题7】一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【巩固】现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【例题8】东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?【巩固】有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?【例题9】一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?【巩固】有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?【例题10】4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)【巩固】有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【例题11】三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?【例题12】17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)【例题13】有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【例题14】如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【课后作业】1、牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.2、仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解work Information Technology Company.2020YEAR例1:牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。
可以吃:72÷6=12天。
例2:一片牧场上长满牧草,如牧草每天都匀速生长。
则牧场可供27头牛吃6天或23头牛吃9天。
问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。
我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。
例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。
如果用12人舀水,3小时舀完。
如果只有5个人舀水,要10小时才能舀完。
现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。
设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。
小学数学必会经典应用题——“牛吃草”问题讲解

小学数学必会经典应用题——“牛吃草”问题讲解“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。
这类问题的特点在于要考虑草边吃边长这个因素。
草总量=原有草量+草每天生长量×天数解这类题的关键是求出草每天的生长量。
牧场上长满牧草,每天匀速生长。
这片牧场可供10头牛吃20天,可供15头牛吃10天,供25头牛吃几天?解题思路:牧草的总量不定,它是随时间的增加而增加。
但是不管它怎样增长,草的总量总是由牧场原有草量和每天长出的草量相加得来的。
10头牛20天吃的总草量比15头牛10天吃的草量多,多出部分相当于10天新长出的草量。
第一步:计算10头牛20天吃的草可供多少牛吃一天?10×20=200(头)第二步:计算15头牛10天吃的草可供多少头牛吃一天?15×10=150(头)第三步:计算(20–10)天新长出的草可供多少头牛吃一天?50÷10=5(头)第四步:计算每天新长出的草可供多少头牛吃一天?50÷10=5(头)第五步:计算20天(或10天)新长出的草可供多少头牛吃一天?5×20=100(头)第六步:计算原有的草可供多少头牛吃一天?200–100=100(头)第七步:计算每天25头牛中,如果有5头牛去吃新长出的草,其余的牛吃原有的草,可吃几天?100÷(25–5)=5(天)答:供25头牛吃5天。
有一水井,连续不断涌出泉水,每分钟涌出的水量相等。
如果用3 台抽水机抽水,36分钟可以抽完;如果用5台抽水机抽水,20分钟可以抽完。
现在12分钟要抽完井水,需要抽水机多少台?解题思路:随着时间的增长涌出的泉水也不断增多,但原来水量和每分钟涌出的水量不变。
综合算式:第一步:计算3台抽水机的抽水量是多少?3×36=108(台/分)第二步:计算5台抽水机的抽水量是多少?5×20=100(台/分)第三步:计算使用3 台抽水机比用5台抽水机多用多少分钟?36–20=16(分)第四步:使用3台抽水机比用5台抽水机少抽的水量是多少?108–100=8(台/分)第五步:计算泉水每分钟涌出的水量,算出需要抽水机多少台?8÷16=1/2(台)第六步:计算水井分钟涌出的水量是多少?1/2×36=18(台/分)第七步:计算水井原有的水量是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学牛吃草问题综合讲解Revised on November 25, 2020小学数学牛吃草问题吃草问题是小学奥数五年级的内容,学过的同学都知道这是一类比较复杂的应用题,还有一些相应的变形题:排队买票、大坝泄洪、抽水机抽水等等。
那么在这里讲下牛吃草问题的解题思路和解题方法、技巧供大家学习。
一、解决此类问题,孩子必须弄个清楚几个不变量:1、草的增长速度不变2、草场原有草的量不变。
草的总量由两部分组成,分别为:牧场原有草和新长出来的草。
新长出来草的数量随着天数在变而变。
因此孩子要弄清楚三个量的关系:第一:草的均匀变化速度(是均匀生长还是均匀减少)第二:求出原有草量第三:题意让我们求什么(时间、牛头数)。
注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机二、解题基本思路1、先求出草的均匀变化速度,再求原有草量。
2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。
4、根据(“原有草量”+若干天里新生草量)÷天数”,求出只数三、解题基本公式解决牛吃草问题常用到的四个基本公式分别为:1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数3、吃的天数=原有草量÷(牛头数-草的生长速度)4、牛头数=原有草量÷吃的天数+草的生长速度四、下面举个例子例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢并且牧场上的草是不断生长的。
一般方法:先假设1头牛1天所吃的牧草为1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。
)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。
)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽公式解法:(1)草的生长速度=(207-162)÷(9-6)=15(2)牧场上原有草=(27-15)×6=72再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。
方程解答:设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有27×6-6x =23×9-9x解出x=15份再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:27×6-6×15 =23×9-9×15=(21-15)x解出x=12(天)所以养21头牛。
12天可以吃完所有的草。
牛吃草问题在普通工程问题的基础上,工作总量随工作时间均匀的变化,这样就增加了难度.牛吃草问题的关键是求出工作总量的变化率.下面给出几例牛吃草及其相关问题.1. 草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周(这类问题由牛顿最先提出,所以又叫“牛顿问题”.)【分析与解】27头牛吃6周相当于27×6=162头牛吃1周时间,吃了原有的草加上6周新长的草;23头牛吃9周相当于23×9=207头牛吃1周时间,吃了原有的草加上9周新长的草;于是,多出了207-162=45头牛,多吃了9-6=3周新长的草.所以45÷3=15头牛1周可以吃1周新长出的草.即相当于给出15头牛专门吃新长出的草.于是27-15=12头牛6周吃完原有的草,现在有21头牛,减去15头吃长出的草,于是21-15=6头牛来吃原来的草;所以需要12×6÷6=12(周),于是2l头牛需吃12周.评注:我们求出单位“1”面积的草需要多少头年来吃,这样就把问题化归为一般工程问题了.一般方法:先求出变化的草相当于多少头牛来吃:(甲牛头数×时间甲-乙牛头数×时间乙)÷(时间甲-时间乙);再进行如下运算:(甲牛头数-变化草相当头数)×时问甲÷(丙牛头数-变化草相当头数)=时间丙.或者:(甲牛头数-变化草相当头数)×时间甲÷时间丙+变化草相当头数丙所需的头数.2.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周【分析与解】我们知道24×6=144头牛吃一周吃2个(2公顷+2公顷周长的草).36×12=432头牛吃一周吃4个(2公顷+2公顷12周长的草).于是144÷2=72头牛吃一周吃2公顷+2公顷6周长的草.432÷4=108头牛吃一周吃2公顷+2公顷12周长的草.所以108-72=36头牛一周吃2公顷12—6=6周长的草.即36÷6=d头牛1周吃2公顷1周长的草.对每2公顷配6头牛专吃新长的草,则正好.于是4公顷,配4÷2×6=12头牛专吃新长的草,即24-12=12头牛吃6周吃完4公顷,所以1头牛吃6×1÷(4÷2)=36周吃完2公顷.所以10公顷,需要10÷2×6=30头牛专吃新长的草,剩下50-30=20头牛来吃10公顷草,要36 ×(10÷2)÷20=9周.于是50头牛需要9周吃10公顷的草.3.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光.(在这2天内其他草地的草正常生长)之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外号的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间【分析与解】 一群牛,2天,吃了1块+1块2天新长的;一群牛,6天,吃了2块+2块2+6=8天新长的;即3天,吃了1块+1块8天新长的.即16群牛,1天,吃了1块1天新长的.又因为,13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,它们同时吃完.所以,③=2⨯阴影部分面积.于是,整个为19422+=块地.那么需要193624⨯=群牛吃新长的草,于是191262-⨯⨯()=现在314⨯-().所以需要吃:19312130624-⨯⨯÷-()()=天. 所以,一开始将一群牛放到整个草地,则需吃30天.4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间【分析与解】 我们注意到:牛、马45天吃了 原有+45天新长的草① →牛、马90天吃了2原有+90天新长的草⑤ 马、羊60天吃了 原有+60天新长的草②牛、羊90天吃了 原有+90天新长的草③马 90天吃了 原有+90天新长的草④所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为l÷11()9060=36天.所以,牛、羊、马一起吃,需36天.5. 有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草【分析与解】由于三片牧场的公顷数不一致,给计算带来困难,如果将其均转化为1公顷时的情形.所以表1中,头牛吃4星期吃完l公顷原有的草,那么18星期吃完1公顷原有的草需要÷(18÷4)=头牛,加上专门吃新长草的O.9头牛,共需+=头牛,18星期才能吃完1公顷牧场的草.所以需×24=36头牛18星期才能吃完第三片牧场的草.一个牧场长满青草,牛在吃草而草又不断匀速生长,27头牛6天可以把牧场上的草全部吃完;23头牛吃完牧场全部的草则要9天,若21头牛来吃,几天吃完最佳答案这种问题叫:牛顿问题完整解题思路: 假设每头牛每天的吃草量为1,则27头6天的吃草量为27×6=162;23头牛9天的吃草量为23×9=207。
207与162的差就是(9-6)天新长出的草,所以牧场每天新长出的草量是(207-162)÷(9-6)=15 因为27头牛6天吃草量为162,这6天新长出的草之和为15×6=90,从而可知牧场原有的划量为162-90=72 牧场每天新长的草够15头牛吃一天,每天都让21头牛中的15头牛吃新长出的草,其余的21-15=6(头)专吃原来的草。
所以牧场上的草够吃72÷6=12(天),也就是这个牧场上的草够21头牛吃12天。
综合算式:[27×6-(23×9-27×6)÷(9-6)×6]÷[21-(23×9-27×6)÷(9-6)]=12(天)牛吃草问题是小学奥数的一类难题,记得在某本书上看到过:“牛吃草问题就是追及问题,牛吃草问题就是工程问题。
”对于前半句很好理解,给孩子讲的时候,也是按追及问题的思路来讲的。
而对于后半句,直到上周才算明白。
这个问题是在仁华学校课本六年级下册第六讲最大与最小问题中出现的。
现暂且把这个题放下,看看以前我是如何讲牛吃草问题的。
例1 小军家的一片牧场上长满了草,每天草都在匀速生长,这片牧场可供10头牛吃20天,可供12头牛吃15天。