小学数学应用题典型详解19-牛吃草问题

合集下载

小学奥数题目-五年级-应用题-牛吃草问题

小学奥数题目-五年级-应用题-牛吃草问题

牛吃草问题1、概念由英国科学家牛顿提出,后人把这类问题称为牛吃草问题或叫做“牛顿问题”。

最基本的牛吃草问题是指牛在牧场上吃草,牧场上的草在不断的、均匀的生长。

难点在于草的总量不定。

2、四个关键量(1)草的生长速度(2)草的总量,分为新草的总量和原草的总量(3)牛的头数(4)吃的时间3、解决牛吃草问题的主要依据(1)草的每天生长量不变(2)每头牛每天的吃草量不变(3)草的总量=草场原有的草量(固定值)+新生的草量(4)新生的草量=草的生长速度×时间5、牛吃草问题的变形问题有抽水问题、电梯问题、检票口检票问题等等,关键在于类比成牛吃草问题,举一反三。

【例题1】牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天?1.1.【练习题1.1】牧场上一片青草,每天牧草都匀速生长。

这片牧草可供8头牛吃10天,或者可供6头牛吃15天。

问:可供4头牛吃几天?2.2.【练习题1.2】牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?3.3.【练习题1.3】一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光。

那么想用4天的时间,把这块草地的草吃光,需要多少只羊?【例题2】由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?1.1.【练习题2.1】由于天气突变,牧场上的草以固定的速度剧烈减少。

已知某块草地上的草可供33只羊吃5天,或可供24只羊吃6天。

照此计算,这个牧场可供多少只羊吃10天?2.2.【练习题2.2】由于天气逐渐冷起来,牧场上的草量不仅不增加,反而以固定的速度在减少。

已知某块草地上的草可供25头牛吃4天,或可供16头牛吃6天。

牛吃草问题的详细解法

牛吃草问题的详细解法

牛吃草问题的详细解法一、牛吃草问题基础概念。

1. 问题描述。

- 牛吃草问题又称为消长问题或牛顿问题。

典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

2. 基本公式。

- 设每头牛每天的吃草量为1份。

- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。

- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。

二、牛吃草问题示例及解析。

1. 题目1。

- 有一片牧场,草每天都在匀速生长。

如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。

问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。

- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。

要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。

- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。

- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。

2. 题目2。

- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。

那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。

- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。

数学运算--牛吃草问题

数学运算--牛吃草问题

牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随 吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰(1)草的生长速度=(相应的牛头数×吃草速度)×吃的较多天数-(相应的牛头数×吃草速度)×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=(相应的牛头数×吃草速度)×吃的天数草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(相应的牛头数×吃草速度-草的生长速度);(4)牛头数=(原有草量÷吃的天数+草的生长速度)÷吃草速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的数量关系(基本变形)是:1.(相应的牛头数×吃草速度×吃草较多的天数-相应的牛头数×吃草速度×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

2.相应的牛头数×吃草速度×吃草天数-每天新长量×吃草天数=草地原有的草。

小学六年级奥数系列讲座:牛吃草问题(含答案解析)

小学六年级奥数系列讲座:牛吃草问题(含答案解析)

牛吃草问题牛吃草问题在普通工程问题的基础上,工作总量随工作时间均匀的变化,这样就增加了难度.牛吃草问题的关键是求出工作总量的变化率.下面给出几例牛吃草及其相关问题.1. 草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?(这类问题由牛顿最先提出,所以又叫“牛顿问题”.)【分析与解】27头牛吃6周相当于27×6=162头牛吃1周时间,吃了原有的草加上6周新长的草;23头牛吃9周相当于23×9=207头牛吃1周时间,吃了原有的草加上9周新长的草;于是,多出了207-162=45头牛,多吃了9-6=3周新长的草.所以45÷3=15头牛1周可以吃1周新长出的草.即相当于给出15头牛专门吃新长出的草.于是27-15=12头牛6周吃完原有的草,现在有21头牛,减去15头吃长出的草,于是21-15=6头牛来吃原来的草;所以需要12×6÷6=12(周),于是2l头牛需吃12周.评注:我们求出单位“1”面积的草需要多少头年来吃,这样就把问题化归为一般工程问题了.一般方法:先求出变化的草相当于多少头牛来吃:(甲牛头数×时间甲-乙牛头数×时间乙)÷(时间甲-时间乙);再进行如下运算:(甲牛头数-变化草相当头数)×时问甲÷(丙牛头数-变化草相当头数)=时间丙.或者:(甲牛头数-变化草相当头数)×时间甲÷时间丙+变化草相当头数丙所需的头数.2.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【分析与解】我们知道24×6=144头牛吃一周吃2个(2公顷+2公顷周长的草).36×12=432头牛吃一周吃4个(2公顷+2公顷12周长的草).于是144÷2=72头牛吃一周吃2公顷+2公顷6周长的草.432÷4=108头牛吃一周吃2公顷+2公顷12周长的草.所以108-72=36头牛一周吃2公顷12—6=6周长的草.即36÷6=d头牛1周吃2公顷1周长的草.对每2公顷配6头牛专吃新长的草,则正好.于是4公顷,配4÷2×6=12头牛专吃新长的草,即24-12=12头牛吃6周吃完4公顷,所以1头牛吃6×1÷(4÷2)=36周吃完2公顷.所以10公顷,需要10÷2×6=30头牛专吃新长的草,剩下50-30=20头牛来吃10公顷草,要36 ×(10÷2)÷20=9周.于是50头牛需要9周吃10公顷的草.3.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光.(在这2天内其他草地的草正常生长)之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外号的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【分析与解】一群牛,2天,吃了1块+1块2天新长的;一群牛,6天,吃了2块+2块2+6=8天新长的;即3天,吃了1块+1块8天新长的.即16群牛,1天,吃了1块1天新长的.又因为,13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,它们同时吃完.所以,③=2⨯阴影部分面积.于是,整个为19422+=块地.那么需要193624⨯=群牛吃新长的草,于是19 1262 -⨯⨯()=现在314⨯-().所以需要吃:19312130624-⨯⨯÷-()()=天.所以,一开始将一群牛放到整个草地,则需吃30天.4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【分析与解】我们注意到:牛、马45天吃了原有+45天新长的草① →牛、马90天吃了2原有+90天新长的草⑤马、羊60天吃了原有+60天新长的草②牛、羊90天吃了原有+90天新长的草③↓↓↓马 90天吃了原有+90天新长的草④所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为l÷11()9060+=36天.所以,牛、羊、马一起吃,需36天.5. 有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【分析与解】由于三片牧场的公顷数不一致,给计算带来困难,如果将其均转化为1公顷时的情形.所以表1中,3.6-0.9=2.7头牛吃4星期吃完l公顷原有的草,那么18星期吃完1公顷原有的草需要2.7÷(18÷4)=0.6头牛,加上专门吃新长草的O.9头牛,共需0.6+0.9=1.5头牛,18星期才能吃完1公顷牧场的草.所以需1.5×24=36头牛18星期才能吃完第三片牧场的草.。

小学数学经典题型:牛吃草问题及变形题目详细分析

小学数学经典题型:牛吃草问题及变形题目详细分析

小学数学经典题型:牛吃草问题及变形题目详细分析牛吃草问题属于应用题模块,是经典的奥数题型之一,也是考试中经常会涉及到的考点。

下边是牛吃草的五大经典类型,大家可以来学习一下。

“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间。

难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。

“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量×天数同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数×较多天数-对应牛的头数×较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数×吃的天数-草的生长速度×吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题。

例1牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

小学数学必会经典应用题——“牛吃草”问题讲解

小学数学必会经典应用题——“牛吃草”问题讲解

小学数学必会经典应用题——“牛吃草”问题讲解“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。

这类问题的特点在于要考虑草边吃边长这个因素。

草总量=原有草量+草每天生长量×天数解这类题的关键是求出草每天的生长量。

牧场上长满牧草,每天匀速生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天,供25头牛吃几天?解题思路:牧草的总量不定,它是随时间的增加而增加。

但是不管它怎样增长,草的总量总是由牧场原有草量和每天长出的草量相加得来的。

10头牛20天吃的总草量比15头牛10天吃的草量多,多出部分相当于10天新长出的草量。

第一步:计算10头牛20天吃的草可供多少牛吃一天?10×20=200(头)第二步:计算15头牛10天吃的草可供多少头牛吃一天?15×10=150(头)第三步:计算(20–10)天新长出的草可供多少头牛吃一天?50÷10=5(头)第四步:计算每天新长出的草可供多少头牛吃一天?50÷10=5(头)第五步:计算20天(或10天)新长出的草可供多少头牛吃一天?5×20=100(头)第六步:计算原有的草可供多少头牛吃一天?200–100=100(头)第七步:计算每天25头牛中,如果有5头牛去吃新长出的草,其余的牛吃原有的草,可吃几天?100÷(25–5)=5(天)答:供25头牛吃5天。

有一水井,连续不断涌出泉水,每分钟涌出的水量相等。

如果用3 台抽水机抽水,36分钟可以抽完;如果用5台抽水机抽水,20分钟可以抽完。

现在12分钟要抽完井水,需要抽水机多少台?解题思路:随着时间的增长涌出的泉水也不断增多,但原来水量和每分钟涌出的水量不变。

综合算式:第一步:计算3台抽水机的抽水量是多少?3×36=108(台/分)第二步:计算5台抽水机的抽水量是多少?5×20=100(台/分)第三步:计算使用3 台抽水机比用5台抽水机多用多少分钟?36–20=16(分)第四步:使用3台抽水机比用5台抽水机少抽的水量是多少?108–100=8(台/分)第五步:计算泉水每分钟涌出的水量,算出需要抽水机多少台?8÷16=1/2(台)第六步:计算水井分钟涌出的水量是多少?1/2×36=18(台/分)第七步:计算水井原有的水量是多少。

小升初数学典型应用题——19“牛吃草”问题

小升初数学典型应用题——19“牛吃草”问题

19 “牛吃草”问题【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。

这类问题的特点在于要考虑草边吃边长这个因素。

【数量关系】草总量=原有草量+草每天生长量×天数【解题思路和方法】解这类题的关键是求出草每天的生长量。

例1一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。

问多少头牛5天可以把草吃完?解草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。

求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以1×10×20=原有草量+20天内生长量同理1×15×10=原有草量+10天内生长量由此可知(20-10)天内草的生长量为1×10×20-1×15×10=50因此,草每天的生长量为50÷(20-10)=5(2)求原有草量原有草量=10天内总草量-10内生长量=1×15×10-5×10=100(3)求5 天内草总量5 天内草总量=原有草量+5天内生长量=100+5×5=125(4)求多少头牛5 天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。

因此5天吃完草需要牛的头数125÷5=25(头)答:需要5头牛5天可以把草吃完。

例2 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。

如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。

求17人几小时可以淘完?解这是一道变相的“牛吃草”问题。

与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。

典型应用题之牛吃草问题

典型应用题之牛吃草问题

典型应用题之牛吃草问题牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?这就是经典的“牛吃草问题”,这道题的关键在于,草的总量是变化的(草要不停地长哦)。

同学们,今天我们就来学习这个非常有趣的数学题目。

“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有三步:1.求出草的生长速度2.求出牧场原有草量3.最后求出可吃天数或牛的头数有一片牧场,草每天都在均匀的生长。

如果在牧场上放养24头牛,那么6天就可以把草吃完;如果放养21头牛,8天可以把草吃完。

那么:⑴要让草永远吃不完,最多放养多少头牛;⑵如果放养36头牛,多少天可以把草吃完?1.基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

2.基本特点:原草量和草生长速度是不变的;3.关键问题:确定两个不变的量。

⑴草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);⑵原有草量=牛头数×吃的天数-草的生长速度×吃的天数;⑶吃的天数=原有草量÷(牛头数-草的生长速度);⑷牛头数=原有草量÷吃的天数+草的生长速度。

有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天。

那么它可供几头牛吃20天?【挑战1】一片青草地,每天都匀速长出青草。

这片青草可供27头牛吃6周或供23头牛吃9周,那么,这片草地可供21头牛吃几周?由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。

经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。

那么,可供11头牛吃几天?一只船发现漏水时,已经进了一些水,水匀速进入船内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19 “牛吃草”问题
【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。

这类问题的特点在于要考虑草边吃边长这个因素。

【数量关系】草总量=原有草量+草每天生长量×天数
【解题思路和方法】解这类题的关键是求出草每天的生长量。

例1 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。

问多少头牛5天可以把草吃完?
解草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。

求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:
(1)求草每天的生长量
因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以
1×10×20=原有草量+20天内生长量
同理 1×15×10=原有草量+10天内生长量
由此可知(20-10)天内草的生长量为
1×10×20-1×15×10=50
因此,草每天的生长量为 50÷(20-10)=5
(2)求原有草量
原有草量=10天内总草量-10内生长量=1×15×10-5×10=100
(3)求5 天内草总量
5 天内草总量=原有草量+5天内生长量=100+5×5=125
(4)求多少头牛5 天吃完草
因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。

因此5天吃完草需要牛的头数 125÷5=25(头)
答:需要5头牛5天可以把草吃完。

例2 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。

如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。

求17人几小时可以淘完?
解这是一道变相的“牛吃草”问题。

与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。

设每人每小时淘水量为1,按以下步骤计算:
(1)求每小时进水量
因为,3小时内的总水量=1×12×3=原有水量+3小时进水量
10小时内的总水量=1×5×10=原有水量+10小时进水量
所以,(10-3)小时内的进水量为 1×5×10-1×12×3=14
因此,每小时的进水量为 14÷(10-3)=2
(2)求淘水前原有水量
原有水量=1×12×3-3小时进水量=36-2×3=30
(3)求17人几小时淘完
17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是
30÷(17-2)=2(小时)
答:17人2小时可以淘完水。

相关文档
最新文档